
Scalable Inclusion Dependency Discovery

Nuhad Shaabani(B) and Christoph Meinel

Hasso-Plattner-Institut, University of Potsdam,
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany

{nuhad.shaabani,christoph.meinel}@hpi.de
http://www.hpi.de

Abstract. Inclusion dependencies within and across databases are an
important relationship for many applications in anomaly detection,
schema (re-)design, query optimization or data integration. When such
dependencies are not available as explicit metadata, scalable and efficient
algorithms have to discover them from a given data instance.

We introduce a new idea for clustering the attributes of database rela-
tions. Based on this idea we have developed S-indd, an efficient and scal-
able algorithm for discovering all unary inclusion dependencies in large
datasets. S-indd is scalable both in the number of attributes and in the
number of rows. We show that previous approaches reveal themselves
as special cases of S-indd. We exhaustively evaluate S-indd’s scalability
using many datasets with several thousands attributes and rows up to one
million. The experiments show that S-indd is up to 11x faster than previ-
ous approaches.

Keywords: Inclusion dependency · Data integration · Data profiling

1 Introduction

Dependencies are metadata that describe relationships between relational
attributes. Dependencies play very important roles in database design, data qual-
ity management, and knowledge representation. In the case that they are modeled
as part of the application requirements, they are then used in database normaliza-
tion and are implemented in the designed database to ensure data quality. In con-
trast, dependencies in knowledge discovery are extracted from the existing data of
the database. The extraction process is called dependency discovery and aims to
find dependencies satisfied by existing data. A typical type of dependency is inclu-
sion dependencies (INDs), which represent value reference relationships between
two sets of attributes. Together with functional dependencies, they represent an
important part of database semantics.

In the context of data integration, the discovery of inclusion dependencies
can help to solve a very common and difficult problem: discovering foreign key
constraints. There are many reasons for an absence of foreign key constraints in
databases. These include a simple lack of domain knowledge within the devel-
opment team during the design and development time, the worry that checking
c© Springer International Publishing Switzerland 2015
M. Renz et al. (Eds.): DASFAA 2015, Part I, LNCS 9049, pp. 425–440, 2015.
DOI: 10.1007/978-3-319-18120-2 25

426 N. Shaabani and C. Meinel

such constraints by the hosted system would hamper database performance, or
the lack of support for checking foreign key constraints in the host system.

The manual search for INDs by domain experts is usually not feasible due
to the large number of data sources, a widespread lack of reliable metadata
about legacy databases, and the possibility of a high number of attributes in
real-world relations. Therefore, efficient and scalable algorithms to detect INDs
enable easy integration of new data sources that previously would not have been
used, because their relationships with existing data was not known.

N-ary INDs cover pairs of n attributes, while unary INDs (uINDs) cover only
pairs of single attributes (formal definitions are in Sec. 2). All known algorithms
for detecting high-dimensional INDs require the discovery of all unary inclusion
dependencies (single-column INDs) [10–13]. This is because any valid IND of a
size greater than one implies that all unary INDs derivable from it have to be
valid in the same database. This means that the reliability of the algorithms
for detecting high-dimensional INDs is dependent on a scalable and efficient
discovery of unary INDs.

There are three approaches in related work focused on exhaustive detect-
ing single-column inclusion dependencies: Bell and Brockhausen [3], De Marchi
et al. [11,13], and Bauckmann et al. [1,2] (see Sec. 6).

The algorithm proposed in [11,13] for discovering unary INDs uses an inverted
index associating every value in the database with the set of all attributes hav-
ing this value. Because for every attribute A the intersection of all attribute sets
containing A is the set of all attributes including A, the algorithm runs through
all values in order to compute such an intersection for every attribute. However,
this approach is inefficient because an attribute set in the index can be associated
with many different values. This means, the algorithm executes a lot of redundant
intersection operations. These operations are very costly if the dataset has a large
number of attributes sharing a lot of values.

The first research question addressed in this paper is how we can eliminate
such redundant operations caused by using the inverted index. We tackle this
problem by introducing the concept of attribute clustering (see Sec. 3).

Spider [1,2] is an external algorithm that writes the values of every attribute
to a file after sorting them and removing duplicate values. Then it opens all files
at once and starts comparing the values in parallel and in the same way in which
the merge-sort algorithm does. During this process, Spider applies an efficient
method for discarding unsatisfied unary INDs (see Sec. 6 for more details). Spi-
der outperforms the approach proposed in [11] up to orders of magnitude [1,2].
However, the drawback in Spider’s approach is its dependency on the number
of attributes. This means, that by increasing the number of attributes, Spider’s
scalability decreases: the number of I/O- operations increases because the size
of buffers allocated for the opened files becomes smaller.

The second research challenge addressed in this paper is how we can make
Spider independent from the number of attributes in order to improve its scal-
ability in two dimensions: in the number of attributes and the number of rows.

Scalable Inclusion Dependency Discovery 427

Table 1. Running example

A B C D

1 1 5 1
2 2 5 1
2 3 6 3
4 4 7 3 Fig. 1. Attribute clustering based on

the data of table 1

We tackle this challenge by devising S-indd, a scalable approach for com-
puting the attribute clustering (see Sec. 4).

