
Incremental Discovery of Inclusion Dependencies
Nuhad Shaabani

Hasso-Pla�ner-Institut, University of Potsdam

Prof. Dr. Helmert-Str. 2-3

Potsdam, Germany 14482

nuhad.shaabani@hpi.de

Christoph Meinel

Hasso-Pla�ner-Institut, University of Potsdam

Prof. Dr. Helmert-Str. 2-3

Potsdam, Germany 14482

christoph.meinel@hpi.de

ABSTRACT

Inclusion dependencies form one of the most fundamental classes

of integrity constraints. �eir importance in classical data manage-

ment is reinforced by modern applications such as data pro�ling,

data cleaning, entity resolution and schema matching. �eir dis-

covery in an unknown dataset is at the core of any data analysis

e�ort. �erefore, several research approaches have focused on their

e�cient discovery in a given, static dataset. However, none of these

approaches are appropriate for applications on dynamic datasets,

such as transactional datasets, scienti�c applications, and social

network. In these cases, discovery techniques should be able to

e�ciently update the inclusion dependencies a�er an update in the

dataset, without reprocessing the entire dataset.

We present the �rst approach for incrementally updating the

unary inclusion dependencies. In particular, our approach is based

on the concept of a�ribute clustering from which the unary inc-

lusion dependencies are e�ciently derivable. We incrementally

update the clusters a�er each update of the dataset. Updating the

clusters does not need to access the dataset because of special data

structures designed to e�ciently support the updating process. We

perform an exhaustive analysis of our approach by applying it

to large datasets with several hundred a�ributes and more than

116,200,000 million tuples. �e results show that the incremental

discovery signi�cantly reduces the runtime needed by the static

discovery. �is reduction in the runtime is up to 99.9996 % for both

the insert and the delete.

CCS CONCEPTS

•Information systems →Data management systems; Infor-

mation integration;

KEYWORDS

Metadata, Clustering, Data discovery, Incremental discovery

ACM Reference format:

Nuhad Shaabani and Christoph Meinel. 2017. Incremental Discovery of

Inclusion Dependencies. In Proceedings of SSDBM ’17, Chicago, IL, USA, June
27-29, 2017, 12 pages.

DOI: h�p://dx.doi.org/10.1145/3085504.3085506

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

SSDBM ’17, Chicago, IL, USA
© 2017 ACM. 978-1-4503-5282-6/17/06. . .$15.00

DOI: h�p://dx.doi.org/10.1145/3085504.3085506

1 INTRODUCTION

Many emerging applications produce large datasets at a fast rate.

Examples of such dynamic data include not only scienti�c mea-

surements, social networks, but traditional transactions as well. As

the volume of data generated by applications continues to increase

the need for a be�er understanding increases too. Knowing the

structure and properties of such datasets is important for data inte-

gration, data analytics, query optimization, and many further appli-

cations. For instance, when importing raw data (e.g., from scienti�c

experiments or extracted from the Web) into a DBMS, it is o�en

necessary to pro�le the data and then devise an adequate schema.

A fundamental task of data pro�ling is to discover metadata about

relationships between the a�ributes in the dataset [5, 18, 20, 23].

An important part of such metadata is inclusion dependencies

(INDs). An IND states that all tuples of some a�ribute-combination

in one relation are contained in the tuples of some other a�ribute-

combination in the same or a di�erent relation, making INDs impor-

tant for many applications, such as data integration [17], integrity

checking [3], query optimization [8], or schema redesign [13]. In

particular, INDs are useful to discover foreign-primary key rela-

tionships, which are a necessity for suggesting join paths, data

linkage, and data normalization [25]. According to their complex-

ities, existing algorithms for exhaustively discovering INDs in a

given static dataset can be divided into two categories: Algorithms

for discovering unary INDs (i.e., INDs cover pairs of single at-

tributes) [2, 15, 19, 21] and algorithms for discovering n-ary INDs

(i.e., INDs cover pairs ofn a�ributes) [11, 14, 15, 22]. �e complexity

of the algorithms in the former category is NP-hard [9], while the

complexity of the algorithms in the la�er category is quadratic in

the number of the a�ributes. All algorithms for detecting n-ary

INDs require the discovery of all unary INDs (uINDs) in the corre-

sponding dataset because any valid IND of a size greater than one

implies that all unary INDs derivable from it have to be valid in the

same dataset.

However, a dataset is hardly ever �xed: Transactional data are

appended to frequently, analytics-oriented datasets experience per-

iodic updates (typically daily), and large datasets available on the

Web are updated every few weeks or months. �ese data changes

can cause the metadata to quickly become out-of-date [5, 18, 20, 23].

Example 1.1. Consider the dataset presented in Table 1. �e set

of valid unary INDs in this dataset is I = {A ⊆ B,D ⊆ B}. Now

assume the following two cases:

(1) Delete – �e tuple (b,b, e,a) (i.e., the second tuple) is deleted

from the dataset,which makes A ⊆ B invalid because deleting

(b,b, e,a) makes b ∈ A and b < B. �us, this deletion changes the

current set of valid uINDs I to the set I1 = {D ⊆ B}.

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA Nuhad Shaabani and Christoph Meinel

Table 1: Running example

A B C D

a a f a

b b e a

b c f c

d d f c

(2) Insert – �e new tuple (c, c, e, e) is inserted into the dataset,

which creates a new valid IND, namely B ⊆ A. Furthermore, it

makes D ⊆ B invalid. �us, inserting the tuple (c, c, e, e) changes

the previous set of valid uINDs I to the set I2 = {A ⊆ B,B ⊆ A}.

�e previous example demonstrates that a data change can cause

new INDs to appear or existing INDs to disappear, which means that

the set of INDs may change and, therefore, may need to be updated

a�er a change in the corresponding dataset. �e current solution

to keep the set of INDs up-to-date a�er arrival or deletion of data is

to completely rediscover them. �is rediscovering process requires

applying one of the existing algorithms to the entire dataset because

none of them are suitable for working on dynamic datasets.

However, this solution hurts performance signi�cantly since (i)

an initial dataset size is typically several orders of magnitude bigger

than the size of a change in the dataset, and (ii) the performance of

the IND discovering algorithms depends not only on the number

of a�ributes but, for the most part, also on the number of tuples.

Furthermore, rediscovering the set of INDs in the entire dataset

does not take advantage of previously discovered INDs which might

become only partly invalid a�er a data change. �erefore, an in-

cremental approach is the most e�cient way to keep the INDs

up-to-date a�er the arrival or deletion of data [5, 7, 18, 20].

Contributions. �is paper presents a new approach that can

incrementally update the set of uINDs when new tuples are inserted

and when existing tuples are deleted or changed (i.e., values are

modi�ed). In particular, we make the following contributions.

• We present a system architecture for modeling the work-

�ow of our approach for the incremental detection of unary

INDs in continuously changing datasets (Section 3).

• We realize the incremental update of uINDs through the

incremental update of the a�ribute clustering. For incre-

mentally updating the clusters, we de�ne operations to be

applied a�er each data change (Section 4).

• We develop algorithms and data structures that e�ciently

implement the incremental update of clusters (Section 5).

• We present the results of exhaustive experiments con-

ducted on �ve large datasets with hundreds of a�ributes

and more than 116,200,000 million tuples. �e experiments

show that our incremental approach can reduce the run-

time of the static discovery by up to 99.9996 % (Section 6).

2 PROBLEM STATEMENT

LetD be database instance over a set R of relations. We denote the

set of all a�ributes in D by A, and an instance of a relation R ∈ R
with r . �e number of a�ributes in R is |R | and the number of tuples

in r is |r |. For an a�ribute sequence X = [Ai1 , . . . ,Aim], we de�ne

πX (R) as the projection of R on X . Accordingly, ri [X] = πX (ri)
indicates the projection of tuple ri ∈ r (1 ≤ i ≤ |r |) on X .

De�nition 2.1. (IND) Let R[A1, . . . ,A |R |] and S[B1, . . . ,B |S |] be

two relations in R. For n ≥ 1, let X be a sequence of n a�ributes

from R, and Y a sequence of n a�ributes from S . An inclusion

dependency (IND) over R and S is an assertion of the form R[X] ⊆
S[Y], where n is the size of the IND. For n = 1 the IND is called a

unary IND (uIND). Let r and s be instances of R and S , respectively.

An IND R[X] ⊆ S[Y] is valid according to r and s if and only if

∀ri ∈ r ,∃sj ∈ s such that ri [X] = sj [Y].

