
Parallel Network Data Processing in Client Side
JavaScript Applications

Matthias Wenzel, Christoph Meinel
Hasso Plattner Institute Potsdam

Prof. Dr. Helmert Str. 2-3, Potsdam, Germany
{matthias.wenzel, christoph.meinel}@hpi.de

Abstract—In modern computer systems, multicore proces-
sors are prevalent, even on mobile devices. Since JavaScript
WebWorkers provide execution parallelism in a web browser,
they can help utilize multicore CPUs more effectively. However,
WebWorker limitations include a lack of access to web browser’s
native XML processing capabilities and related Document Object
Model (DOM). We present a JavaScript DOM and XML pro-
cessing implementation that adds missing APIs to WebWorkers.
This way, it is possible to use JavaScript code that relies on
native APIs within WebWorkers. We show and evaluate the
seamless integration of an external XMPP library to enable
parallel network data and user input processing in a web based
real-time remote collaboration system. Evaluation shows that
our XML processing solution has the same linear execution
time complexity as its native API counterparts. The proposed
JavaScript solution is a general approach to enable parallel
XML data processing within web browser-based applications.
By implementing standards compliant DOM interfaces, our
implementation is useful for existing libraries and applications
to leverage the processing power of multicore systems.

Keywords—Web-enabled Collaboration; JavaScript; Web-
Worker; XML

I. INTRODUCTION

Modern web browsers offer a multitude of new features
to application programmers that were usually available only
in traditional programming environments. Especially in the
course of HTML5, lots of functionality, typically requiring
plugin technology (e.g. Adobe Flash), can be realized using
native browser APIs (e.g. HTML5 Canvas). This way, op-
portunities arise to develop applications that run on desktop
as well as on mobile devices sharing the same code base.
Web browsers therefore become an increasingly important
application platform [1], making creation and maintenance of
multiple, platform specific programs dispensable in more and
more cases.

Great improvements on JavaScript engine performance en-
able even large scale web applications. Optimizations in mod-
ern JavaScript engines result in near native code execution
performance [2], [3]. An essential constraint, compared to
other programming languages, is JavaScript’s lack of par-
allel programming mechanisms. Today, there are multicore
processors even on mobile devices. In contrast, traditional
JavaScript has a single-threaded execution model [4], which
in fact is an obstacle for leveraging the computing power of

those devices. In order to solve this issue, the actor-based
[5] HTML5 WebWorker API [6] has been integrated into
modern web browsers. WebWorkers provide a mechanism for
running scripts in a thread separated from the main thread
and therefore do not interfere with the web browser’s user
interface rendering and user interaction. Communication is
only possible via message passing since there is no shared
memory. WebWorkers’ data access is limited to a subset of
the JavaScript API. Scripts running within WebWorkers cannot
access the corresponding Document Object Model (DOM).

Collaboration 
Server

Whiteboard Hardware

Tablet PC

Interactive Display

Notebook

Sticky note creation

Figure 1. The Tele-Board software system architecture. Web browser based
clients can be run on multiple devices. Virtual whiteboard data is synchronized
among connected clients by the central collaboration server, relying on XMPP
communication protocol.

During a web browser based re-implementation of our
digital whiteboard collaboration system Tele-Board [7], there
was the challenge to combine browser based networking and
rendering in a single web application. The application provides
a virtual whiteboard surface, where users can draw onto or
create and manipulate sticky notes and images. This content
data is synchronized automatically by a central server (see
Figure 1) among all connected client applications. In order
to prevent interruption of user interaction when whiteboard
content is synchronized simultaneously, we deployed the net-
work component to a separate WebWorker thread [8]. The
current server uses the XML based Extensible Messaging and
Presence Protocol (XMPP) [9] as communication protocol
[10]. Ensuring compatibility with existing infrastructure, our
goal was to integrate XMPP message handling in a JavaScript
WebWorker script. Due to the mentioned WebWorker access
limitations, browser’s native functions for XML processing are



not available within WebWorkers.

