
Full-Body WebRTC Video Conferencing in a
Web-Based Real-Time Collaboration System

Matthias Wenzel, Christoph Meinel
Hasso Plattner Institute Potsdam

Prof. Dr. Helmert Str. 2-3, Potsdam, Germany
Email: {firstname.lastname}@hpi.de

Abstract—Remote collaboration systems are a necessity for ge-
ographically dispersed teams in achieving a common goal. Real-
time groupware systems frequently provide a shared workspace
where users interact with shared artifacts. However, a shared
workspace is often not enough for maintaining the awareness
of other users. Video conferencing can create a visual context
simplifying the user’s communication and understanding. In
addition, flexible working modes and modern communication
systems allow users to work at any time at any location. It is
therefore desirable that a groupware system can run on users’
everyday devices, such as smartphones and tablets, in the same
way as on traditional desktop hardware.

We present a standards compliant, web browser-based real-
time remote collaboration system that includes WebRTC-based
video conferencing. It allows a full-body video setup where ev-
eryone can see what other participants are doing and where they
are pointing in the shared workspace. In contrast to standard
WebRTC’s peer-to-peer architecture, our system implements a
star topology WebRTC video conferencing. In this way, our
solution improves network bandwidth efficiency from a linear
to a constant network upstream consumption.

I. INTRODUCTION

Working teams, especially in corporate environments, are
becoming increasingly distributed in time and space. It is a
development that is certain to become more commonplace
in the future. Collaboration with remote partners on shared
tasks has grown accordingly. As a result, remote collaboration
tools are well-established in today’s working environments.
However, the availability of these tools across a wide range
of devices has to be ensured. Remote collaboration tools have
to be accessible from traditional computer systems, such as
desktop computers and laptops, as well as from mobile de-
vices, such as smartphones and tablets. Modern web browsers
facilitate the development of HTML5 technology-based cross-
platform software systems as capable and powerful as desktop
applications [1].

Many groupware systems provide a shared workspace [2]
(e.g. virtual whiteboards), allowing users to interact with
shared task artifacts simultaneously from different locations.
At the same time it is difficult to maintain the awareness of
other users working in the shared workspace, mainly because
only a small part of the perceptual information that is available
in a face-to-face workspace is provided by groupware systems’
input and output devices [3], [4]. Video conferencing can in-
crease this awareness, since a shared visual context can create
a sense of co-presence [5]. This feeling of closeness improves

the communication and understanding of participants [6], [7].
Indicating objects with pointing gestures furthermore reduces
the need for cumbersome verbal descriptions [8].

In order to combine video conferencing, which goes beyond
a basic face-to-face setup with a flexible web browser-based
groupware system, the video conferencing has to be run in
a web browser context too. Compared to native groupware
applications, this implies limitations regarding user interface
(UI) layout (e.g. window transparency) and available video
processing application programming interfaces (APIs).

In this paper we present our redeveloped real-time remote
collaboration system Tele-Board [9]. The application is web
browser-based and provides a shared workspace together with
a video conferencing functionality. Furthermore, it is compli-
ant with current web standards and does not rely on proprietary
plugin technology. In order to increase the awareness of remote
users and allow reference be made to shared artifacts, our
system supports a full-body video setup as shown in Figure 1.

Location A Location B

collaboration
client

collaboration
server

video
collaboration

synchronized
design panel

collaboration
client

Fig. 1. Tele-Board video setup. A camera captures users standing in front
of the workspace screen. Remote users see pointing gestures and facial
expressions.

The translucent whiteboard can be displayed as an overlay
on top of the full screen video of the other team members.
This setup lets everyone see what the other participants are
doing and where they are pointing at. Additionally, viewers
see their gestures and facial expressions.

This way, Tele-Board provides three distinct types of spaces
proposed by Buxton [10]: a person space of the remote
participant’s image, a task space of involved artifacts on the
whiteboard and a reference space for pointing and gestur-
ing [9].