To simplify the formulation, we assume without loss of generality

that a�ribute names are unique across all relations. Under this

assumption, we can denote a unary inclusion dependency Ri [A] ⊆
Rj [B] by A ⊆ B. We also de�ne the two sets VA and V to ease

notation: VA is the set of A values occurring in the corresponding

instance of the relation in which A occurs:

VA = {v ∈ dom(A) | ∃R ∈ R : A ∈ R ∧v ∈ πA(r)}

�enV is the set of all values of all a�ributes.

V = ∪Ri ∈R ∪A∈Ri VA
It is now obvious that a unary inclusion dependency A ⊆ B

is valid if and only if VA ⊆ VB . Accordingly, the discovery of

all valid unary inclusion dependencies in D is equivalent to the

computation of the set:

I = {A ⊆ B | A,B ∈ A ∧VA ⊆ VB }
We refer to any algorithm in [2, 15, 19, 21] for discovering the

set I as a static discovery of I. When the dataset D changes over

time, the set I may also change. A new tuple may create a new

valid uIND or may make a valid one invalid. Removing a tuple

from a relation instance can also have the same e�ect on the set

I (see Example 1.1). �e current solution to keep the set I up-

to-date is to rediscover the entire dataset D by applying one of

the static discovery algorithms. However, the big disadvantage of

this solution is the computation time required by these algorithms.

Moreover, none of them take advantage of the previously discovered

uINDs.

�erefore, the question that an incremental approach has to

answer is how to e�ciently update the set I within a short period

of time without processing the entire dataset D? �us, the time

needed by an incremental approach for updating the set I should

be negligible in comparison to the time needed by a static approach.

To de�ne this requirement precisely, we denote the insert of a tuple

t into any instance r ∈ D by D + {t}, and the delete of t from r by

D − {t}. We refer to inserting or deleting a tuple as D ± {t}.

De�nition 2.2. (Requirement for the incremental discovery)

Let Tinc ({t}) be the time needed by an incremental approach for

updating I a�er inserting or deleting t . Let Tst (D ± {t}) be the

time needed by a static approach for discovering I inD±{t}. �en

Tinc (t) +Tst (D ± {t}) ≈ Tst (D ± {t})
must be ful�lled.

�is de�nition was inspired by [7].

Incremental Discovery of Inclusion Dependencies SSDBM ’17, June 27-29, 2017, Chicago, IL, USA

A B C D

c c e einserted

enqueue

b b e a
deleted

enqueue

queue

… […], […] …

dequeue

cluster

[inserted, (A, B, C, D), (c, c, e, e)]

[inserted, {(c, {A, B}), (e, {C, D})}]

handleInsert(c, {A, B})
handleInsert(e, {C, D})

call call

handleInsert(v, ∆C)

handleDelete(v, ∆C)

data structures

generator

clusters

caches

update

update

derive

uINDs

Figure 1: Work�ow overview

3 WORKFLOW OVERVIEW

Figure 1 gives an overview of the work�ow of our system for in-

crementally detecting uINDs. �e system enqueues every tuple

immediately a�er its insertion or deletion from the dataset, and also

checks the queue periodically. If the queue is not empty, a tuple

will be dequeued to be processed. In the �rst step, the processing of

a tuple consists of mapping each valuev in the tuple to the set of all

tuple a�ributes to which this value belongs. We denote such a set

of tuple a�ributes as ∆C. �is mapping is a special case of a�ribute

clustering introduced in Section 4. For instance, a�er dequeuing the

tuple t = (c, c, e, e), it is mapped to the set {(c, {A,B}), (e, {C,D})}.
�en for each (v,∆C), the system calls Algorithm 1 to handle the

insertion if the dequeued tuple has been inserted. Otherwise it calls

Algorithm 6 to handle the deletion. Both algorithms are presented

in Section 5. Algorithms 1 and 6 work on a set of data structures

presented in Subsection 5.1 to keep the a�ribute clustering of the

entire dataset up-to-date a�er an insertion or deletion of a tuple.

Keeping the a�ribute clustering up-to-date is one of the key

points in our design because all valid uINDs are e�ciently derivable

from the a�ribute clustering as explained in Section 4.

Updating the a�ribute clusteringAC of a dataset D is based on

two operators applied on AC and the a�ribute clustering ∆AC
of the dequeued tuple referred to as t . If t is inserted, then we

apply the merge operator (see De�nition 4.4). Otherwise, we apply

the extract operator (see De�nition 4.8). �e result of the merge

operator is the a�ribute clustering of D + {t}, while the result of

extract operator is the a�ribute clustering of D − {t}.
Updating the a�ribute clustering a�er changing an existing tuple

can be achieved by a composite operation consisting of the merge

operation and extract operation as illustrated in Subsection 4.2.

�e queue will be almost empty if the time between two consec-

utive dataset operations is less than the time Tinc needed by the

Figure 2: Attribute clustering based on the data of Table 1

system to update the a�ribute clustering a�er the data change (i.e.,

in this case, updating the a�ribute clustering will be in real time).

�e speci�c implementation of the queue can be vary from a simple

queue in the main memory to a dedicated queuing server. In our

implementation, the queue is based on the �le system.

4 ATTRIBUTE CLUSTERING

A�ribute clustering is a concept introduced in [21]. From a�ribute
clustering we can derive all uINDs e�ciently because deriving

uINDs from the a�ribute clustering eliminates all redundant inter-

section operations resulting from deriving them from the inverted

index applied in [2, 15, 19]. In fact, as shown in [21] the number of

the redundant intersection operations is |V| − |AC| where AC is

the set of the clusters.

Because of the e�ciency of deriving uINDs from the a�ribute

clustering, we reduce the problem of incrementally updating uINDs

to incrementally updating the clusters. �erefore, we de�ne new

operations on the clusters to be applied a�er each data change,

which keeps the a�ribute clustering of the dataset up-to-date.

4.1 Background

De�nition 4.1. (A�ribute clustering) Let f : V → 2
A

be a

function with the property:

(∀v ∈ V)(¬∃A ∈ A) : v ∈ VA ∧A < f (v)

�at is, f (v) is the maximum set of a�ributes A ∈ A with v ∈ VA.

We call the image of f :

AC = f (V) = {C ⊆ A | ∃v ∈ V : f (v) = C}

a�ribute clustering over the set V . We call the function f the

generator of AC.

�us, every cluster in the a�ribute clustering is a maximum

subset of a�ributes that has a subset of values in common. For

example, AC = {{A,B}, {A,B,D}, {B,D}, {C}} (shown in Figure

2) is the a�ribute clustering over the values of the dataset in Table 1.

A�ributes A and B shape cluster C1 because both share the values

{b,d} that can not be shared by any superset of C1. Every a�ribute

A ∈ A, must be contained in at least one cluster, and every value

v ∈ V must belong to only one cluster. [21] has shown that for any

dataset D, there is always only one a�ribute clustering to satisfy

De�nition 4.1.

Based on the a�ribute clustering, we decide whether or not

A ⊆ B is a valid IND for two a�ributes A,B ∈ A as follows [21].

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA Nuhad Shaabani and Christoph Meinel

Lemma 4.2. Let AC = {C1, . . . ,Cc } be the a�ribute clustering
overV . �en the following holds:

∀A,B ∈ A : VA ⊆ VB ⇔ B ∈ ∩C∈AC,A∈CC

�us, a�ribute A is included in a�ribute B if and only if every

cluster containing A contains B. For example, the set of D values

in Table 1 is included in the set of B values because the clusters

C2 and C3 that both contain D also contain B (see Figure 2), but B
values are not included in D values because cluster C1 contains B
and does not contain D.

4.2 Attribute clustering operations

Our purpose is to update the a�ribute clustering AC of D a�er

inserting or deleting a tuple t , meaning that our goal is two folds:

(i) to compute the a�ribute clustering of D + {t} fromAC and {t}
a�er inserting t into D, and (ii) to compute the a�ribute clustering

of D − {t} also from AC and {t} but a�er deleting t from D. To

achieve these goals, we compute the a�ribute clustering of {t},
referred to as ∆AC, then (i) we de�ne the merge operator on AC
and ∆AC to obtain the a�ribute clustering of D + {t}, and (ii) we

de�ne the extract operator onAC and ∆AC to obtain the a�ribute

clustering of the dataset D − {t}.
Attribute clustering of a tuple. Let t be a one-tuple instance

of a relation R ∈ R. We denote the set of all values occurring in t
by ∆V . Accordingly, the a�ribute clustering over ∆V is ∆AC and

the generator of ∆AC is ∆f .

Example 4.3. We consider Figure 1. For {t} = {(c, c, e, e)}, we

have ∆V = {c, e}, ∆f (c) = {A,B}, and ∆f (e) = {C,D}. �us,

∆AC = {{A,B}, {C,D}}.