In this paper, we propose and evaluate a JavaScript DOM
and XML serialization/parsing implementation. In contrast to
existing solutions, our work relies on APIs available in Web-
Worker scripts. Our standards compliant DOM implementation
paves the way for utilizing external JavaScript libraries, relying
on native web browser APIs, inside WebWorkers. This way,
existing solutions for complex tasks can be transferred to a
separate thread.

Utilizing WebWorkers for handling background I/O is a
common use case [6]. Our approach solves this task for
WebWorker contained processing of XML data combined with
XMPP based communication. It is applicable in existing major
web browsers such as Microsoft Internet Explorer, Google
Chrome and Mozilla Firefox. We developed components for
XML string parsing and serialization, an XML document API
providing a subset of web browser’s native XML document
functions and an XMPP message API. We focus on an
application-neutral XML processing implementation and show
how these components can be used exemplarily with the
Strophe.js1 XMPP library for JavaScript.

II. RELATED WORK

JavaScript’s status as a scripting language has changed in
recent years to a general-purpose programming language [1],
[11]. In this context, research has focussed on parallelism
in JavaScript as respective applications may profit from that
concept in the same way as traditional native applications.
Contributions range from compiler to application level imple-
mentations.

Mehrara et al. [12] apply parallelism for accelerating
JavaScript programs. However, the authors’ approach relates
to a lower execution level, utilizing multithreading within
JavaScript engine optimization techniques such as trace-based
just-in-time compilation. Their execution framework facilitates
an increased sequential program performance, which differs
from our goal of dealing with WebWorker parallelism on
application level.

Higher level approaches originate from distinct aspects of
WebWorker limitations. The missing support for distributed
computation is addressed in [13]. Authors describe a pro-
gramming model called generic workers for unifying local and
remote parallelism based on WebWorkers. It is an abstraction
layer, that encompasses local and server-side components. An
API allows a mostly transparent usage of either local or remote
workers. WebWorker’s access limitations also apply within
this approach. The systems River Trail [14] and TigerQuoll
[15] pursue a similar goal of providing a more flexible paral-
lelization mechanism than that offered by WebWorkers. River
Trail allows data-parallel programming. Parallel tasks have
immutable access to their parent’s state. JavaScript code is
compiled to OpenCL [16] which can then be run in parallel on

1http://strophe.im/strophejs/

the GPU. TigerQuoll is an event based API and JavaScript run-
time providing shared memory. Shared data synchronization is
handled automatically, avoiding a great source of error such
as locks or race conditions. The system follows JavaScript’s
event based, asynchronous programming style. The proposed
API is similar to server-side JavaScript, e.g. Node.js2. Though
these approaches, especially TigerQuoll, offer potential for fu-
ture JavaScript engines, they are proprietary implementations,
requiring special JavaScript engines (not usable in current
browsers) or do not address issues concerning shared memory.

Erbad et al. [17] describe a system for parallelizing
JavaScript applications, which itself is written in JavaScript.
DOHA is an execution layer dealing with concurrency issues,
such as state management and load-balancing. It utilizes
WebWorkers for JavaScript concurrency but still relies on their
share-nothing memory model and API access limitations.

Figure 2. Tele-Board whiteboard client in the web browser. Modifications
on elements such as sticky notes, handwriting or images are synchronized via
a central server.

Rather than implementing a new concurrency model into
existing JavaScript engines, we want to show how a common
use case such as parallel background I/O processing can be
handled within current web browsers despite their WebWorker
native API access limitations. A similar approach to our
solution, but for usage on the server side, is JSDOM3. It
is a JavaScript implementation of the DOM, for use with
Node.js. On the client side, which is our focus, there are
some concrete implementations that closely relate to our use
case of XML processing. The popular jQuery library4 provides
XML processing capabilities. However, jQuery relies on native
functions provided by DOMParser [18], which is a prop-
erty of the global window object and not accessible within
WebWorker scope. Same applies to JavaScript XML libraries
such as JSXML5 and X2JS6. An exception is JSXML XML
Tools7, that uses regular expressions for parsing XML strings.