Though many groupware systems exist today, to our knowl-
edge we are the first to propose a completely standard-

Proceedings of the 2016 IEEE 20th International Conference on Computer Supported Cooperative Work in Design

978-1-5090-1914-4/16/$31.00 ©2016 IEEE 334

compliant web browser-based system that supports a full-body
video setup.

II. RELATED WORK

In this section we focus on digital tools for remote collabo-
ration. We provide an overview of relevant research ideas and
prototypes as well as commercial and open source systems.

A. Research Projects

Two systems for remote collaboration at whiteboards devel-
oped in the early nineties were VideoWhiteboard [11], which
is based on the VideoDraw [12] system, and ClearBoard [13].
In both systems, users and their drawings on a whiteboard
are captured by a video camera. The video data is transferred
synchronously to the remote location and projected onto the
partner’s screen. The VideoWhiteboard system was designed
to only show the shadow and not a real video of the remote
person (i.e. facial expressions were not transferred). Vide-
oWhiteboard and ClearBoard did not support editing or erasure
of the remote partner’s whiteboard marks, since whiteboard
content data was only projected and not really transferred to
the other location.

VideoArms [14], [15] is a similar system which captures
and reproduces participant’s arms when working over large
displays. While the system transmits a video showing hands
and arms, facial expressions and full-body gestures were not
transferred to the remote location.

A more recent system is CollaBoard [16]. CollaBoard pro-
vides full-body video in combination with a shared whiteboard
workspace. The system relies on different native technologies
(e.g. Skype1) for audio/video conferencing. It requires a com-
plex setup to use. As in all mentioned systems, native software
(i.e. the platform specific code) has to be installed on both
users’ computer systems.

B. Commercial and Open Source Products

High quality telepresence systems, such as those offered
by Polycom2 or Cisco3 make it possible to build up a virtual
meeting and convey the feeling of sitting together at the
same table. However, dedicated rooms and expensive hardware
entail limited access and make such systems primarily suitable
for bigger companies. The drawback for creative work is the
missing support of a shared workspace. A web-based tool for
remote collaboration is Adobe Connect4. It can be used for
document exchange and screen sharing and offers a simple
whiteboard application. However, it relies on Adobe Flash
plugin technology and does not offer full-body video support.

Two web browser-based systems are Mural5 and Realtime-
Board6. They offer a plugin free HTML5-based whiteboard
application where users can manipulate shared artifacts. Mural

1http://www.skype.com/
2http://www.polycom.com/hd-video-conferencing/

realpresence-immersive-video-telepresence.html
3http://www.cisco.com/c/en/us/solutions/collaboration/telepresence/
4http://www.adobe.com/products/adobeconnect.html
5https://mural.ly/
6https://realtimeboard.com/

provides a text chat functionality for further interacting with
remote participants but has no video support. RealtimeBoard
provides a basic face-to-face video conferencing setup.

III. BROWSER-BASED VIDEO CONFERENCING

Traditionally, audio/video real-time communication within
web browsers was only possible via plugins or third-party
software. Web Real-Time Communication (WebRTC)7 is a
collection of communication protocols and APIs that sup-
port peer-to-peer (P2P) real-time communication among web
browsers. With the P2P capabilities introduced by WebRTC,
browsers now break away from the classic client-server model.
The advantage of this shift is that the APIs defined by WebRTC
are the same regardless of the underlying browser, operating
system etc. and are available on many platforms, especially
mobile devices. In the context of video conferencing however,
the P2P approach has a potential drawback as depicted in
Table I. For n clients to interact with each other, n(n− 1) =
n2−n ≈ n2 transmission channels are needed (fully connected
mesh). In order to improve this behavior, a central server can
act in the same way as a peer. This way, the implementation
of a star topology is possible. All clients connect to the central
server which distributes the received media streams. This
approach reduces client upstream, enabling large conferences
(especially in face of asymmetric networks with considerably
lower upstream than downstream bandwidth).