Merge operator. �e merge operator merges the a�ribute clus-
tering AC of D and the a�ribute clustering ∆AC of an inserted

tuple t to produce the a�ribute clustering AC + ∆AC of D + {t}.

De�nition 4.4. (Merge operator) Let f : V → 2
A

be the gener-

ator of AC, and ∆f : ∆V → 2
A

be the generator of ∆AC. We

de�ne f + ∆f : V ∪ ∆V → 2
A

as

(f + ∆f)(v) =

f (v) ∪ ∆f (v) if v ∈ V ∩ ∆V
f (v) if v ∈ V \ ∆V
∆f (v) if v ∈ ∆V \V

�e merge ofAC and ∆AC isAC + ∆AC = (f + ∆f)(V ∪ ∆V).

Lemma 4.5. AC + ∆AC is the a�ribute clustering overV ∪ ∆V
and f + ∆f its generator.

Proof. For anyv ∈ V ∪∆V , we have to show that (f +∆f)(v)
is the maximum set of a�ributes whose value sets contain v .

i) For v ∈ V ∩∆V , we assume that (f +∆f)(v) = f (v) ∪∆f (v)
is not the maximum set of a�ributes whose value sets contain v ,

which means that there is some a�ribute A with v ∈ V ∩ ∆V ,

A < f (v) andA < ∆f (v). v ∈ VA andA < f (v) is a contradiction to

the fact that f (v) ∈ AC. v ∈ ∆VA andA < ∆f (v) is a contradiction

to the fact that ∆f (v) is a cluster in ∆AC. �us, our assumption is

wrong.

ii) �e case v ∈ V \ ∆V means that inserting t does not add v
to the column of any a�ribute A ∈ A, meaning that v has the same

cluster in D and in D + {t}. �us, we have (f + ∆f)(v) = f (v).

iii) �e case v ∈ ∆V \V means that v does not occur inD, and

a�er inserting t , occurs in D + {t} in the columns of all a�ributes

in ∆f (v). �us, ∆f (v) is the cluster of v in D + {t}. �

Example 4.6. What is the a�ribute clustering of the dataset in

Table 1 a�er inserting (c, c, e, e)? According to Figure 2 and Exam-

ple 4.3, we have (f + ∆f)(c) = {B,D} ∪ {A,B} = {A,B,D}, and

(f + ∆f)(e) = {C} ∪ {C,D} = {D,C}, because c, e ∈ V ∩ ∆V . For

x ∈ {a,b,d, f }, we have (f + ∆f)(x) = f (x) because x ∈ V \ ∆V .

�us, AC + ∆AC = {{A,B,D}, {A,B}, {C,D}, {C}}. Based on

Lemma 4.2, the set of uINDs is now I = {A ⊆ B,B ⊆ A}.
Extract operator. �e extract operator extracts the a�ribute

clustering ∆AC of a deleted tuple t from a�ribute clustering AC
of D to produce the a�ribute clustering AC − ∆AC of D − {t}.

Before de�ning the extract operator, we have to identify the set

of distinct values in D − {t}. For this purpose, we de�ne for every

v ∈ V and every a�ribute A ∈ A the variable FvA indicating the

frequency of occurrences of the value v in the column of A before

deleting t . �en we introduce the following operator.

De�nition 4.7. (Bag di�erence) We call the set

V \ {v ∈ ∆V | (∀A < ∆f (v) : FvA = 0) ∧ (∀A ∈ ∆f (v) : FvA = 1)}
the bag di�erence betweenV and ∆V , and refer to it asV \b ∆V .

Now, it is obvious that the set of values in D − {t} isV \b ∆V .

De�nition 4.8. (Extract operator) Let f : V → 2
A

be the gen-

erator of AC, and ∆f : ∆V → 2
A

be the generator of ∆AC. We

de�ne f − ∆f : V \b ∆V → 2
A

as

(f − ∆f)(v) =
{
f (v) if v < ∆V
f (v) \ {A ∈ ∆f (v) | FvA = 1} if v ∈ ∆V

�e extract of ∆AC fromAC isAC−∆AC = (f −∆f)(V\b ∆V).
Lemma 4.9. AC−∆AC is the a�ribute clustering overV \b ∆V

and f − ∆f its generator.

Proof. For anyv ∈ V\b ∆V , we have to show that (f −∆f)(v)
is the maximum set of a�ributes whose value sets contains v .

i) For the case v < ∆V , there is no change in the cluster of v in

D. �us, (f − ∆f)(v) = f (v) is the cluster of v in D − {t}.
ii) For v ∈ ∆V , (f − ∆f)(v) is the cluster f (v) a�er removing

each a�ribute A ∈ ∆f (v) whose column does not contain v any

more a�er deleting t . �us, a�er deleting t from D, (f − ∆f)(v)
becomes the cluster of v in D − {t}. �

Example 4.10. What is the a�ribute clustering of the dataset in

Table 1 a�er deleting (b,b, e,a)? For this tuple, we have ∆V =
{b, e,a}, ∆f (b) = {A,B}, ∆f (e) = {C}, ∆f (a) = {D}. For v < ∆V ,

(f − ∆f)(v) = f (v). For v = b, (f − ∆f)(b) = {A,B} \ {B} = {A}
because FbA = 2 and FbB = 1 (i.e., we do not remove A ∈ ∆f (b) from

f (b) = {A,B} because FbA > 1). Forv = e , (f −∆f)(e) = {C}\{C} =
∅ because F eC = 1. For v = a, (f − ∆f)(a) = f (a) = {A,B,D} be-

cause FaD = 2 (i.e., we do not remove D ∈ ∆f (a) from f (a) because

FaD > 1). �us,AC − ∆AC = {{A,B,D}, {A,B}, {B,D}, {A}, {C}}.
Based on Lemma 4.2, the set of uINDs is now I = {D ⊆ B}.

Updating AC a�er a change of an existing tuple. �e fol-

lowing example shows how to update the a�ribute clustering a�er

a change of an existing tuple.

Incremental Discovery of Inclusion Dependencies SSDBM ’17, June 27-29, 2017, Chicago, IL, USA

Example 4.11. Assume that the tuple (b, c, f , c) (i.e., the third

tuple in Table 1) has to be modi�ed to be (b,д, f ,д), meaning that

(i) the value c has to be deleted once from the column of a�ribute

B and once from the column of a�ribute D, and (ii) the value д
has to be added once to the column of B and once to the column

of D. We consider deleting c from B and D as deleting the tuple

t1 = (B = c,D = c) from D, while we consider adding д to B and

D as inserting the tuple t2 = (B = д,D = д) into D. �e a�ribute

clustering of t1 is ∆AC1 = {B,D} with the generator ∆f1(c) =
{B,D}, while the a�ribute clustering of t2 is ∆AC2 = {B,D} with

the generator ∆f2(д) = {B,D}. �us, updating AC a�er changing

the tuple (b, c, f , c) consists of the following two operations: (i)

extracting ∆AC1 from AC, and (ii) merging AC with ∆AC2.

5 ALGORITHMS

5.1 Data structures

Data structure for the clusters. For every cluster C ∈ AC, we

de�ne a record rC = (cid,C) where, cid ∈ N identi�es the cluster

C uniquely in AC. We denote the set of all these records rC by

ACRecs . To e�ciently support retrieving and deleting a cluster

by giving its identi�er, we de�ne an index on ACRecs . �e keys

of this index are the identi�ers and the entries are the clusters.

Furthermore, we de�ne a second hash index to e�ciently retrieve

an identi�er by giving the corresponding cluster. �e keys in the

second index are the clusters and the entries are the identi�ers.

Data structure for the generator. For every value v in the

dataset, we de�ne a record rv = (v, Fv
1
, . . . , Fvi , . . . , F

v
|A |), cid),

where cid is the identi�er of the cluster to which v belongs and Fvi
(1 ≤ i ≤ |A|) is the frequency ofv occurrences in the column of Ai .
We denote the set of all these records rv by GenRecs . Every record

rv ∈ GenRecs is uniquely identi�ed by the corresponding value v
because a value can belong to only one cluster (see De�nition 4.1).

We implement GenRecs as a relational table, which means that

all operations de�ned on GenRecs are SQL queries. To e�ciently

retrieve, update, and delete a value record by giving the value, we

de�ne an index on the values. We also de�ne an index on the

identi�ers of the clusters for e�ciently retrieving and counting the

values belonging to a certain cluster.

�e reason why we implement the generator in terms of an

external data structure is the number of values inV . �is number

can be so large that GenRecs does not �t into the main memory,

which is also the reason why we separate clusters from the data

structure of the generator, meaning that we keep and manage the

data structure of the clusters in the main memory. Table 2 presents

the data structures of the generator for the dataset in Table 1 and

the corresponding clusters in Figure 2.