2http://nodejs.org/
3https://github.com/tmpvar/jsdom
4jQuery v2.1.1 - http://jquery.com/
5http://jsxml.net/
6https://code.google.com/p/x2js/
7http://www.petetracey.com/jsxml/

http://strophe.im/strophejs/
http://nodejs.org/
https://github.com/tmpvar/jsdom
http://jquery.com/
http://jsxml.net/
https://code.google.com/p/x2js/
http://www.petetracey.com/jsxml/


Though, regular expression API is available in WebWorkers,
the library’s XML string parsing result syntax tree object
provides a proprietary interface. It does not implement DOM
core [19] Node and Document interface properties and meth-
ods expected by components relying on DOMParser parsing
results. Using JSXML XML Tools would require considerable
changes in existing applications expecting DOMParser return
object signature. A complex regular expression for splitting an
XML string into a list of its individual markup and character
data strings is provided in [20]. In contrast to JSXML XML
Tools, the XML string is not translated to a syntax tree object,
i.e. the actual parsing step is not provided. However, the
regular expression is very sophisticated regarding the XML
specification’s permissions for allowed characters, comments,
processing instructions etc. It is a useful basis for a regular
expression based XML parser.

To our knowledge, we are the first to address the issue of
limited WebWorker API access at the example of the presented
use case.

III. REQUIREMENTS FOR PARALLEL XMPP MESSAGE
PROCESSING

Network message processing is an integral part of our
Tele-Board software system. Working synchronously on the
same whiteboard content requires continuous data exchange
among all connected browser based clients. A virtual white-
board surface is called Panel in our application. A panel
can hold an arbitrary number of whiteboard elements, such
as sticky notes or handwritings (see Figure 2). Users can
modify those elements from all connected clients equally,
regardless which user created them. Whenever an element is
manipulated on a panel, the respective item is translated to its
XML representation and transferred to the other participants
in the session via XMPP messages. Receiving a modification
message, the client updates its user interface accordingly [7].
Examples for such an XMPP message is shown in Listing 1.
As Tele-Board is a real-time collaboration system, those XML
based XMPP messages occur on every content modification
resulting in lots of messages to be processed, e.g. when a
sticky note is moved or scaled or a panel is scrolled as shown
in Figure 3. Remote participants can see elements moving or
the creation of handwritten notes to better keep track what is
happening on the panel. This way, network message processing
and UI rendering have to run in parallel in order to prevent
interruption of user interaction when whiteboard content is
synchronized simultaneously.

The traditional way of “simulating” parallel JavaScript
tasks in the browser was the definition of callback functions
that were put into browser’s event queue with the help of
the asynchronous setTimeout() and setInterval()
methods [21]. The event queue is processed by browser’s
single-threaded event loop [22]. Every event and its associated
function is processed completely until the next one can be
executed. Neither two functions from the queue can run

<message to="566@conference.localhost" ... > 

<message to="566@conference.localhost" ... > 

<message to="566@conference.localhost" ... > 

<message to="566@conference.localhost" ... > 

<message to="566@conference.localhost" ... > 

Figure 3. Each movement of a sticky note on a panel triggers an appropriate
XML message. This way, a large number of synchronization messages have
to be processed.

simultaneously nor a running function can be pre-empted
giving an other function the chance to run [22], [23]. Hence,
if a function takes too long to complete, the processing of the
event queue is blocked resulting in an unresponsive website.
The only way to avoid this would be to split up callback
function code to multiple calls to setTimeout() method,
transferring a task to application level that is normally better
handled by the thread scheduler on operating system level.