Every cluster in the attribute clustering is a subset of attributes sharing a
subset of values that can not be shared by the attributes of any different cluster in
the attribute clustering. E.g., {{A,B}, {A,B,D}, {B,D}, {C}} shown in figure
1 is the attribute clustering over the values of table 1. Attributes A and B shape
cluster C1 because both share the values {2, 4} that can not be shared by the
attributes of C2, C3, or C4. Every attribute of the attribute set, denoted by A,
must be contained in at least one cluster.

Clustering the attributes in this way allows us to derive the following infer-
ence rule1: Attribute X is included in attribute Y if and only if every cluster
containing X contains Y . E.g., the set of D’s values in table 1 is included in
the set of B’s values because the clusters C2 and C3 that both contain D also
contain B, but B’s values are not included in D’s values because cluster C1
contains B and does not contain D.

For every attribute A, S-indd stores all elements of the set VA × {{A}} (VA

denotes the value set of A) as a sorted list in an external repository. Then, for
every value v ∈ V (V denotes the whole set of values in the dataset), S-indd
computes incrementally the set of attributes, denoted by Av, whose value sets
contain v. The incremental computing of the sets Av is achieved by executing a
sequence of merging operations. Every merging operation merges simultaneously
k lists from the repository (k > 1 is a given number) and replaces them with
a new list. The new list contains the union of all sets Av contained in the k
lists read previously. In this way the sets Av are incrementally computed. Such
merging continues until the repository contains less than k lists. After finishing
merging, S-indd generates the clusters from the remaining lists by processing
them in parallel. The possibility that S-indd can control the number of lists to
be merged makes its scalability independent from the number of attributes.

To handle a large dataset with a very large number of rows S-indd partitions
the whole dataset and computes the attribute clustering of every partition. The
whole attribute clustering is then the union of all attribute clusterings of all
partitions (see Sec. 4.2). This method makes the S-indd’s scalability independent
from the number of rows.
1 This rule is a generalization of property 1 formulated in [11]

428 N. Shaabani and C. Meinel

Contributions. (1) We introduce the concept of attribute clustering, a new
concept for inferencing all unary inclusion dependencies much more efficiently
than using the inverted index introduced in [11].

(2) We devise S-indd, a scalable algorithm for computing the attribute clus-
tering in large datasets. Its scalability neither dependents on the number of
attributes nor on the number of rows.

(3) We experimentally validate S-indd on real and synthetic datasets and
compare it with Spider [1,2]. The results show that S-indd is up to 11x faster
than Spider. Furthermore, we show that Spider is a special case of S-indd.

2 Preliminaries

Let A be a finite set of attributes. Each attribute A ∈ A has an associated domain
dom(A), which defines the set of all its possible values. For A1, A2, . . . An ∈
A and for a symbol R, R[A1, A2, . . . , An] is called a relational schema over
A1, A2, . . . , An and R is the relation name. A tuple t over R is an element from
dom(A1) × dom(A2) × · · · × dom(An). For a tuple t over R and X ⊆ A, we use
t[X] to denote the projection of t to X. A finite set r of tuples over R is called an
instance of R. For an instance r of R and for a sequence X of attributes in R, the
projection of r onto X, denoted by πX(r), is defined as πX(r) = {t[X] | t ∈ r}.

A set R of relational schemata Ri[Ai,1, . . . , Ai,ni
], where Ai,1, . . . , Ai,ni

∈ A,
1 ≤ ni ≤ |A| and 1 ≤ i ≤ m = |R|, is called a database schema. A relational
database instance D over R is a set of instances ri over each Ri ∈ R.

Definition 1. (Inclusion dependency) Let Ri[Ai,1, . . . , Ai,ni
] and Rj [Aj,1, . . . ,

Aj,nj
] be two relational schemata. Let X be a set of k distinct attributes from

Ri and Y a set of k distinct attributes from Rj, with 1 ≤ k ≤ min(ni, nj). An
inclusion dependency (IND) is an assertion of the form Ri[X] ⊆ Rj [Y] where
k is the size of the IND. For k = 1 the inclusion dependency is called a unary
inclusion dependency (uIND).

Definition 2. (IND satisfaction) Let D be a database over a database schema
R. An inclusion dependency Ri[X] ⊆ Rj [Y] over Ri, Rj ∈ R is satisfied or valid
in D iff ∀u ∈ ri,∃v ∈ rj such that u[X] = v[Y].

Thus, a satisfied IND Ri[X] ⊆ Rj [Y] states that every value combination for
attribute set X in relation Ri is also present as a value combination of attribute
set Y in Rj . INDs are a prerequisite for foreign keys, and their discovery is
particularly helpful to understand how records of two relations might be joined.

To simplify the formulation of the algorithm, we assume without loss of gener-
ality that attribute names are unique across all relations. Under this assumption,
we can denote a unary inclusion dependency Ri[A] ⊆ Rj [B] by A ⊆ B. We also
define the two sets VA and V to ease notation:

VA is the set of A’s values occurring in the corresponding instance of the
relation schema in which A occurs:

VA = {v ∈ dom(A) | ∃R ∈ R : A ∈ R ∧ v ∈ πA(r)}

Scalable Inclusion Dependency Discovery 429

Then V is the set of all values of all attributes occurring in the database
instance.