Data structures for accessing the generator. During the pro-

cess of updating GenRecs and ACRecs , a cluster C will be removed

from ACRecs if the number of values belonging to it is zero, which

requires that each time we have to know whether or not a cluster

C is to be removed, we have to access GenRecs in order to com-

pute the number of values belonging to the cluster. To reduce the

number of required SQL queries for this case, we de�ne a record

(cid,vcount) for every cluster. �e variable vcount is a counter of

the values that have been added to, retrieved from, and/or deleted

fromGenRecs for the cluster identi�ed by cid . We denote the set of

Table 2: Data structures for the generator and the clusters of

the dataset in Table 1

v FvA FvB FvC FvD cid

a 1 1 0 2 1

b 2 1 0 0 2

c 0 1 0 2 3

d 1 1 0 0 2

e 0 0 1 0 4

f 0 0 3 0 4

cid cluster

1 {A,B,C}
2 {A,B}
3 {B,D}
4 {C}

Algorithm 1: handleInsert

Input :v , ∆C
1 cid ← getClusterID(v)

2 if cid = null then
3 handleInsertingNewValue(v , ∆C)

4 else

5 handleInsertingExistingValue(v , ∆C, cid)

Algorithm 2: getClusterID

Input :v
Output :cid

1 cid ← ValCache ·getCID(v)

2 if cid = null then
3 cid ← GenRecs ·getCID(v)

4 if cid , null then
5 ValCache ·add(v, cid)

6 CountCache ·init(cid , 1)

all such records by CountCache . �us, if vcount ≥ 1 for a cluster

C, then we can immediately decide that C is to not be removed

from ACRecs . Otherwise, if there is no record in CountCache for

C or if there is record with vcount = 0, then we have to retrieve

the number of values belonging to C from GenRecs . To e�ciently

update and delete a counter inCountCache we de�ne an index with

the values as keys and the counters as entries.

For every value v ∈ ∆V , we have to determine whether or

not it is new (i.e. v < V). For the case that v is not new (i.e.

v ∈ V∩∆V), we have to know its cluster, which requires querying

GenRecs . To reduce the database accesses in this case, we cache the

record (v, cid) for every value that has been added to or retrieved

from GenRecs . We refer to the set of all such records as ValCache .

�us, if there is a record in ValCache for an input value v , then

we immediately know that v is not new. Otherwise, we have to

queryGenRecs . If the result of the query is empty, we conclude that

there is no cluster to which v belongs and, therefore, v is new. For

e�ciently retrieving a record from ValCache we de�ne an index

with the values as keys and the cluster identi�ers as entries.

We refer to ValCache and CountCache in the rest of the paper

as cache strategies.

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA Nuhad Shaabani and Christoph Meinel

Algorithm 3: handleInsertingNewValue

Input :v , ∆C
1 cid ← ACRecs .дetCID(∆C)
2 if cid = null then
3 cid ← ACRecs .add(∆C)
4 if cid ∈ CountCache then
5 CountCache ·.increase(cid)

6 else

7 CountCache ·init(cid , 1)

8 ValCache ·add(v, cid)

9 GenRecs ·add(v, cid,∆C)

Algorithm 4: handleInsertingExistingValue

Input :v , ∆C, cid
1 C ← ACRecs ·getCluster(cid)

2 C′ ← C ∪ ∆C
3 if C′ = C then

4 GenRecs ·iUpdate(v , ∆C)

5 else

6 cid ′ ← ACRecs ·getCID(C′)
7 if cid ′ = null then
8 cid ′ ← ACRecs .add(C′)
9 if cid ′ ∈ CountCache then

10 CountCache ·increase(cid ′)
11 else

12 CountCache ·init(cid ′, 1)

13 GenRecs ·iUpdate(v , cid ′, ∆C)

14 ValCache ·update(v , cid ′)
15 CountCache ·decrease(cid)

16 handleDeletingCluster(cid)

5.2 Handling Insert

Algorithm 1 implements the merge operator introduced in De�ni-

tion 4.4. It receives a valuev and the set ∆C containing all a�ributes

into whose columns v has been inserted. If the value is new (i.e.

v < V), then it does not belong to any cluster in ACRecs . Conse-

quently, there is no record for v in GenRecs . Otherwise, v already

exists in the dataset and belongs to a cluster. Algorithm 1 calls

Algorithm 2 to identify whether or not the value v is new.

Algorithm 2 returns the NULL-marker if the value v does not

exist either in the cache ValCahs or in the set GenRecs . Otherwise,

it returns the identi�er of the cluster to which v belongs. At the

beginning, Algorithm 2 tries to �nd the identi�er of the cluster

of v in the cache ValCache (Line 1). If the cache ValCache does

not contain a record (v, cid) for the value v (Line 2), Algorithm 2

queries GenRecs (Line 3). If it has found a record for the value v
in GenRecs (Line 4), then it adds v and the identi�er of its cluster

to the cache ValCache (Line 5) and creates a value counter for the

cluster and initializes it with one, i.e., it adds the record (cid, 1) to

CountCache (Line 6).

Algorithm 5: handleDeletingCluster

Input :cid
1 vc ← 0

2 if cid ∈ CountCache then
3 vc ← CountCache ·getCount(cid)

4 if vc = 0 then

5 vc ← GenRecs ·getCount(cid)

6 else

7 vc ← GenRecs ·getCount(cid)

8 if vc = 0 then

9 ACRecs ·remove(cid)

10 if cid ∈ CountCache then
11 CountCache ·remove(cid)

12 else

13 if cid < CountCache then
14 CountCache ·init(cid , vc)

Handling the insert of a new value. Algorithm 3 implements

the merge operation for the case v ∈ ∆V \ V . In this case, we

have (f + ∆f)(v) = ∆f (v) = ∆C according to De�nition 4.4 and

Lemma 4.5, meaning that the a�ribute set ∆C is the cluster of

the new value v . But ∆C is not necessarily a new cluster because

∆C can already exist in the set ACRecs if there is some value v ′

in GenRecs that is di�erent from v and has ∆C as a cluster. To

identify whether or not ∆C already exists in ACRecs , Algorithm 3

retrieves ACRecs for the existing of ∆C (Line 1). �e operation

getCID(∆C) on ACRecs returns the identi�er of ∆C if ∆C exists in

ACRecs , otherwise, it returns the NULL-marker. If ∆C does not

exist in ACRecs , Algorithm 3 adds ∆C to ACRecs (Lines 2-3). Now

and a�er knowing the identi�er of ∆C, Algorithm 3 has to update

CountCache , ValCache , and GenRecs , increasing the number of

values belonging to ∆C by one if the identi�er of ∆C exists in

CountCache . Otherwise, it creates a value counter for ∆C and

initializes it with one (Line 7). Notice that the value counter for a

cluster exits in CountCache only if a value belonging to the cluster

has been handled. For ValCache , Algorithm 3 adds the new value

v with the identi�er of its cluster to ValCache (Line 8), adds a

new record (v, Fv
1
, . . . , Fv|A | , cid) to GenRecs (Line 9) where Fvi

(1 ≤ i ≤ |A|) is initialized as follows.

Fvi =

{
1 if Ai ∈ ∆C
0 if Ai < ∆C

(1)

We initialize Fvi with one for each Ai ∈ ∆C because v is new and

has been added only once to each column of Ai ∈ ∆C.

Handling the insert of an existing value. Algorithm 4 im-

plements the merge operator for the case v ∈ V ∩ ∆V . Based

on De�nition 4.4 and Lemma 4.5, the new cluster of the value v is

C′ = (f +∆f)(v) = f (v)∪∆f (v) = C∪∆C, where C is the current

v’s cluster identi�ed by cid . If ∆C ⊆ C, we have C′ = C. For this

case there is no change in ACRecs . But what Algorithm 4 needs

to do here is only to update the v’s record (v, Fv
1
, . . . , Fv|A | , cid) in

Incremental Discovery of Inclusion Dependencies SSDBM ’17, June 27-29, 2017, Chicago, IL, USA

GenRecs as follows.

Fvi =

{
Fvi + 1 if Ai ∈ ∆C
Fvi if Ai < ∆C

(2)

We increase Fvi for each Ai ∈ ∆C by one because v has been added

to the column of each Ai ∈ ∆C.

For the case C′ , C, Algorithm 4 has to �nd out i) whether or not

C′ already exists inACRecs , and ii) whether or not C is to be deleted

fromACRecs . If C′ does not exist inACRecs , then Algorithm 4 adds

C′ to ACRecs (Lines 7-8). A�er that Algorithm 4 has to take care

of CountCache . In the case in which there is no value count for C′,
Algorithm 4 creates a new value count for C′ and initializes it with

one. In the other case it increases the value count by one. Notice

that a value count for a cluster exists inCountCache only if a value

belonging to this cluster has been inserted before.