<message to="566@conference.localhost" type="
groupchat" xmlns="jabber:client">

<body>
[[[[WHITEBOARD_SYNC_ALL]]]]

</body>
<properties xmlns="http://www.jivesoftware.com/xmlns/

xmpp/properties">
<property>
<name>panelid</name>
<value type="integer">566</value>

</property>
<property>
<name>whiteboard_data</name>
<value type="string"></value>

</property>
</properties>

</message>
Listing 1. An XMPP message sent to the collaboration server on session
start requesting the state for panel with identifier ”566”.

JavaScript WebWorkers solve these problems as they are
the first and only mechanism providing real multithreading
in client side JavaScript applications. Unfortunately there are
downsides associated with WebWorkers’ share-nothing mem-
ory model that do not appear in the traditional approach: (1)
the above mentioned native JavaScript API access limitations
and (2) data exchange is only possible via message passing.
The latter restriction has no great impact on our use case
since networking and rendering are separated components.
The necessary data interchange consists of plain JavaScript
objects representing whiteboard elements that can be serialized
to JavaScript Object Notation (JSON) [24] easily. The first
limitation does apply to our application. These issues are
summarized in Figure 4. In the following we propose a
solution for our specific use case.



Browser UI 
Thread

WebWorker

Web Application

Server

JSON

XML

No native support

Figure 4. Message communication setup in our application. We focus on
the missing native XML processing support within WebWorker scope.

The differences regarding JavaScript feature availability
between WebWorkers and scripts directly associated with
the web page are shown in detail in Figure 5. Web-
Workers run in an different global context, the so-called
WorkerGlobalScope [6] which differs from the current
web site’s window scope. Within this scope, there is no access
to the window object and most of its properties and methods.
Furthermore, some fundamental interfaces are not available,
i.e. Document, Element and Attr (Attribute) [19], [21],
[25]. As a consequence, native mechanisms for XML process-
ing that rely on these interfaces are not available. In particu-
lar, the DOMParser interface method parseFromString,
which parses an XML string and returns a document ob-
ject, cannot be accessed. Another possibility for acquiring a
parsed XML document object is to use XMLHttpRequest
for Asynchronous JavaScript and XML (AJAX) functionality.
Though the XMLHttpRequest interface is available within
WebWorkers, its responseXML property, usually returning
a document object, always returns null in a WebWorker
scope [25].

FG Meinel Retreat 16.-17.4.2014 | M. Wenzel 1 

JavaScript 
Runtime 

XHR Location Navigator Document etc. 

Element 

Attributes 

window/JavaScript global object 

RegExp Math Date Array etc. 

Web page 

JavaScript 
Runtime 

XHR Location Navigator 

worker global scope/JavaScript global object 

RegExp Math Date Array etc. 

Web Worker 

http://msdn.microsoft.com 

DOMParser 

Figure 5. JavaScript features available to WebWorkers and scripts directly
associated with the web page [21].

In order to create a networking component, that handles
XML based XMPP messaging in our application within Web-
Workers, we need two mechanisms to be implemented using
JavaScript: (1) an XML parser and (2) classes implementing
the missing Document and Element interfaces for enabling
a transparent processing of parsed XML data by structures,
which typically expect native parsing document object re-

turn values. We have implemented these mechanisms for our
network component. A detailed description follows in the next
chapter.

IV. SYSTEM COMPONENTS IMPLEMENTATION

The collaboration server synchronizes all connected browser
based clients via XMPP messages. These XML strings have
to be processed by the client application. For outgoing mes-
sages from the client to the server, whiteboard element data,
which consists of plain JavaScript objects, can be assembled
to XML strings by simple string concatenation operations.
On the other hand, XML strings within incoming messages
have to be decomposed, in order to extract the whiteboard
element data. Since there is no possibility to use native XML
parsing methods inside a WebWorker, accessible functionality
is limited to string operations and regular expression API.
Using string operations, such as concatenation or substitution
for XML string analysis is cumbersome. Regular expressions
ease this process. In our XML parser implementation, we use
the regular expression provided in [20] to split a given XML
string to a list of its markup and text items. Afterwards, a tree
object structure is built upon these items. This step includes
a verification whether the given XML string represents a well
formed XML document, i.e. whether markup and text elements
are nested correctly. Furthermore, our parser is namespace-
aware, adding respective checks during the parsing process,
e.g. correct element and attribute prefix to URI mapping.