TABLE I
WEBRTC TOPOLOGY COMPARISON: STAR ARCHITECTURE HAS NETWORK

BANDWIDTH ADVANTAGE OVER STANDARD WEBRTC P2P MESH

Topology Client Upstream Client Downstream

Fully Connected Mesh

n−1 outgoing connec-
tions per client: each
client sends its cap-
tured media data to all
of its peers

n − 1 incoming con-
nections per client: each
client receives media from
all of its peers

Star Topology

1 outgoing connection
per client: each client
sends captured media
data to the central
server

n − 1 incoming connec-
tions: each client receives
the n − 1 media streams
of all other clients from
the central server (assum-
ing no server side media
mixing is performed)

A central server acting as a WebRTC remote peer to forward
captured media data is often called Selective Forwarding Unit
(SFU). Usually, it does not mix the received media data into
a composite stream but only relays these streams to a set of
participants.

In our implementation, we rely on an existing WebRTC
framework. We had the following requirements to be fulfilled:
(1) Open Source platform, so that we have full access to make
necessary changes (2) star topology, since we did not want
to rewrite the whole architecture (3) active development (4)

7http://www.w3.org/TR/2015/WD-webrtc-20150210/

335

http://www.skype.com/
http://www.polycom.com/hd-video-conferencing/realpresence-immersive-video-telepresence.html
http://www.polycom.com/hd-video-conferencing/realpresence-immersive-video-telepresence.html
http://www.cisco.com/c/en/us/solutions/collaboration/telepresence/
http://www.adobe.com/products/adobeconnect.html
https://mural.ly/
https://realtimeboard.com/
http://www.w3.org/TR/2015/WD-webrtc-20150210/

code quality. Being the closest match to our requirements, we
decided to use the open source SFU Jitsi Videobridge8 in our
implementation.

IV. VIDEO CONFERENCING IN THE TELE-BOARD SYSTEM
- APPLICATION DESIGN AND IMPLEMENTATION

With Tele-Board [17]–[19], we built a web browser-based
real-time remote collaboration system. The application pro-
vides a shared workspace in terms of a virtual whiteboard
surface. The content data is synchronized automatically by
a central server (see Figure 2) among all connected client
applications.

Collaboration
Server

Whiteboard Hardware

Tablet PC

Interactive Display

Notebook

Sticky note creation

Fig. 2. The Tele-Board software system architecture. Web browser-based
clients can be run on multiple devices. Virtual whiteboard data is synchronized
among connected clients by the central collaboration server.

A. Tele-Board Architecture

The system mainly consists of three different parts. The
web portal is the entry point of the Tele-Board system. It
serves as an administration interface allowing users to manage
projects and associated panels. In this way, users are able to
organize their work and control access rights (see Figure 4).
Users log into the system with their credentials. User accounts
are assigned to projects which grants access to the projects’
panels. A panel represents a virtual whiteboard including its
content and its course over time. This design permits the
user to go back and forth in the history of the whiteboard
content [20]. Started from the web portal, the whiteboard
client allows editing of a panel. This application, written in
JavaScript, requires no additional browser plugins. It facili-
tates whiteboard interaction (e.g. writing with different colors,
erasing, and the manipulation of sticky notes and images).
Whenever a user starts the whiteboard client with a particular
panel, the system automatically becomes connected to all
other clients operating on the same panel. All users can see
remote panel actions in real-time and are equally authorized to
manipulate any panel artifacts they choose. The collaboration
server component coordinates all communication between the
remote partners. Whenever a whiteboard artifact is created
or changed, a serialized object representation in JavaScript
Object Notation (JSON) is forwarded by the server to all