Because the cluster of v has become C′, the records of v in

GenRecs and in ValCache have to be updated. �e updating of v’s

record rv = (v, Fv
1
, . . . , Fv|A | , cid) consists of replacing identi�er

cid by the identi�er cid ′ of the new cluster of v and of applying the

Formula 2. �e updating of the record (v, cid) inValCache consists

of only replacing cid by cid ′ (Lines 13-14).

Now the value v does not belong to C any more. �erefore,

Algorithm 4 decreases the number of values belonging to the cluster

C by one (Line 15) and calls Algorithm 5 which has to decide

whether or not C has to be deleted.

Deleting a cluster. When a value has been deleted or assigned

to a di�erent cluster, we have to check whether or not its previous

cluster has to be deleted from ACRecs . A cluster has to be deleted

if the number of values belonging to it is zero. Algorithm 5 per-

forms this check. If the cluster (i.e. its identi�er) does not exist in

CountCache or the associated number of values in CountCache is

zero, then Algorithm 5 retrieves the number of values fromGenRecs
(Lines 2-7). If this number is zero, then the cluster will be removed

from ACRecs , and will also be removed from CountCache in the

case of its existence in CountCache (Lines 8-11).

In the case that the values’ number retrieved from GenRecs is

greater than zero and the cluster does not exist in CountCache ,

Algorithm 5 creates a value count for the cluster in CountCache
and initializes it with the retrieved number (Lines 12-14). By doing

so, Algorithm 5 will reduce the querying GenRecs in the future.

Accessing and querying ValRecs is more expensive than querying

CountCache because ValRecs is an external data structure in the

form of relational table.

5.3 Handling delete

Algorithm 6 implements the extract operator de�ned in De�ni-

tion 4.8, handling deleting a value v from the columns of the at-

tributes in ∆C. Notice that ∆C can only be a subset of the current

cluster C of v because C is the maximum set of a�ributes whose

columns contain v (see De�nition 4.1). Based on De�nition 4.8 and

Lemma 4.9, we obtain the new cluster C′ of v from the current

cluster C a�er removing some a�ributes in ∆C from C (Lines 1-7).

Each a�ribute Ai ∈ ∆C is to be removed from C if the value v
occurs only once in the column of Ai (i.e. Fvi = 1).

If the deleted value v occurs more than once in the column of

each Ai ∈ ∆C (i.e. ∀Ai ∈ ∆C : Fvi > 1), then the new cluster C′ is

Algorithm 6: handleDelete

Input :v , ∆C
1 cid ← getClusterID(v)

2 C ← ACRecs ·getCluster(cid)

3 C′ ← C
4 {Fvi | Ai ∈ ∆C} ← GenRecs ·getFreqs(v , ∆C)

5 for Fvi ∈ {F
v
i | Ai ∈ ∆C} do

6 if Fvi ≤ 1 then

7 C′ ← C′ \ {Ai }

8 if C = C′ then
9 GenRecs ·dUpdate(v , ∆C)

10 else

11 if C′ = ∅ then
12 GenRecs ·remove(v)

13 ValCache ·remove(v)

14 else

15 cid ′ ← ACRecs ·getCID(C′)
16 if cid ′ = null then
17 cid ′ ← ACRecs ·add(C′)
18 CountCache ·init(cid ′, 1)

19 else

20 CountCache ·increase(cid ′)

21 ValCache ·update(v , cid ′)
22 GenRecs ·dUpdate(v , cid ′, ∆C)

23 CountCache ·decrease(cid)

24 handleDeletingCluster(cid)

identical to the current cluster C. In this case Algorithm 6 needs

only to update the value record in GenRecs as follows (Lines 8-9).

Fvi =

{
Fvi − 1 if Ai ∈ ∆C
Fvi if Ai < ∆C

(3)

Algorithm 6 decreases Fvi for each Ai ∈ ∆C by one because v has

been deleted only once from the column of each Ai ∈ ∆C.

If the new cluster C′ is di�erent from C, then the valuev does not

belong to C anymore. �erefore, Algorithm 6 reduces the number

of values belonging to C (Line 23), and then calls Algorithm 5 (see

Subsection 5.2) to decide whether or not C has to be deleted from

ACRecs (Line 24).

�e case in which the new cluster C′ is empty occurs if C = ∆C
and Fvi = 1 for each Ai ∈ ∆C. �is case means that the value v has

been completely deleted from the datasetD. �erefore, Algorithm 6

deletes the value v from GenRecs and fromValCache (Lines 12-13).

If the new cluster C′ is not empty and di�erent from C, then

Algorithm 6 has to know whether or not C′ already exists inACRecs .
For the case that C′ does not exist in ACRecs , Algorithm 6 adds it

to ACRecs , creates a new value count for C′ in CountCache , and

initializes this counter with one (Lines 16-18). For the other case in

which C′ already exists, Algorithm 6 only increases the number of

values belonging to C′ (Line 20).

�e last step Algorithm 6 has to execute for the case C′ , ∅
and C′ , C is to update the records of the value v in GenRecs and

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA Nuhad Shaabani and Christoph Meinel

in ValCache , respectively (Lines 21-22). Updating the v’ record in

ValCache consists of only replacing the previous cluster identi�er

cid by cid ′. While Updating the record rv = (v, Fv
1
, . . . , Fv|A | , cid)

of v consists of decreasing Fvi for each Ai ∈ ∆C by one (see For-

mula 3), and replacing the previous cluster identi�er cid by cid ′.

5.4 Performance analysis

As the data structure of the generator is an external data structure,

the performance of our algorithms depends mainly on querying and

updating this data structure. �erefore, we analyze the performance

of the algorithms in terms of the number of accesses needed for

querying and updating GenRecs (i.e., the generator).

Identifying the cluster of an input value. To �nd the identi-

�er of the cluster to which an input value v belongs, Algorithm 2

needs one query to retrieve the identi�er from GenRecs (Line 3) if

ValCache does not contain a record for v . Otherwise, Algorithm 2

does not need any access to GenRecs . �us, in the worst case we

need one generator access for identifying the cluster of a value.

Deleting a cluster. Algorithm 5 queries GenRecs to identify

the number of values belonging to a cluster whose deletion comes

into consideration (Line 5 or 7). �is query is required if the value

count in CountCache is zero or if CountCache does not contain an

entry for the cluster. �us, in the worst case we need one access to

GenRecs to know whether or not a cluster is to be deleted.

Handling an insert. If the input value v is new, Algorithm 3

needs one generator access for inserting a new value record rv for

v intoGenRecs (Line 9). If the input valuev is not new, Algorithm 4

also needs one generator access to update the value record rv in

GenRecs (Line 4 or 13). �us, in the best case Algorithm 1 needs

one generator access for updating the a�ribute clustering, while it

needs three accesses in the worst case.

Handling a delete. Algorithm 6 needs one access to GenRecs
to compute the frequency of occurrences of the input value in each

a�ribute from whose column the value has been deleted (Line 4).

Furthermore, Algorithm 6 needs to accessGenRecs either to remove

the value record rv from GenRecs or to update it (Line 12 or 22).

�erefore, for handling the delete of a value we need two generator

accesses to GenRecs . �us, in the best case Algorithm 6 needs

two accesses to external data structure for updating the a�ribute

clustering a�er deleting a value from the dataset, while it needs

four accesses to GenRecs in the worst case.

We now formulate the results of the previous analysis as follows.

Lemma 5.1. Let∆V be the set of distinct values occurring in a tuple
t inserted into D. Updating the a�ribute clustering a�er inserting t
needs |∆V| generator accesses in the best case, and 3×|∆V| generator
accesses in the worst case.

Lemma 5.2. Let ∆V be the set of distinct values occurring in a
tuple t deleted fromD. Updating the a�ribute clustering a�er deleting
t needs 2 × |∆V| generator accesses in the best case, and 4 × |∆V|
generator accesses in the worst case.

�is means that in both cases, in the best case and in the worst

case, updating the generator a�er deleting a tuple t needs |∆V|
more database accesses than updating it a�er inserting t , where

∆V is the set of distinct values occurring in t . Notice that updating

the generator without the cache strategies always requires 3× |∆V|
accesses a�er an insertion, and 4 × |∆V| a�er a deletion.

For every input value v ∈ ∆V , an access to the generator is

either (i) a modi�cation of v’s record, (ii) removing the v’s record

from the generator, or (iii) inserting thev’s record into the generator.

Removing a record from the generator and inserting a record may

require more runtime than the modi�cation of a record because the

former operation does not cause any reorganization either of the

index de�ned on the values or of the index de�ned on the identi�ers

of the clusters, while the la�er two operations may cause such kind

of reorganizing these two indexes.