V = ∪Ri∈R ∪A∈Ri
VA

It is now obvious that a unary inclusion dependency A ⊆ B is valid if and only
if VA ⊆ VB . Accordingly, the discovery of all valid unary inclusion dependencies
in a database over a database schema R is equivalent to the computation of the
following set: I = {A ⊆ B | A,B ∈ A ∧ VA ⊆ VB}

3 Attribute Clustering

We now formally introduce the concept of attribute clustering.

Definition 3. (Attribute Clustering) The set AC ⊆ 2A, where AC 	= ∅ and 2A

is the power set of A, is an attribute clustering over V if there is a surjective
function that maps every value v ∈ V to a C ∈ AC that contains all attributes
A ∈ A with v ∈ VA. In other words, AC is an attribute clustering if there is
f : V → AC satisfying the following condition:

1. (∀C ∈ AC)(∃v ∈ V) : f(v) = C (i.e., f is surjective).
2. (∀v ∈ V)(¬∃A ∈ A) : v ∈ VA ∧ A 	∈ f(v) (i.e., f(v) is the maximal set of

attributes A ∈ A with v ∈ VA).

Each C ∈ AC is called a cluster. Clusters need not be mutually disjoint.

The next lemma shows the relationship between the clusters and the values
of the dataset.

Lemma 1. An attribute clustering AC = {C1, C2, . . . , Cc} divides the set V into
|AC| disjoint partitions P1,P2 . . . ,Pc so that for every cluster Ci ∈ AC there is
a partition Pi with Pi ⊆ ∩A∈Ci

VA.

Proof. According to definition 3, there is a surjective function f : V → AC
where f(v) = C is the set of the all attributes A with v ∈ VA. For each cluster
Ci(1 ≤ i ≤ c), we can define the set

Pi = f−1(Ci) = {v ∈ V | f(v) = Ci} ⊆ ∩A∈Ci
VA (1)

because f is surjective.
Because any v ∈ V can not be mapped to two different clusters, we have

Pi ∩ Pj = ∅ for i 	= j(1 ≤ i, j ≤ c) (2)

Because there is Pi(1,≤ i ≤ c) for any v ∈ V, we have

∪1≤i≤c Pi = V (3)

According to (2) and (3), the sets P1,P2 . . . Pc are disjoint partitions of V.
�

430 N. Shaabani and C. Meinel

The next lemma states that for each two different attributes A,B, the set
of A’s values is included in the set of B’s values if and only if the intersection
of all clusters containing A contains B. In other words, we have the following
inference rule: for any attribute A, the set of all attributes including A is the
intersection of all clusters containing A.

Lemma 2. Let AC = {C1, . . . , Cc} be an attribute clustering over V. Then the
following holds:

∀A,B ∈ A : VA ⊆ VB ⇔ B ∈ ∩C∈AC,A∈CC

Proof. 1) “⇒”: We assume B 	∈ ∩A∈CC. This means, there is C with A ∈ C and
B 	∈ C. According to definition 3, there is at least v ∈ V mapped to C with v ∈ VA

and v 	∈ VB because A ∈ C and B 	∈ C. This means, VA 	⊆ VB , contradicting
VA ⊆ VB .

2) “⇐”: We assume VA 	⊆ VB . This means, there is at least v ∈ V with
v ∈ VA and v 	∈ VB . According to definition 3, v can only be mapped to a cluster
C containing all attributes whose value sets contain v. This means, A ∈ C and
B 	∈ C because v ∈ VA and v 	∈ VB . This means, B 	∈ ∩A∈CC, contradicting
B ∈ ∩A∈CC
�

We can now formulate the motivation for the introduction of the concept of
attribute clustering as the answer of the following question.

Why is the deriving of all unary INDs from the attribute clustering
much more efficient than deriving them from the inverted index?

Let AC = {C1, . . . , Cc} be an attribute clustering and let P = {P1, . . . ,Pc} be
the partitions defined by its clusters (see lemma 1). The inverted index defined
in [11] can now be formulated as B = ∪1≤i≤c(Pi ×{Ci}). Furthermore, let IA be
the set2 of all attributes including A. IA is initially initialized with A in [11].
For every subset Bi = Pi×{Ci} ⊆ B, the algorithm in [11] must run through |Pi|
iterations in order to compute the set ∩(v,Ci)∈Bi

Ci ∩ IA. However, from all |Pi|
intersections we need only to compute one intersection because the result of the
remaining |Pi| − 1 intersections is known, namely the set Ci itself. This means,
using the clusters allows us to save Σ1≤i≤c|Pi| − |AC| = |V| − |AC| redundant
intersection operations compared to using the inverted index. Such intersection
operations are very costly if we have a large dataset with a large number of
attributes sharing a lot of values.

In fact, the runtime for computing the set I by using the inverted index is
O(|V| × |A|2) while it is O(|AC| × |A|2) by using the attribute clustering (see
line 5 in algorithm 1 in Sec. 4.1).