The result of the parsing operation is a JavaScript tree object
structure, implementing main parts of the W3C standard [19]
core level 2 interfaces, in order to be seamlessly processed by
existing, browser API relying components within WebWorker
scope. This way, XML string documents are transformed to a
JavaScript Document object. A class diagram of our DOM
implementation is shown in Figure 6. During implementation,
we focussed on elemental interfaces for processing common
XML documents as these appear also in our XMPP net-
working use case. Interfaces for representing special XML
elements, e.g. ProcessingInstruction are not imple-
mented in the current version of our solution. According
to the W3C standard, Node interface is the basis for other
DOM elements, which inherit properties and methods from
that interface. During XML string parsing, appropriate objects,
e.g. Element or Attr, are created which represent XML
elements and attributes in the document tree structure. The
essential functionality for parsing XML strings and serializing
DOM documents are encapsulated in the classes Parser and
Serializer. These provide the same parseFromString
and serializeToString methods as their web browser
native counterparts. The Document class provides DOM
document interface methods for creating, importing and
accessing Node objects. The whole functionality is encap-
sulated in a single JavaScript file. It can be used by means
of an importScripts(’XML.js’) statement at the top
of a WebWorker script. In order to prevent overwriting global
window and document objects when loaded within web



page scope, we encapsulated our implementation in a global
XML object. XML object’s makeGlobal function provides
global window and document objects making DOM API
available in WebWorker scope.

+getAttribute() : string
+getAttributeNS() : string
+getAttributeNode() : Attr
+getAttributeNodeNS() : Attr
+setAttribute()
+setAttributeNS()
+setAttributeNode() : Attr
+setAttributeNodeNS() : Attr
+hasAttribute() : bool
+hasAttributeNS() : bool
+removeAttribute()
+removeAttributeNS()
+removeAttributeNode() : Node
+setIdAttribute()
+setIdAttributeNS()
+setIdAttributeNode()
+getElementsByTagName() : Node
+getElementsByTagNameNS() : Node

+tagName : string

XML::Element

+appendChild() : Node
+removeChild() : Node
+hasAttributes() : bool
+contains() : bool
+hasChildNodes() : bool
+cloneNode() : Node
+insertBefore() : Node

+attributes : Attr
+childNodes : Node
+firstChild : Node
+lastChild : Node
+textContent : Text
+ownerDocument : Document
+nodeType : unsigned short
+nodeName : string
+nodeValue : string
+parentNode : Node
+prefix : string
+namespaceURI : string
+localName : string

XML::Node

+createElement() : Element
+createElementNS() : Element
+importNode() : Element
+createTextNode() : Text
+createComment() : Comment
+createCDATASection() : CDATASection
+createAttribute() : Attr
+createAttributeNS() : Attr
+getElementsByTagName() : Element
+getElementsByTagNameNS() : Element
+getElementById() : Element

+documentElement : Element

XML::Document

+name : string
+value : string
+isId : bool
+ownerElement : Element

XML::Attr

XML::Text

XML::CDATASection

XML::Comment

+substringData() : string
+insertData()
+appendData()
+replaceData()
+deleteData()

+data : string
+length : unsigned long

XML::CharacterData

+parseFromString() : Document

XML::Parser

+serializeToString() : string

XML::Serializer

Figure 6. Class diagram of our solution. The implemented classes provide
DOM interface features within WorkerGlobalScope.