Furthermore, the cost of updating the generator depends on two

variables: the number of its records and the number of a�ributes,

which means that the performance of updating the generator in-

creases if the number of distinct values grows or the number of

a�ributes grows.

6 EXPERIMENTAL EVALUATION

We now evaluate our system in terms of De�nition 2.2, which means

we experimentally investigate the runtimeTinc needed for updating

the data structures a�er inserting a tuple into the corresponding

dataset and a�er deleting a tuple from it. In this section, we o�en

refer to the expression ”updating the data structures of the system”

as ”updating the a�ribute clustering”. In particular, we carried

out this evaluation to answer the following questions: What is

the average runtime Tinc for updating the a�ribute clustering of

di�erent large datasets, how e�ective are the cache strategies of the

system, how does the incremental runtime Tinc change in relation

to an increase in the number of a�ributes, and most importantly, can

we ignore the incremental runtime towards the runtime required

by the static discovery of uINDs?

�e function of the quantities FvA (A ∈ A andv ∈ V) in the data

structure of the generator is to handle the deletion. �us, we do

not need these quantities if we limit our system to support only

the insert. �erefore, the following question arises: how does the

updating time for the insert change if we limit our system to support

only the insert? To answer this question we have implemented an

extra version of Algorithm 1, where the generator does not contain

the frequency of occurrences FvA of v in the column of A. We refer

to this version of the implementation as only-insert.

6.1 Setup

Experimental conditions. We performed the experiments on a

Windows 7 Enterprise system with an Intel Core i5-3470 (�ad

Core, 3.20 GHz CPU) and 8 GB RAM. We installed Oracle 11g on the

same machine as the database server and used an external disk for

the storage of all used datasets and for the storage of the generators.

Datasets. Table 3 shows some characteristics of the datasets

used in our experiments. �e �rst column states the name of the

dataset. �e second column gives the number of relations in the cor-

responding dataset. �e total number of a�ributes in each dataset

is given in the third column. �e fourth column states the total

number of rows in each dataset. �e number of distinct values in

each dataset is given in the ��h column. �e number of clusters in

the a�ribute clustering in each dataset is stated in the sixth column.

�e last column gives the number of valid uINDs in each dataset.

Incremental Discovery of Inclusion Dependencies SSDBM ’17, June 27-29, 2017, Chicago, IL, USA

Table 3: Characteristics of datasets used in the experiments

D |D| |A| ∑
ri ∈D |ri | |V| |AC| |I|

TPC-H 8 61 8 661 245 11 807 306 126 80

MB1 45 273 10 000 000 10 382 340 663 584 1844

MB2 18 100 24 000 000 20 552 799 294 059 178

Plista 4 140 33 364 151 46 882 120 185 408

H-Genome 43 387 116 227 014 72 559 365 287 738 4976

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

TPC-H
MB1

MB2
Plista

H-Genome

ru
nt

im
e

(m
s)

datasets

insert
delete

only-insert

Figure 3: Comparing the runtime for an insert with the run-

time for a delete

TPC-H is a benchmark dataset available at h�p://tpc.org/tpch.

All other datasets are real-world datasets. Both MB1 and MB2 are

parts of MusicBrainz dataset available at h�ps://musicbrainz.org.

MusicBrainz is an open music encyclopedia that collects music

metadata and makes them available to the public. Plista [10]

contains anonymized web-log data provided by the advertisement

company Plista. H-Genome is a genome dataset of homo sapiens

available at h�p://ensembl.org.

Systems. We compare our system for incrementally discovering

uINDs against the algorithm presented in [21], which is a scalable

algorithm for discovering uINDs in large, static datasets. We refer to

this algorithms as S-indd. We also implemented extra procedures

for initializing the clusters and the generator of each dataset in

Table 3. �ese procedures are based on an adaption S-indd. �ey

are not necessarily a part of our system because the system can

begin with empty datasets, which will constantly grow and shrink.

We implemented all algorithms in 64-bit Java 7.

6.2 Varying the datasets

To estimate the time Tinc needed for updating the a�ribute cluster-

ing of di�erent datasets, we designed the experiments as follows.

Design of experiments. From each dataset D in Table 3, we

randomly selected two di�erent sets of tuplesDins andDdel . Each

selected set consists of approximately 100 000 tuples. �e set Dins
is to conduct experiments for inserts, while Ddel is to conduct

experiments for deletions. �en we removed all tuples of Dins
from the original dataset D to reinsert them again in a later step.

A�er that we created and initialized the data structuresACRecs and

GenRecs for D \ Dins . For initialization of the data structures we

 0

 200000

 400000

 600000

 800000

 1x106

 1.2x106

 1.4x106

 1.6x106

TPC-H
MB1

MB2
Plista

H-Genom
e

nu
m

be
r

of
 g

en
er

at
or

 a
cc

es
se

s
datasets

insert without cache
insert with cache

delele without cache
delele with cache

Figure 4: Comparing the number of generator accesses in

two cases: using the cache strategies and not using the cache

strategies.

implemented a special procedure based on adaptation of the algo-

rithm presented in [21]. For each dataset, the statistics presented

in Table 3 are calculated a�er selecting Dins and Ddel .

To estimate the time for updating the a�ribute clustering of

D a�er inserting a tuple, we insert all the tuples of Dins again

into D. A�er each insertion we updated the data structures. For

each update we recorded the needed time, took the average of all

runtimes. We repeated this procedure for the tuples Ddel , but

instead of insertions, we removed all tuples of Ddel from D.

For the only-insert version we recreated and reinitialized the

GenRecs without the quantities FvA for each dataset D, and used

the same set Dins selected for the regular version.

Figure 3 shows the results of these experiments. In this �gure

there is a group of three bars for each dataset. In each group, the le�

bar presents the average time required for updating the a�ribute

clustering a�er inserting a tuple, while the middle bar presents

the average time needed for updating the a�ribute clustering a�er

a deletion. �e right bar in each group shows the average time

needed for updating the a�ribute clustering a�er an insertion in

the only-insert version.

Evaluation of the runtime. For each dataset, the average run-

time for updating the a�ribute clustering a�er an insertion is shorter

than the average runtime for updating the a�ribute clustering a�er

a deletion. �e main reason is that the update a�er a deletion al-

ways needs one more access to the external data structureGenRecs
than the update a�er an insertion as discussed in Subsection 5.4.

Furthermore, it is clear that the runtime for updating a�er an inser-

tion in the only-insert version is always less than the runtime for

http://tpc.org/tpch
https://musicbrainz.org
http://ensembl.org

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA Nuhad Shaabani and Christoph Meinel

Table 4: �e reduction of generator accesses gained by cache

strategies

reduction by reduction by

D insert(%) delete(%)

TPC-H 99.987 99.984

MB1 73.440 81.213

MB2 93.177 83.896

Plista 99.997 99.995

H-Genome 90.076 91.811

Table 5: Comparing the runtime (in seconds) with the run-

time of S-indd [21] applied to the entire dataset

D S-indd [21] only-insert insert delete

TPC-H 424 0.021 0.034 0.054

MB1 176 0.050 0.055 0.061

MB2 484 0.025 0.039 0.080

Plista 13 580 0.009 0.047 0.054

H-Genome 3135 0.056 0.097 0.175

updating a�er an insertion in the regular version. �e reason is that

updatingGenRecs in the only-insert version is faster than updating

it in the regular version becauseGenRecs in the only-insert version

does not contain the quantities FvA .

�e cost of updating the data structure of the generator depends

on two variables: the umber of distinct values |V| and the number

of a�ributes |A|, which means that the runtime for updating the

generator increases if the number of distinct values or the number

of a�ribute increase. �is fact explains why the three bars of the

dataset H-Genome are longer the corresponding bars of the other

datasets, respectively (see also Table 3).

Evaluation of cache strategies. To evaluate the e�ectiveness

of our cache strategies, we compare the number of generator ac-

cesses in the case of using both data structures CountCache and

ValCache with the required number of generator accesses without

using them. In both cases, we counted the number of accesses

needed for inserting the set Dins and the number of accesses

needed for deleting theDdel of each dataset in Table 3. �e results

are presented in Figure 4. In this �gure, there is a group of four

bars for each dataset. Form le� to right in each group, the �rst bar

presents the number of accesses for inserting the Dins without

caches, while the second bar is for the same inserts but with caches.

�e third bar presents the number of accesses for the deleting the

Ddel without caches, while the far right bar is for the same dele-

tions but with caches. Table 4 shows the percentage of reducing the

number of accessing the generator in the case of using the caches.