Furthermore, the way in which the inverted index has to be computed and
presented has a big impact on the efficiency and the scalability of the algorithm
in [11]. However, there is no explicit method suggested in [11] for computing the
inverted index (one can only assume that it is computed in [11] as a kind of
dictionary data structure presented in the main memory).

2 This set is denoted as rhs(A) in [11]

Scalable Inclusion Dependency Discovery 431

The scalable computing of the attribute clustering is the main objective of
S-indd’s development.

The following lemma shows that the attribute clustering exists for every data-
base instance D. Its proof can be considered as the proof of S-indd’s correctness
because S-indd incrementally computes the sets Av (v ∈ V) defined in the proof
and then generates the set AC (see Sec. 4.1).

Lemma 3. For any database instance D over a database schema R, there always
exists an attribute clustering to satisfy Definition 3.

Proof. For every value v ∈ V, let Av be the set of all attributes A whose values
sets contain v. I.e.,

∀A ∈ Av : v ∈ VA and ¬∃A′ ∈ A : v ∈ VA′ ∧ A′ 	∈ Av (4)

For all values vi1 , vi2 , . . . , vij (1 ≤ i, j ≤ |V|) with Avi1 = Avi2 = · · · = Avij , we
replace the sets Avi1 ,Avi2 , . . . ,Avij with a set Ci, i.e. Ci = Avi1 = · · · = Avij .
We show now that the set

AC = {C1, . . . , Cc} = {C | ∃v ∈ V : C = Av}

is an attribute clustering :
Assuming, for a v ∈ V, there are two different sets Ci and Cj with at least a
common attribute A satisfying v ∈ VA. That contradicts (4) and consequently,
the construction of the sets Ci(1 ≤ i ≤ c). This means, our assumption is wrong.
This means, the function

f : V → {C1, . . . , Cc} with f(v) = C where C = Av

satisfies definition 3.
�
The next lemma allows us to increase the scalability of S-indd in the case

of having datasets with a large number of rows (see Sec. 4.2).

Lemma 4. Let V1, . . . ,Vn be disjoint partitions of the set V and let AC1, . . . ,ACn

be the corresponding attribute clusterings. Then ∪1≤i≤nACi is an attribute clus-
tering over V.

Proof. For any ACi (1 ≤ i ≤ n) we can define a function fi : Vi → ACi satisfy-
ing definition 3 because ACi is an attribute clustering over Vi. Based on these
functions and on the fact that the sets Vi (1 ≤ i ≤ n) are disjoint partitions of
V, we define the function:

f : V → ∪1≤i≤nACi with ∀v ∈ V : f(v) = fi(v) iff v ∈ Vi

Obviously, f satisfies definition 3. This means, AC = ∪1≤i≤nACi is an
attribute clustering over V.
�

432 N. Shaabani and C. Meinel

4 Algorithm

4.1 S-indd

Overall Idea. As an external algorithm (see algorithm 1), S-indd uses a repos-
itory on a hard drive (as an external memory) in order to store temporary
computation results. The input parameter L denotes the name of the repository.
L contains initially the lists L1, L2, . . . , L|A| where every list L ∈ L relates to a
different attribute A ∈ A and its elements are all elements of the set VA ×{{A}}
sorted according to the values in VA. Example 1 illustrates these data structures.

Algorithm 1. S-indd
Algorithm 2. mergeLists

Example 1. Using the data of table 1, repository L will be initialized with the
following four lists:

L1 = [(1, {A}), (2, {A}), (4, {A})], L2 = [(1, {B}), (2, {B}), (3, {B}), (4, {B})]
L3 = [(5, {C}), (6, {C}), (7, {C})], L4 = [(1, {D}), (3, {D})]

The purpose of these data structures is to compute the sets Av (v ∈ V)
incrementally, where Av is the set of all attributes A ∈ A whose values sets
contain v (i.e., v ∈ VA). After computing the sets Av, S-indd generates the set
{C | ∃v ∈ V : C = Av} which is, according to the constructive proof of lemma
3, an attribute clustering. Having the attribute clustering, S-indd computes for
every attribute the intersection of all clusters containing it (line 5). The set I,
the set of all uINDs, is then computed based on lemma 2 (line 7).

The incremental computing of the sets Av is achieved in two stages. The
first stage (line 1) consists of a sequence of merging operations. The second
stage (line 3) implicitly completes the computation of the sets Av and generates
the attribute clustering.

Merging. The merging operation reads k (2 ≤ k ≤ |A|) lists

L1 = [(v11,Av11), . . . , (v1l1 ,Av1l1)], . . . , Lk = [(vk1,Avk1), . . . , (vklk ,Avklk)]

Scalable Inclusion Dependency Discovery 433

from L and then replaces them with the new list

L = [(v1,Av1), (v2,Av2), . . . , (vn,Avn)]

that satisfies the following condition:

v1 = min
1≤i≤k
1≤j≤li

{vilj}, Av1 =
⋃

vilj=v1
1≤i≤k
1≤j≤li

Avilj

...

vs = min
1≤i≤k
1≤j≤li

{vilj} \ {v1, . . . , vs−1}, Avs =
⋃

vilj
=vs

1≤i≤k
1≤j≤li

Avilj

with s = 2, . . . , n

In other words, the new list L is sorted according to the values vs ∈ {vilj | 1 ≤
i ≤ k, 1 ≤ j ≤ li} (1 ≤ s ≤ n) and every set As is the union of all sets Avilj

identified by the value vs in the k lists.
S-indd repeats the merging operation (line 1) until the repository L has less

than k lists where every new list generated by the merging operation has to
be stored as a temporary result in the repository L (line 10 in algorithm 2).
Example 2 illustrates the merging operation.