8https://jitsi.org/Projects/JitsiVideobridge

other connected whiteboards to keep these synchronized. In
order to keep track of all whiteboard changes, our system
performs synchronization in real-time (i.e. when moving a
sticky note on the panel each change in its position is
propagated to all connected clients). The remote participants
can see the movement of the sticky note—not only its final
position. We see the communication setup in Figure 3. Real-
time communication causes a multitude of synchronization
messages. Hence, we rely on the persistent, bi-directional
Transmission Control Protocol (TCP)-based WebSocket9 pro-
tocol for keeping connected clients synchronized. We hereby
build on the results and recommendations from Gutwin et
al. [21]. The collaboration server is written in JavaScript
using the server-side Node.js10 runtime environment. We use
Socket.IO11 JavaScript library for connection management and
synchronization message relay (i.e. broadcasting to all clients
participating in one panel session). A panel represents a virtual
workspace in which content information is shared among a
group of users who have access to this space. This concept
of a chat room is realized by Socket.IO. Arbitrary channels,
called ”rooms”, can be defined that a user’s data connection
may join and leave. In our system such a room is indicated by a
panel’s identifier. This way, content data is only synchronized
among the users who joined the room.

Web Browser

ClientClient

Nginx
Proxy-Server

NodeJS
Collaboration

Server

PHP
Web-Portal

User/Panel Data
Access Rights

Openfire XMPP
WebRTC Signaling

Server

Jitsi Videobridge
WebRTC SFU

SRTP
WebRTC

MediaStreams

SRTP
WebRTC

MediaStreams

HTTPS
WSS

HTTPS
WSS

ServerServer

HTTP
WS

HTTP
WS HTTPHTTP HTTPHTTP/socket.io /http-bind/

Fig. 3. The Tele-Board client-server architecture. Web portal, whiteboard
synchronization and WebRTC signaling is managed by an Nginx proxy server
using a single standard port 443 for encrypted communication.

With the web portal and the collaboration server we have
two server-side services to be accessible by the client’s web
browser. Traditionally, this would require two different ports
on the server that also have to be reachable from the browser.
This is sometimes difficult in client-side setups with restrictive

9https://tools.ietf.org/html/rfc6455
10https://nodejs.org/en/
11http://socket.io/

336

https://jitsi.org/Projects/JitsiVideobridge
https://tools.ietf.org/html/rfc6455
https://nodejs.org/en/
http://socket.io/

firewalls. Thus, we are using the Nginx12 proxy server that
handles both, the web portal (HTTP) and the collaboration
server (WebSocket) communication utilizing only one port.
Therefore, the encrypted protocol versions HTTP over SSL
(HTTPS) and Secure WebSocket (WSS) can be used with the
standard port 443.

Fig. 4. The Tele-Board web portal. The left menu shows all projects and
panels the user is assigned to.

In an earlier version of our system, the video part of the
setup described in Figure 1 was provided by an external video
conferencing system [9], such as Skype. This solution was
only possible since our first whiteboard client was a Java
application provided by the web portal via Java Webstart. In
order to apply the full-body video setup, the whiteboard client
could be started with a transparent background as an overlay
for the video conferencing application. Due to the widespread
usage of mobile devices such as smartphones and tablets where
Java programs cannot be run, we chose to shift to a web
browser-based whiteboard client implementation.

B. Video Conferencing Implementation

Using our web browser-based whiteboard client as a trans-
parent overlay for an external video conferencing system
is not possible. Relying on standards compliant JavaScript
APIs, there is no access to web browser’s window rendering
(i.e. a transparent browser window). Consequently, a video
conferencing functionality is only possible by using the web
browsers’ internal APIs (i.e. the above mentioned WebRTC).

Implementing WebRTC based video conferencing requires
components on both server and client side. Though standard
WebRTC media stream data is transferred directly between
connected peers, in practice a server side part is still necessary.
Establishing a connection between peers involves procedures
to control communication and for metadata exchange. This

12http://nginx.org/

process of information exchange is called signaling and is
not part of the WebRTC specification. Information exchange
in particular encompasses messages regarding session control,
network configuration, and web browsers’ media capabilities.
The application itself has to implement this mechanism which
is typically provided by a server component.