Overall, we reduced the number of generator accesses by more

than 73 % for the insert, and by more than 81 % for the delete. For

TPC-H and Plista, the reduction is more than 99 % both in the

insertion and in the deletion. �is high reduction explains why

the bars presenting the number of accesses in the case of using the

caches do not appear in Figure 4 for both TPC-H and Plista.

0.0004%

0.0060%

0.0130%

0.0170%

0.0350%

TPC-H
MB1

MB2
Plista

H-Genome

ru
nt

im
e

in
 p

er
ce

nt
ag

e
of

 S
-I

N
D

D
's
 r

un
tim

e

datasets

insert
delete

only-insert

Figure 5: Runtime in percentage of S-indd [21] runtime

6.3 Comparing with the static discovery

Comparing with S-indd [21]. We now compare the incremental

discovery with the static discovery of uINDs in terms of De�ni-

tion 2.2. For this purpose we compare each runtime calculated

in the previous subsection for each dataset in Table 3 with the

corresponding runtime required by S-indd [21]. �ese compar-

isons are presented in Table 5. As we can observe, the runtime

needed by the incremental update of the a�ribute clustering is

much smaller than the runtime needed by S-indd. �is observation

is valid for all datasets. For instance, a�er inserting a tuple t into

H-Genome S-indd needsTS-indd(H-Genome + {t}) = 3135 seconds,

while the incremental approach needed only Tinc (t) = 0.097 sec-

onds (i.e., the incremental approach needed ca. 0.003 % of the time

needed by S-indd). �us, we can neglect Tinc (t) = 0.097 seconds

towards TS-indd(H-Genome + {t}) = 3135 seconds. For updating

the a�ribute clustering of Plista a�er a deletion, the incremental

approach requires only 0.0004 % of the runtime required by S-indd

(i.e., the reduction in the static runtime is here more than 99.9996 %).

In fact, we can neglect each incremental runtime listed in Table 5

towards the corresponding statical runtime, which means that our

system satis�es the requirement formulated in De�nition 2.2 for

incremental discovery of uINDs.

Figure 5 presents the incremental runtime in percentage of the

corresponding static runtime. �is presentation allows us to make

an important observation, namely that there is a tendency for the

percentages of larger datasets (Plista and H-Genome) to be smaller

than the percentages of the smaller datasets, which means that

by incrementally updating the uINDs, we avoid the performance

su�ering from static rediscovery a�er a simple change in the corre-

sponding dataset.

Comparing with other static approaches. Other static ap-

proaches either explicitly [15] or implicitly [2, 19] derive the set

of uINDs from the inverted index. [21] shows that the approaches

presented in [2, 15] are special cases of S-indd. �e approach pre-

sented in [19] exports the values of every a�ribute in the dataset

and divides them into a �xed number of buckets by hashing these

values (i.e., it computes a set of buckets for every a�ribute). During

the dividing process, it has to manage storing the buckets on the

hard disk. A�er dividing the value sets of all a�ributes into buck-

ets, the approach in [19] iteratively takes a set of buckets with the

Incremental Discovery of Inclusion Dependencies SSDBM ’17, June 27-29, 2017, Chicago, IL, USA

Table 6: Comparing the number of intersections needed

by inverted index (#i-idx-∩) with number of intersections

needed by attribute clustering (#AC-∩)

D #i-idx-∩ #AC-∩ reduction in %

TPC-H 4.39 × 10
10

4.69 × 10
5

99.99

MB1 7.74 × 10
11

4.95 × 10
10

93.67

MB2 2.06 × 10
11

2.94 × 10
9

98.57

Plista 1.04 × 10
12

4.11 × 10
6

99.99

H-Genome 1.09 × 10
13

4.31 × 10
10

99.61

following properties: (i) the number of buckets equals the number

of a�ributes, (ii) every bucket corresponds to only one a�ribute,

and (iii) all values in these buckets have the same hash value, and

then generates the inverted index from the selected set of buckets.

Based on this inverted index it computes a subset of uINDs, and

repeats the selecting process until all buckets are processed and

the set of uINDs completely computed. Based on the experiments

conducted by [19] on the dataset Plista (see [19]) we can conclude

from Figure 7 in [19] that the runtime for discovering all uINDs in

Plista is approximately 4983 seconds. �us, we can neglect the

incremental runtime required for updating the a�ribute clustering

of Plista (see Table 5) towards the statical runtime needed by [19].

�e e�ectiveness of the attribute clustering. To show the

e�ectiveness of the a�ribute clustering concept, we now compare

the number of intersection operations needed for deriving the valid

uINDs from the clusters with the number of intersection operations

needed for deriving them from the inverted index. Table 6 presents

the results of these comparisons. �e last column in this table shows

the percentage of the reduction in the number of intersections

gained by deriving the uINDs from the a�ribute clustering. As we

can see, the gained reduction is more than 93% for all datasets and

up to 99.99% for TPC-H and Plista.

Furthermore, deriving the set I from the clusters based on

Lemma 4.2 has not required more than one second for every dataset

listed in Table 3.

6.4 Scaling the number of attributes

We now evaluate the change of the runtime in relation to the in-

crease in the number of a�ributes. For this purpose we designed

the experiments in this case as follows.

Design of experiments. For these experiments, we created

six datasets Di
(1 ≤ i ≤ 6) from the dataset MusicBrainz, with

the properties: (i) D6 = MB1, (ii) D1
has 15 a�ributes, (iii) the

dataset Di+1
contains all relations of Di

and additional relations

from MusicBrainz so that Di+1
has approximately 50 a�ributes

more than Di
(1 ≤ i ≤ 5), and (iv) each Di

(1 ≤ i ≤ 6) has

approximately 10,000,000 tuples. For each datasetDi
we estimated

the runtime for updating the a�ribute clustering by applying the

same process applied in Subsection 6.2. Figure 6 shows the results

of these experiments.

Evaluation. Looking at this �gure we can observe that there is

a tendency for the incremental runtime to increase when increasing

the number of a�ributes because (i) the size of the generator grows

when the number of the a�ributes grows, and (ii) the runtime

for the modi�cation of the generator correlates with its size. �e

 0

 10

 20

 30

 40

 50

 60

 70

 80

 15 76 116
 166

 211
 273

ru
nt

im
e

(m
s)

#attributes

insert
delete

Figure 6: Scaling the number of attributes and �xing the

number of rows to 10,000,000

reason for the correlation is that the time of creating and executing

the SQL-Statements required for updating the generator generally

increases when the number of the a�ribute increases. However, the

incremental runtime declines slightly when the number of a�ributes

increases from 211 to 273. �is deviation from the general tendency

may be because (i) the number of generator accesses for the dataset

D5
(i.e. the dataset with 211 a�ributes) is higher than the number

of generator accesses for D6
(i.e. the dataset with 273 a�ributes),

and (ii) up to certain degree, the number of generator accesses has

stronger in�uence on the runtime than the in�uence of the number

of a�ributes on the runtime. In fact, the number of accesses for D5

is 199,808 for the insertions and 174,786 accesses for the deletions,

while for D6
it is 195,340 for the insertions and 161,144 accesses

for the deletions.

As we can see, the maximum incremental runtime for the insert

is 0.059 seconds, while the maximum incremental runtime for the

deletion is 0.074 seconds, and the statical runtime for discovering

uINDs in D6 = MB1 is 176 seconds (see Table 5). �us, we can

ignore both incremental runtimes towards the statical runtime.

7 RELATEDWORK

Kantola et al. [9] give an upper bound for the complexity of the

IND-detecting problem and proof of its NP-completeness. Casanova

et al. [3] formulate the simple axiomatization for INDs and prove

that the decision problem for INDs is PSPACE-complete. Köhler

and Link [12] investigated INDs and NOT NULL constraints under

simple and partial semantics from theoretical point of view.

Shaabani and Meinel developed S-indd [21], a scalable algorithm

for discovering unary INDs in large datasets. S-indd introduces

the concept of a�ribute clustering. Deriving unary INDs from the

a�ribute clustering eliminates the redundant intersection opera-

tions resulting from deriving them from the inverted index applied

in [2, 15, 19]. Furthermore, Shaabani and Meinel have shown that

Spider presented by Bauckmann et al. [2] is a special case of S-indd.

Spider [2] �rst sorts the distinct values in all columns and then

uses a parallel merge-sort like algorithm to compute all unary INDs

simultaneously. Papenbrock et al. presented Binder [19] which

applies a divide and conquer technique for discovering unary INDs.

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA Nuhad Shaabani and Christoph Meinel

Binder takes a further step to generate all n-ary INDs by apply-

ing string concatenations and the same Apriori strategy applied

by Mind [15]. �is approach results in an exponential number of

I/O-operations and exponentially increases the original data size.