Example 2. According to example 1 and for k = 3, S-indd has to execute only
one merging operation.
If the first three lists L1, L2, and L3 (see line 1 in algorithm 2) are selected for
merging, the following list

L1,2,3 = [(1, {A,B}), (2, {A,B}), (3, {B}), (4, {A,B}), (5, {C}), (6, {C}), (7, {C})]

will be generated and the repository L will be changed to contain only the lists:
L1,2,3 and L4.

For an efficient implementation of the merging operation and for managing a
simultaneous reading of k lists (files) from the repository L, a priority queue is
used by algorithm 2 (and also by algorithm 3 - see below). The queue manages k
readers (sequential file readers). Every reader is associated with a list and points
to the entry that can currently be read from the list. For every two readers r, r′,
reader r has a higher priority than r′ if and only if the value v in (v,Av) is
smaller than or equal to the value v′ in (v′,Av′

) where (v,Av) is the entry that
r can currently read and (v′,Av′

) is the entry that r′ can currently read.
The purpose of using a priority queue is to enable an efficient collecting of all

sets Av
1, . . . ,Av

lv
(1 ≤ lv ≤ k) by a simultaneous and sequential reading of k lists

where v is the smallest value among all values that have not been read from the
k lists in the queue yet. That is possible in a simultaneous sequential reading
because the lists are sorted according to the values v ∈ V and the priority in

434 N. Shaabani and C. Meinel

Algorithm 3. computeAttClus-
tering

Algorithm 4. readNextAttSets

the queue is defined according to the ascending order of the values. This kind of
applying the priority queue is well-known by external merge-sort algorithms.

Clusters Computing. After finishing the merging, algorithm 3 will generate
the clusters of the attribute clustering AC by processing all remaining k′ (1 ≤
k′ < k) lists simultaneously. For every value v, there are still lv (1 ≤ lv < k′)
lists containing entries of the form (v,Av

i) (1 ≤ i ≤ lv). Algorithm 3 collects all
these entries, computes the set C = ∪1≤i≤lvAv

i , and adds C as a cluster to the
set AC. Example 3 illustrates the computing of the clusters.

Example 3. According to example 2 and for k = 3, L will contain the lists

L1,2,3 = [(1, {A,B}), (2, {A,B}), (3, {B}), (4, {A,B}), (5, {C}), (6, {C}), (7, {C})]
L4 = [(1, {D}), (3, {D})]

after finishing the merging.
For the value v = 1 there are two entries: (1, {A,B}) in L1,2,3 and (1, {D})
in L4. Therefore, algorithm 3 collects the two sets {A,B} and {D} by call-
ing algorithm 4 in the first run of the while-loop which delivers the tuple:
(1, {{A,B}, {D}}). The first cluster is then C1 = {A,B}∪{D} = {A,B,D} and
consequently AC = {{A,B,D}}. After a second run of the while-loop we have
AC = {{A,B,D}, {A,B}}. Calling algorithm 4 in the third run of the while-
loop delivers the tuple: (3, {{B}, {D}}). Consequently, AC will be extended to
AC = {{A,B,D}, {A,B}, {B,D}}. Computing AC will be finished after the sev-
enth run of the while-loop resulting in AC = {{A,B,D}, {A,B}, {B,D}, {C}}.

Repository Size. During the whole process of computing the Attribute Cluster-
ing, the repository size remains almost constant. This is because (i) the selected
k lists in every merging operation will not be needed any more after merging
them, which allows algorithm 2 to remove them from the repository after merg-
ing them (see line 9), and (ii) the size of the new list that results from merging
the selected k lists can not exceed the total size of these k lists.

We can now answer the following question.

Scalable Inclusion Dependency Discovery 435

Why Spider [1] is a special case of S-indd? Spider can only process
the whole set of the attributes at once. That means, Spider is only a form of
algorithm 3. To let S-indd process all attributes at once we need only to put
k = |A| + 1.

Algorithm 5. Extended S-indd
Algorithm 6. Partition

4.2 Extending S-indd

In the case that the dataset is very large and its values are shared among a
lot of attributes, many temporary lists generated by the merging operation in
subsequent iterations will have a relatively large size. Processing such large lists
by algorithm 2 or algorithm 3 may demand more I/O-operations.

To avoid generating large temporary lists in this case, the dataset can be
partitioned into disjoint partitions, and the attribute clustering will then be,
according to lemma 4, the union of all clusters computed for all partitions.