1) Server-Side Components: The signaling mechanism for
controlling Jitsi Videobridge SFU is based on Extensible
Markup Language (XML) messages, that are exchanged using
Extensible Messaging and Presence Protocol13 (XMPP) pro-
tocol. Jitsi Videobridge is an external XMPP component and
therefore requires an XMPP server. Components can extend
an XMPP environment’s functionality. They receive all XMPP
messages that are addressed to a particular subdomain of the
XMPP server domain. For setting up a conference call (i.e.
allocate channels for everyone, add or remove participants, and
managing the call state) the open XMPP extension protocol
(XEP) COLIBRI (COnferences with LIghtweight BRIdging) is
used in order to control the video bridge [22]. All these XMPP
control messages are processed by the connected clients’
web browsers using Bidirectional-streams Over Synchronous
HTTP14 (BOSH) transport protocol for XMPP server com-
munication. In our groupware system we deployed Openfire15

XMPP server. This communication scheme is shown in Fig-
ure 3. Once initial signaling process has finished, connected
clients’ audio/video media stream data is exchanged via Jitsi
Videobridge, which relays the data to connected web browsers.
This way, we realize the intended star topology in our system.

Starting the whiteboard client and connecting to all remote
participants automatically, a video conference has to be es-
tablished automatically without any further user interaction.
At the same time it has to be ensured that only users
can take part in a conference that also have access to the
corresponding panel. Therefore, we had to extend the video
conferencing management by an access control mechanism.
We implemented an automatic, Single Sign-On (SSO) related
authentication mechanism for the video conferencing signaling
server on the basis of user’s web portal credentials. Multi-
party video conferencing with Jitsi relies on a chat room
concept very similar to the panel room mechanism with
Socket.IO described in section IV-A. Multiple users can join a
conference defined by a shared room name. The XMPP Multi-
User Chat (MUC) protocol extension XEP16 is used by Jitsi’s
signaling server for setting up multiparty video conferencing,
and allowing closed, password protected rooms.

The Openfire XMPP signaling server can be used stand-
alone (i.e. it has its own authentication mechanism based on its
own database where before created user accounts are stored).
Our intention was not to duplicate this authentication data.
Instead, we use the existing database the web portal and the
server component are operating on. Openfire provides Java
APIs for extending its functionality. This way, we could adapt

13https://tools.ietf.org/html/rfc6120
14http://xmpp.org/extensions/xep-0124.html
15http://www.igniterealtime.org/projects/openfire/
16http://xmpp.org/extensions/xep-0045.html

337

http://nginx.org/
https://tools.ietf.org/html/rfc6120
http://xmpp.org/extensions/xep-0124.html
http://www.igniterealtime.org/projects/openfire/
http://xmpp.org/extensions/xep-0045.html

the server’s user authentication and room access control to our
needs. In our implementation we created two extensions for
the used Openfire XMPP server:

Server Authentication Provider - A library for authenticating
users by their web portal user credentials. We configured the
XMPP server to only allow specified login because it is an
exclusively private service. We hereby use the shared web
portal database for user credential verification. Our library
consists of a class that implements an interface providing
an authenticate method with a username and password
signature which performs a custom authentication procedure.
The compiled jar file has to be included in an Openfire folder.
Afterwards, the system can be configured to use the custom
authentication provider.

Conference Room Authenticator - Openfire allows creating
plugins that can be uploaded to the server. These plugins can
extend the server’s functionality. A multitude of plugins are
available on the Openfire website. We implemented a plugin
that listens for MUC events such as room creation or joining
and leaving a room. To check if a user is allowed to join a
conference room, we provided the appropriate method that is
called by the system with a given room and user name. Based
on our database we can verify if the user has permission to
access the room defined by a Tele-Board panel’s identifier.