For discovering n-ary INDs (n > 1), Mind [15], Find2 [11], and

Zigzag [14] apply the principle of candidate generation, which is

the basic idea of Apriori algorithm for discovering frequent item

sets. �ey start by computing all valid unary INDs satis�ed by

the input dataset, and then inductively continue to larger arities

by selecting sets of new candidate INDs to be tested against the

dataset. But the di�erence between Mind on one side, and Find2

and Zigzag on the other side is that Mind is a straightforward ap-

plication of the Apriori strategy, while Find2 and Zigzag transform

the IND discovery problem into a discovery problem in a hyper-

graph. Find2 maps the IND discovery problem to the hyperclique

discovery problem while Zigzag maps it to the minimal traversal

discovery problem. A common problem with the principle of can-

didate generation is poor scalability in the length of the longest

valid IND in the dataset since validation of an n-ary IND might

require �rst checking all (exponentially many in n) INDs implied

by it. Shaabani and Meinel developed Mind2, the �rst approach

for detecting n-ary INDs without any candidate generation. Mind2

characterizes the maximum INDs by set operations de�ned on cer-

tain metadata, which Mind2 generates by accessing the database

only 2 × the number of valid unary INDs.

Zhang et al. [25] applied approximation techniques for discov-

ering foreign keys. Memari et al. [16] extended the techniques

presented in [25] to handle di�erent semantics for NULL markers

of the SQL Standard.

Research has been done for detecting functional dependencies

and unique column combinations in dynamic manner: Wang et

al. [24] present an approach for maintaining discovered functional

dependencies a�er data deletions. Cong et al. [4] suggest an ap-

proach for incremental data repairing with respect to functional

dependencies and conditional functional dependencies. Fan et

al. [6] present approaches for incremental detection of functional

dependencies and conditional functional dependencies violation

in distributed database. Abedjan et al. [1] present an approach to

e�ciently discover unique and non-unique column combinations

on dynamic datasets.

It is worth noting that most commercial relational DBMS allow

users to specify a set of inclusion dependencies in terms of foreign

key constraints between relations. �e DBMS validates all user-

de�ned foreign key constraints a�er an insert, a delete and a change

of a tuple and aborts the operation in the case it does not satisfy

one of these constraints. However, the DBMS con not �nd new

inclusion dependencies a�er inserting new tuples.

8 CONCLUSION

In this work we developed the �rst approach for incrementally dis-

covering unary inclusion dependencies in continuously changing

data. We reduced the problem of the incremental update of unary

INDs to the incremental update of the a�ribute clustering, from

which unary inclusion dependencies are e�ciently derivable. We

solved the problem of incrementally updating the a�ribute cluster-

ing by developing new cluster operations to be applied a�er every

data change. �en we designed algorithms and data structures for

e�cient implementation of the cluster operations. �e main goal

of the incremental discovery is to avoid reprocessing the entire

dataset by applying the static discovery a�er every change, which

requires a long computation time. In this regard, we performed a

comprehensive experimental evaluation showing that the computa-

tion time of the incremental discovery is negligible in comparison

to computation time of the static discovery. In fact, the reduction

in computation time is up to 99.9996 %.

�e generator can be implemented in a di�erent way than pre-

sented in this paper (e.g., in form of distributed hash table). �ere-

fore, we work on compression strategies for reducing the size of its

data structure. �e reason is to increase the caching capacities and

to reduce the number of generator accesses.

REFERENCES

[1] Z. Abedjan, J. A. �ian-Ruiz, and F. Naumann. 2014. Detecting unique column

combinations on dynamic data. In ICDE 2014. 1036–1047.

[2] J. Bauckmann, U. Leser, and F. Naumann. E�ciently Computing Inclusion

Dependencies for Schema Discovery. In ICDE Workshops, 2006.

[3] M. A. Casanova, L. Tucherman, and A. L. Furtado. 1988. Enforcing Inclusion

Dependencies and Referencial Integrity. In VLDB 1988 (VLDB ’88).
[4] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. 2007. Improving Data �ality:

Consistency and Accuracy. In VLDB (VLDB ’07). VLDB Endowment, 315–326.

[5] W. Fan. 2008. Dependencies Revisited for Improving Data �ality. In PODS
(PODS ’08). ACM, New York, NY, USA, 159–170.

[6] W. Fan, J. Li, N. Tang, and W. Y. qa. 2014. Incremental Detection of Inconsistencies

in Distributed Data. TKDE 26, 6 (June 2014), 1367–1383.

[7] A. Gruenheid, X. L. Dong, and D. Srivastava. 2014. Incremental Record Linkage.

VLDB 7, 9 (May 2014), 697–708.

[8] J. Gryz. 1998. �ery Folding with Inclusion Dependencies. In ICDE 1998. 126–133.

[9] M. Kantola, H. Mannila, K.-J. Räihä, and H. Siirtola. 1992. Discovering functional

and inclusion dependencies in relational databases. JIIS 7, 7 (1992).

[10] B. Kille, F. Hopfgartner, T. Brodt, and T. Heintz. 2013. �e Plista Dataset. In NRS
Workshops (NRS ’13). 16–23.

[11] A. Koeller and E.A. Rundensteiner. 2003. Discovery of high-dimensional inclusion

dependencies. In ICDE 2003. 683–685.

[12] H. Köhler and S. Link. 2015. Inclusion Dependencies Reloaded. In CIKM (CIKM
’15). 1361–1370.

[13] M. Levene and M. W. Vincent. 2000. Justi�cation for inclusion dependency

normal form. TKDE 12 (2000), 2000.

[14] F. D. Marchi and J.-M. Petit . Zigzag: A New Algorithm for Mining Large Inclusion

Dependencies in Databases. In ICDM, 2003.

[15] F. D. Marchi, S. Lopes, and J.-M. Petit. 2009. Unary and n-ary inclusion depen-

dency discovery in relational databases. JIIS 32, 1 (2009), 53–73.

[16] M. Memari, S. Link, and G. Dobbie. 2015. Conceptual Modeling: ER 2015. Springer

International Publishing, Cham, Chapter SQL Data Pro�ling of Foreign Keys,

229–243.

[17] R. J. Miller, M. A. Hernández, L. M. Haas, L.-L. Yan, C. T. Howard Ho, R. Fagin,

and L. Popa. 2001. �e Clio Project: Managing Heterogeneity. SIGMOD Rec.,
2001 30, 1 (2001), 78–83.

[18] F. Naumann. 2014. Data Pro�ling Revisited. SIGMOD Rec. 42, 4 (2014), 40–49.

[19] T. Papenbrock, S. Kruse, J.-A. �iane-Ruiz, and F. Naumann. 2015. Divide &

Conquer-based Inclusion Dependency Discovery. VLDB, 2015 8, 7 (0 2015),

774–785.

[20] B. Saha and D. Srivastava. 2014. Data quality: �e other face of Big Data. In ICDE
2014. 1294–1297.

[21] N. Shaabani and C. Meinel. 2015. Scalable Inclusion Dependency Discovery. In

Database Systems for Advanced Applications: DASFAA 215. LNCS, Vol. 9049.

[22] N. Shaabani and C. Meinel. 2016. Detecting Maximum Inclusion Dependencies

without Candidate Generation. In Database and Expert Systems Applications:
DEXA 2016, Part II. Springer International Publishing, Cham, 118–133.

[23] K. Smith, L. Seligman, A. Rosenthal, C. Kurcz, M. Greer, C. Macheret, M. Sexton,

and A. Eckstein. 2014. ”Big Metadata”: �e Need for Principled Metadata Man-

agement in Big Data Ecosystems. In Proceedings of Workshop on Data Analytics
in the Cloud (DanaC’14). Article 13, 4 pages.

[24] S.-L. Wang, W.-Ch. Tsou, J.-H. Lin, and T.-P. Hong. 2003. Maintenance of Discov-
ered Functional Dependencies: Incremental Deletion. Springer Berlin Heidelberg,

Berlin, Heidelberg, 579–588.

[25] M. Zhang, M. Hadjiele�heriou, B. C. Ooi, C M. Procopiuc, and D. Srivastava.

2010. On Multi-column Foreign Key Discovery. VLDB 3, 1-2 (sep 2010), 805–814.

	Abstract
	1 Introduction
	2 Problem Statement
	3 Workflow overview
	4 Attribute Clustering
	4.1 Background
	4.2 Attribute clustering operations

	5 Algorithms
	5.1 Data structures
	5.2 Handling Insert
	5.3 Handling delete
	5.4 Performance analysis

	6 Experimental Evaluation
	6.1 Setup
	6.2 Varying the datasets
	6.3 Comparing with the static discovery
	6.4 Scaling the number of attributes

	7 Related Work
	8 Conclusion
	References