Algorithm 5 is an implementation of this idea and consists of computing
iterations whose number equals the number of the partitions of the dataset.
Every iteration is an instance of S-indd applied for computing the attribute
clustering over a different partition. The attribute clustering over the whole
dataset is computed based on lemma 4 in line 6. The input of algorithm 5 contains
the names of p repositories Li (1 ≤ i ≤ p) where every repository corresponds
to a different partition and contains the initial data structures (lists) generated
from the corresponding partition.

The disjunction of the partitions has an important computational advantage.
It avoids redundant computation of the set Av of any value v ∈ V. However, the
important question arising now is how can we partition a dataset to meet the
requirement of the extended version of S-indd (algorithm 5)? The answer to
this question is given in algorithm 6.

The main idea applied by algorithm 6 to partition the dataset is to choose p
values m1, . . . , mp with m1 < m2 < · · · < mp(to ease notation and formulation,
we put mp = ∞) and then to divide every initial list LA into disjoint sublists

436 N. Shaabani and C. Meinel

Li
A (1 ≤ i ≤ p) where every sublist Li

A has to satisfy the following condition:

max{v | (v, {A}) ∈ Li
A} ≤ mi

In other words, the maximal value in partition i does not exceed the value mi.
The disjunction of the partitions is guaranteed by algorithm 6 because (i)

the lists LA are sorted, (ii) every sublist Li
A is generated from LA by processing

LA from the first element until all elements from it have been obtained that
are less or equal to mi (line 4 in algorithm 6), and (iii) after its generating and
adding to the repository Li, Li

A will be removed from LA. Example 4 illustrates
the extended version of S-indd.

Example 4. Using the lists in example 1 and for m1 = 3, algorithm 6 produces
two partitions. The first partition L1 contains the lists:

L1
A = [(1, {A}), (2, {A})], L1

B = [(1, B), (2, B), (3, B)], L1
D = [(1, {D}), (3, {D})]

The second partition L2 contains the lists:

L2
A = [(4, {A})], L2

B = [(4, B)], L2
C = [(5, {C}), (6, {C}), (7, {C})]

Based on these partitions algorithm 5 will be provided with two repositories L1

and L2. It generates AC1 = {{A,B,D}, {A,B}, {B,D}} from the first reposi-
tory and AC2 = {{A,B}, {C}} from the second repository. The whole attribute
clustering is then AC = AC1 ∪ AC2 = {{A,B}, {A,B,D}, {B,D}, {C}}.

5 Experiments

The main aim of our experiments is to compare the performance of S-indd with
that of Spider. This is our focus because Spider is reported to be the current
leading algorithm for unary INDs discovery [1,2]. Spider already significantly
outperforms other approaches, in particular [3] and [11].

Experimental Conditions. We implemented both algorithms in Java 7 and
performed the experiments on the Windows 7 Enterprise system with an Intel
Core i5-3470 (Quad Core, 3.20 GHz CPU) and 8 GB RAM. We used an external
500 GB hard drive as external memory. We set the minimum Java heap size to
4 GB and the maximum to 6 GB for all our experiments.

Datasets. Two groups of synthetic datasets are generated for conducting two
different groups of experiments. The purpose of the first group is to evaluate and
compare the scalability of both algorithms by varying the number of attributes
and fixing the number of rows, while in the second group of datasets the number
of rows is varied and the number of attributes is fixed.

Experiments with real-word datasets are conducted using datasets from the
life science domain (see below).

Scaling the Number of Attributes. In these experiments, we generate thir-
teen synthetic datasets with the same number of rows, namely 200,000 rows.

Scalable Inclusion Dependency Discovery 437

Fig. 2. Comparing scalability by scal-
ing the number of attributes and fixing
the number of rows to 200,000

Fig. 3. Comparing scalability by scal-
ing the number of rows and fixing the
number of attributes to 2,000

Starting with 1,000 different attributes and ten unary INDs in the first dataset,
the attributes set in the next dataset consists of the attributes set in the previ-
ous dataset plus 500 new different attributes and ten new different INDs so that
the thirteenth dataset has 7,000 different attributes and 130 unary INDs. For all
these datasets , S-innd is configured to merge 200 lists (k = 200) simultaneously.

Figure 2 shows the results of these experiments. (i) For every dataset S-indd
is faster than Spider. For example, for the dataset with 7,000 attributes and
36.2 GB size, S-indd needs one hour and ten minutes while Spider needs twelve
hours and thirty minutes. This means, S-indd is about 11x faster than Spider.
(ii) By increasing the number of attributes, Spider’s runtime grows much faster
than S-indd’s runtime. For example, by increasing the number of attributes
from 6,000 to 7,000, Spider’runtime increases by 38 % while S-indd’runtime
increases by 1 % (for the dataset with 6,000 attributes and 31 GB Spider needs
six hours and 10 minutes while S-indd needs only about one hour).

Scaling the Number of Rows. In these experiments, we generate 5 synthetic
datasets with the same number of attributes, namely 2,000 attributes. Starting
with 200,000 rows in the first dataset, the next dataset contains all rows in the
previous dataset plus 200,000 new different rows so that the fifth dataset has
1,000,000 rows and 48 GB size. Every dataset has the same number of INDs,
namely 15 unary INDs. For all these datasets, we applied the extended version
of S-indd configured to merge 200 lists and to partition the datasets so that
every partition had a maximum of 200,000 rows. For example, the dataset with
1,000,000 rows was divided into 5 disjoint partitions, i.e., algorithm 5 had to
execute the For -loop 5 times (line 2).