On the basis of these mechanisms, we establish video
conference calls transparently in our system. The conference
starts automatically once a user opens our web browser based
whiteboard client application. Furthermore, providing a star
topology conferencing increases user’s client-side bandwidth
resource efficiency.

2) Client-Side Implementation: Enabling full-body video
setup was our main goal during development. However, for
use cases such as desktop video conferencing in a face-to-
face style or when a full-body arrangement is too complex,
a more basic setup is desirable. This way, we wanted the
arrangement of the video to be as flexible as possible while
not interfering with the whiteboard client’s panel surface. As
a result, we decided on a solution that supports multiple
web browser windows where video conferencing display can
be detached from the whiteboard client window. The video
conferencing is implemented as a single page application in
our web portal in the same way as the whiteboard client.
Following this approach, video conferencing can be attached
to the whiteboard client window embedded via an iframe17

HTML markup element in the background of the panel surface
or as own window detached from the whiteboard client. The
video conference is initiated on-the-fly on the whiteboard
client application start-up. The iframe element or the detached
window is created by the client-side JavaScript loading the
video conferencing web page from the web portal server. With
the reference on this web page, video conferencing can be
controlled by the whiteboard client (i.e. changing the views,
volume control, switching audio/video on and off). When em-

17http://www.w3.org/TR/html5/embedded-content-0.html#
the-iframe-element

bedded via iframe for applying full-body setup, the whiteboard
panel surface is rendered with a transparent background on top
of the video layer. The result of this technique is shown in
Figure 5. The panel artifacts are rendered on top of the video
enabling the remote user to point at a specific element on the
panel.

The Jitsi system contains the client-side JavaScript compo-
nent Lib-Jitsi-Meet18 that manages XMPP messaging as well
as audio/video handling in the web browser. The component
provides an API that can be used in web browser based ap-
plications. We used this component in our video conferencing
application page. Once the page is loaded the API provides
access to the local web browser’s audio/video media sources
such as webcam and microphone. When the user approves
access to media devices, the connection to Jitsi Videobridge
WebRTC server is established. Furthermore, the API defines a
multitude of mandatory registration events (e.g., upon joining
or leaving certain remote users conferences and remote media
stream changes). This definition allows a flexible application
design since conference management and media stream han-
dling is separated from the video conference’s actual visual
representation. In our system, we support multiple remote
conference participants in the detached window mode. Remote
users’ videos are rendered as small preview video elements.
The local user can switch to a larger display by selecting the
respective video area. In the intended full-body use case setup,
the whiteboard panel can only be aligned with one remote
video. Thus, in the attached full-window video mode, we
currently show only one remote participant in the background.

The method of splitting whiteboard client and video confer-
encing application into two web pages can, we believe, best
adapt to different camera positions and use cases. At the same
time, it preserves our primary objective of the use of full-body
video.

Fig. 5. Tele-Board full-body video conferencing. Users can point to shared
artifacts on the workspace.

V. CONCLUSION AND OUTLOOK

It can be difficult to follow remote team members’ shared
workspace interactions in a real-time groupware system. Re-

18https://github.com/jitsi/jitsi-meet/tree/lib-jitsi-meet

338

http://www.w3.org/TR/html5/embedded-content-0.html#the-iframe-element
http://www.w3.org/TR/html5/embedded-content-0.html#the-iframe-element
https://github.com/jitsi/jitsi-meet/tree/lib-jitsi-meet

mote team members may have the impression that whiteboard
artifacts are moving by themselves when these are manip-
ulated locally. This kind of remote whiteboard interaction
can benefit from a video conference that shows how other
team members operate the system [23]. In this paper we
presented a video conferencing solution integrated in our real-
time remote collaboration system—Tele-Board. System design
allows a full-body video setup in order to align the remote
team member with the shared workspace artifacts on a virtual
whiteboard surface. This visual context lets everyone see what
other participants are doing and where they are pointing.
Additionally, their gestures and facial expressions can be seen.
Compared to prior research and existing commercial systems,
our system is web browser-based and compliant with current
web standards and does not rely on plugin technology. Hence,
it is a cross-platform application that can be run on desktop
computers as well as on mobile devices, such as smartphones
and tablets. In contrast to standard WebRTC’s P2P approach,
our WebRTC based video conferencing component imple-
ments a star topology. The user’s network upstream bandwidth
acquisition is therefore reduced to a constant value. This means
it is independent of the number of participants, instead of being
linearly related to the number of conferencing members.

There is another advantage to the audio/video streams
being handled by a central server. It is possible to record the
video sessions at a central location. Otherwise, with P2P this
would be impracticable and require much greater effort. We
are currently working on implementing a technique to record
the video sessions and align these sessions with whiteboard
content history. Tele-Board already provides a history browser
interface giving the opportunity to go back and forth in the
timeline of a whiteboard. This combination of content history
with “audio/video” history would allow better asynchronous
work comprehension [24].

ACKNOWLEDGMENT

We thank the HPI-Stanford Design Thinking Research
Program for funding and supporting this project.

REFERENCES

[1] A. Wright, “Ready for a Web OS?” Communications of the ACM,
vol. 52, no. 12, pp. 16–17, Dec. 2009.

[2] C. A. Gutwin, S. Greenberg, R. Blum, J. Dyck, K. Tee, and G. Mcewan,
“Supporting Informal Collaboration in Shared-Workspace Groupware,”
Journal of Universal Computer Science, vol. 14, no. September, pp.
1411–1434, 2008.

[3] C. A. Gutwin and S. Greenberg, “A Descriptive Framework of
Workspace Awareness for Real-Time Groupware,” Computer Supported
Cooperative Work (CSCW), vol. 11, no. 3-4, pp. 411–446, sep 2002.

[4] ——, “The importance of awareness for team cognition in distributed
collaboration.” in Team cognition: Understanding the factors that drive
process and performance., Washington, 2004, pp. 177–201.

[5] J. R. Brubaker, G. Venolia, and J. C. Tang, “Focusing on Shared
Experiences: Moving beyond the camera in video communication,” in
Proceedings of the Designing Interactive Systems Conference, ser. DIS
’12. New York, NY, USA: ACM, 2012, pp. 96–105.

[6] E. Koh, “Conferencing room for telepresence with remote participants,”
Proceedings of the 16th ACM international conference on Supporting
group work - GROUP ’10, p. 309, 2010.

[7] E. A. Isaacs and J. C. Tang, “What video can and can’t do for
collaboration,” in Proceedings of the first ACM international conference
on Multimedia - MULTIMEDIA ’93. New York, NY, USA: ACM Press,
1993, pp. 199–206.

[8] S. Fussell, L. Setlock, J. Yang, J. Ou, E. Mauer, and A. Kramer,
“Gestures Over Video Streams to Support Remote Collaboration on
Physical Tasks,” Human-Computer Interaction, vol. 19, no. 3, pp. 273–
309, 2004.

[9] R. Gumienny, L. Gericke, M. Quasthoff, C. Willems, and C. Meinel,
“Tele-Board: Enabling Efficient Collaboration in Digital Design Spaces,”
in Proceedings of the 15th International Conference on Computer
Supported Cooperative Work in Design (CSCWD 2011). IEEE Press,
June 2011, pp. 47–54.

[10] B. Buxton, “Mediaspace Meaningspace Meetingspace,” in Media Space
20 + Years of Mediated Life, ser. Computer Supported Cooperative
Work, S. Harrison, Ed. Springer London, 2009.

[11] J. C. Tang and S. Minneman, “VideoWhiteboard: video shadows to
support remote collaboration,” in Proceedings of the SIGCHI conference
on Human factors in computing systems Reaching through technology -
CHI ’91. New York, NY, USA: ACM Press, 1991, pp. 315–322.