Figure 3 shows the results of these experiments. These results also show that
S-indd is faster than Spider for every dataset. For example, for the dataset with
1,000,000 rows, S-indd needs one hour and twenty-minutes while Spider needs

438 N. Shaabani and C. Meinel

about three hours. Furthermore, by increasing the number of rows, Spider’s
runtime grows faster than S-indd’s runtime. For example, by increasing the
number of rows from 200,000 to 1,000,000, Spider’runtime increases by 0.18
per thousand rows while S-indd’runtime increases by 0.08 per thousand rows
(for the dataset with 200,000 rows and 10 GB Spider needs 35 minutes while
S-indd needs only about 14 minutes).

INDs discovery in life science datasets. As real-word datasets we used
SCOP3, BIOSQL4, CATH5, and PDB6 from the life science domain. To discover
dependencies inside every dataset and between the datasets we processed the
four datasets as a whole dataset. Their complete size is about 46 GB. Together
they have total of 1,262 attributes. Life science databases are an example of the
unreliability of the data type of the attributes. This means, we can not apply
restriction on the data type of the attributes but rather, must assume that all
attributes have the same data type (e.g. string). For this test, S-indd needed
about 9 minutes while Spider needed about 17 minutes.

6 Related Work

Bell and Brockhausen [3] generate all unary IND candidates from previously
collected statistics, such as min-max values and data types. Then they validate
them using SQL join-statements. The transitivity of INDs is exploited to reduce
the number of untested candidates. However, SQL-based validation is very costly
because it is accesses the database for every candidate.

De Marchi et al. [11,13] propose an algorithm for unary INDs discovery that
generates an inverted index associating every value to the attributes having the
value. Because for every attribute A the intersection of all attribute sets con-
taining A is the set of all attributes including A, the algorithm runs through
all values in order to compute such an intersection for every attribute. However,
this approach is inefficient because an attribute set in the index can be associ-
ated with many values. This means, the algorithm executes a lot of redundant
intersection operations. The concept of attribute clustering we introduced in this
paper solves this problem.

Bauckmann et al. propose Spider [1,2]. Spider is an external algorithm
that writes the sorted values of every attribute to a file. Then it opens all files at
once and starts comparing the values in parallel and in the same way in which
the merge-sort algorithm does. Spider prunes IND candidates as follows: for
each two attributes A and B, A is not included in B (i) if there is an iteration
i in which the current A’s value is greater than the current B’s value and in
the subsequent iteration i + 1, B does not have value equal to the A’s value in
iteration i, or (ii) if there is an iteration in which the current A’s value is less

3 http://scop.mrc-lmb.cam.ac.uk/scop
4 http://obda.open-bio.org
5 http://www.biochem.ucl.ac.uk/bsm/cath new
6 http://www.rcsb.org/pdb

http://scop.mrc-lmb.cam.ac.uk/scop
http://obda.open-bio.org
http://www.biochem.ucl.ac.uk/bsm/cath_new
http://www.rcsb.org/pdb

Scalable Inclusion Dependency Discovery 439

than the current B’s value and in the subsequent iteration i + 1, A does not
have value equal to the B’s value in iteration i. This technique makes Spider
the most efficient algorithm for unary IND detection in related work. However,
Spider’s scalability decreases by increasing the number of attributes. To solve
this problem we developed S-indd in this paper.

Dasu et al. [5] compute a summary of data from which they calculate a “rate
of similitude” between attributes. Based on this “rate of similitude” unary INDs
can be found approximately. This means, some discovered unary INDs aren’t
satisfied, but also satisfied unary INDs can be missed.

Mannila and Toivonen [9] suggest the first known approach for an exhaustive
search of N-ary INDs. They point out that this problem can fit in the framework
of level-wise algorithms and is representable as sets; algorithms and implemen-
tations are proposed in [7,10–13]

Rostin et al. [14] propose rule-based discovery technique based on machine
learning to derive foreign keys from INDs.

Zhang et al. [15] propose an approximate techniques to discover foreign keys.
They assume that the value sets of foreign keys and the value sets of corre-
sponding primary keys obey the same probability distribution. They premise
availability of primary keys. Furthermore, Their approach may produce unsatis-
fied references and may miss satisfied references. For this reason, they focus on
precision and recall rather than on runtime. The specialization on foreign key
discovery also makes their approach inapplicable to other IND use cases, such
as schema matching [8], query optimization [6], or integrity checking [4].

7 Conclusion

We introduced a new idea for clustering the attributes of database relations. We
showed that the inferencing of all unary inclusion dependencies from the attribute
clustering is much more efficient than inferencing them from the inverted index
introduced in [11,13]. We then devised S-indd for computing the attribute clus-
tering in large datasets. S-indd computes such clusters incrementally by extend-
ing the idea of sort-merge-join approach. S-indd is a composite of configurable
computing iterations. In each iteration, it can control the number of rows and
the number of attributes having to be processed. This flexibility makes each iter-
ation efficiently executable. We showed how to parametrize S-indd to present
Spider [1,2] as a special case of this algorithm. Therefore, S-indd is much more
faster and scalable than Spider.