[12] J. C. Tang and S. L. Minneman, “Videodraw: a video interface for col-
laborative drawing,” ACM Transactions on Information Systems (TOIS),
vol. 9, no. 2, pp. 170–184, 1991.

[13] H. Ishii and M. Kobayashi, “ClearBoard: a seamless medium for shared
drawing and conversation with eye contact,” in Proceedings of the
SIGCHI conference on Human factors in computing systems - CHI ’92.
New York, NY, USA: ACM Press, 1992, pp. 525–532.

[14] A. Tang, C. Neustaedter, and S. Greenberg, “VideoArms: Supporting
Remote Embodiment in Groupware,” in Video Proceedings of the ACM
CSCW Conference on Computer Supported Cooperative Work. Chicago,
IL, USA: ACM Press, November 2004.

[15] ——, “VideoArms: Embodiments for Mixed Presence Groupware,” in
Proceedings of the 20th British HCI Group Annual Conference (HCI
2006), September 2006, pp. 85–102.

[16] A. Kunz, T. Nescher, and M. Kuchler, “CollaBoard: A Novel Interac-
tive Electronic Whiteboard for Remote Collaboration with People on
Content,” Cyberworlds (CW), 2010 International Conference on, pp.
430–437, 2010.

[17] M. Wenzel, L. Gericke, R. Gumienny, and C. Meinel, “Towards Cross-
Platform Collaboration - Transferring Real-Time Groupware To The
Browser,” in Proceedings of the 17th IEEE International Conference
on Computer Supported Cooperative Work in Design (CSCWD 2013).
IEEE, June 2013, pp. 49–54.

[18] M. Wenzel and C. Meinel, “Parallel network data processing in client
side javascript applications,” in 2015 International Conference on Col-
laboration Technologies and Systems (CTS 2015). IEEE, June 2015,
pp. 140–147.

[19] M. Wenzel, L. Gericke, C. Thiele, and C. Meinel, “Globalized design
thinking: Bridging the gap between analog and digital for browser-based
remote collaboration,” in Design Thinking Research, ser. Understanding
Innovation, H. Plattner, C. Meinel, and L. Leifer, Eds. Springer
International Publishing, 2016, pp. 15–33.

[20] L. Gericke, R. Gumienny, and C. Meinel, “Message capturing as a
paradigm for asynchronous digital whiteboard interaction,” in Proceed-
ings of the 6th International Conference on Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom 2010).
Chicago, IL, USA: IEEE Press, 10 2010, pp. 1 – 10.

[21] C. A. Gutwin, M. Lippold, and T. C. N. Graham, “Real-time groupware
in the browser: Testing the performance of web-based networking,”
in Proceedings of the ACM 2011 Conference on Computer Supported
Cooperative Work, ser. CSCW ’11. New York, NY, USA: ACM, 2011,
pp. 167–176.

[22] B. Grozev, L. Marinov, V. Singh, and E. Ivov, “Last N: relevance-
based selectivity for forwarding video in multimedia conferences,” in
Proceedings of the 25th ACM Workshop on Network and Operating
Systems Support for Digital Audio and Video - NOSSDAV ’15. New
York, NY, USA: ACM Press, 2015, pp. 19–24.

[23] S. R. Fussell, R. E. Kraut, and J. Siegel, “Coordination of commu-
nication: Effects of shared visual context on collaborative work,” in
Proceedings of the 2000 ACM Conference on Computer Supported
Cooperative Work, ser. CSCW ’00. New York, NY, USA: ACM, 2000.

[24] L. Gericke, M. Wenzel, and C. Meinel, “Asynchronous understanding
of creative sessions using archived collaboration artifacts,” in 2014
International Conference on Collaboration Technologies and Systems
(CTS). IEEE, may 2014, pp. 41–48.

339