Acknowledgments. Discussions and collaboration with Felix Naumann and Thorsten
Papenbrock supported this paper.

References

1. Bauckmann, J.: Dependency Discovery for Data Integration. Ph.D. thesis, Hasso
Plattner Institute at the University of Potsdam (2013). http://opus.kobv.de/ubp/
volltexte/2013/6664/

http://opus.kobv.de/ubp/volltexte/2013/6664/
http://opus.kobv.de/ubp/volltexte/2013/6664/

440 N. Shaabani and C. Meinel

2. Bauckmann, J., Leser, U., Naumann, F.: Efficiently computing inclusion depen-
dencies for schema discovery. In: Proceedings of the International Workshop on
Database Interoperability (InterDB) (2006)

3. Bell, S., Brockhausen, P.: Discovery of Data Dependencies in Relational
Databases. Tech. rep., Universitat Dortmund (1995)

4. Casanova, M.A., Tucherman, L., Furtado, A.L.: Enforcing inclusion dependencies
and referencial integrity. In: Proceedings of the 14th International Conference on
Very Large Data Bases, VLDB 1988, pp. 38–49. Morgan Kaufmann Publishers
Inc., San Francisco (1988). http://dl.acm.org/citation.cfm?id=645915.671795

5. Dasu, T., Johnson, T., Muthukrishnan, S., Shkapenyuk, V.: Mining database
structure; or, how to build a data quality browser. In: Proceedings of the Inter-
national Conference on Management of Data (SIGMOD), pp. 240–251 (2002).
http://doi.acm.org/10.1145/564691.564719

6. Gryz, J.: Query folding with inclusion dependencies. In: In Proc. of the 14th IEEE
Int. Conf. on Data Engineering (ICDE 1998), pp. 126–133 (1998)

7. Koeller, A., Rundensteiner, E.: Discovery of high-dimensional inclusion depen-
dencies. In: Proceedings of the International Conference on Data Engineering
(ICDE), pp. 683–685 (2003)

8. Levene, M., Vincent, M.W.: Justification for inclusion dependency normal form.
IEEE Transactions on Knowledge and Data Engineering 12 (2000)

9. Mannila, H., Toivonen, H.: Levelwise search and borders of theories
in knowledgediscovery. Data Min. Knowl. Discov. 1(3), 241–258 (1997).
http://dx.doi.org/10.1023/A:1009796218281

10. De Marchi, F., Flouvat, F., Petit, J.-M.: Adaptive strategies for mining the
positive border of interesting patterns: application to inclusion dependencies in
databases. In: Boulicaut, J.-F., De Raedt, L., Mannila, H. (eds.) Constraint-Based
Mining and Inductive Databases. LNCS (LNAI), vol. 3848, pp. 81–101. Springer,
Heidelberg (2006). http://www.dx.doi.org/10.1007/11615576 5

11. De Marchi, F., Lopes, S., Petit, J.-M.: Efficient algorithms for mining inclusion
dependencies. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E.,
Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 464–476. Springer,
Heidelberg (2002). http://www.dl.acm.org/citation.cfm?id=645340.650245

12. Marchi, F.D., Petit, J.M.: Zigzag: a new algorithm for mining large inclusion
dependencies in databases. In: Proceedings of the Third IEEE International Con-
ference on Data Mining, ICDM, pp. 27–34 (2003). http://dl.acm.org/citation.
cfm?id=951949.952179

13. Marchi, F., Lopes, S., Petit, J.M.: Unary and n-ary inclusion dependency dis-
covery in relational databases. Journal of Intelligent Information Systems 32(1),
53–73 (2009). http://dx.doi.org/10.1007/s10844-007-0048-x

14. Rostin, A., Albrecht, O., Bauckmann, J., Naumann, F., Leser, U.: A machine
learning approach to foreign key discovery. In: Proceedings of the ACM SIGMOD
Workshop on the Web and Databases (WebDB), Providence, RI (2009)

15. Zhang, M., Hadjieleftheriou, M., Ooi, B.C., Procopiuc, C.M., Srivastava, D.: On
multi-column foreign key discovery. Proc. VLDB Endow. 3(1–2), 805–814 (2010).
http://dx.doi.org/10.14778/1920841.1920944

http://dl.acm.org/citation.cfm?id=645915.671795
http://doi.acm.org/10.1145/564691.564719
http://dx.doi.org/10.1023/A:1009796218281
http://dx.doi.org/10.1007/11615576_5
http://dl.acm.org/citation.cfm?id=645340.650245
http://dl.acm.org/citation.cfm?id=951949.952179
http://dl.acm.org/citation.cfm?id=951949.952179
http://dx.doi.org/10.1007/s10844-007-0048-x
http://dx.doi.org/10.14778/1920841.1920944

	Scalable Inclusion Dependency Discovery
	1 Introduction
	2 Preliminaries
	3 Attribute Clustering
	4 Algorithm
	4.1 S-indd
	4.2 Extending S-indd

	5 Experiments
	6 Related Work
	7 Conclusion
	References