With the help of our implementation, missing interfaces
and functionality are transferred to WebWorker scope. The
extended features providing their web page counterparts, now
available within WorkerGlobalScope, are shown in Figure
7. XML processing libraries requiring native parser APIs can
now be used within WebWorkers, which was not possible
before. In our networking scenario, we use the XMPP library
Strophe.js. On the basis of our implementation, the library can
be utilized within a WebWorker.

V. INTEGRATION OF EXISTING XMPP LIBRARY

Within the Tele-Board software system the Openfire8 XMPP
server component coordinates all communication among the
connected browser based clients. Strophe.js is a JavaScript
library that implements the XMPP communication protocol.
The library supports TCP based WebSocket [26] as well as
HTTP based Bidirectional-streams Over Synchronous HTTP
(BOSH) [27] protocols. Openfire server offers an HTTP bind-
ing that allows clients using the HTTP protocol to connect to
the server over BOSH.

Strophe.js version 1.1.3 uses native browser XML parsing.
Therefore, it cannot be used in a WebWorker scope. With the
help of our mentioned DOM implementation, the library also
works inside a WebWorker. It requires (1) a document object
for creating XML elements and (2) XML parsing functionality.
Since our solution provides both with a standards compliant
API, Strophe.js library can be used without any adaptions.

8http://igniterealtime.org/projects/openfire/

1fixXHR = function () {
2 var parser;
3 // overwrite XMLHttpRequest and its responseXML

property
4 if (XMLHttpRequest) {
5 parser = new XML.Parser();
6 XMLHttpRequest = (function (origXHR) {
7 return function () {
8 var newXHR = new origXHR();
9 Object.defineProperty(newXHR, "responseXML", {
10 enumerable: true,
11 get: function () {
12 if (this.responseText) {
13 return parser.parseFromString(this.

responseText);
14 }
15 return null;
16 }
17 });
18
19 return newXHR;
20 };
21 }(XMLHttpRequest));
22 }
23};

Listing 2. Changed XMLHttpRequest object’s responseXML property.
It returns a parsed XML document on the basis of the object’s
responseText property.

Within the library, two methods make direct use of our so-
lution. The _makeGenerator() method provides a DOM
document object, which is used by the library to create XML
element objects. That object, which is normally not available
within WebWorkers, is provided by our JavaScript DOM
implementation. Since the Document object, as well as the
objects (e.g. Node and Text) created by its methods, provide
native API’s method and property signatures, our DOM XML
implementation and native API components can be used inter-
changeably. The second method to be considered is Strophe’s
getResponse() method, where incoming XMPP messages
are parsed. HTTP based BOSH communication is handled by
Strophe with the help of AJAX. In order to parse incoming
message data, XMLHttpRequest object’s responseXML
property is used. As mentioned above, the value of this prop-
erty always returns null within WorkerGlobalScope.
Hence, XMLHttpRequest object’s behavior has to be
changed while preserving its native functionality. Within our
solution, we overwrite responseXML property with the help
of a get function as shown in Listing 2. The self executing
function stores the original XMLHttpRequest object in a
closure. Afterwards, XMLHttpRequest is assigned a new
function, which, when called as a constructor, creates an
instance of the original XMLHttpRequest stored in closure
variable origXHR and defines a responseXML property to
return a parsed XML document instead of null. To overwrite
the property, an explicit call to our XML.makeGlobal()
method is necessary, which in turn executes the shown internal
fixXHR() function.

The Strophe source file can be deployed without any
adaptions together with our XML DOM implementation
via an importScripts(’strophe.js’, ’XML.js’)
statement in our network component running as a WebWorker.

http://igniterealtime.org/projects/openfire/


FG Meinel Retreat 16.-17.4.2014 | M. Wenzel 3 

JavaScript 
Runtime 

XHR Location Navigator 

worker global scope/JavaScript global object 

RegExp Math Date Array etc. 

Web Worker + Extensions 

http://msdn.microsoft.com 

XML:Document 

XML:Node/XML:Element 

XML:Attr 

XML:Parser 

JavaScript 
Runtime 

XHR Location Navigator Document etc. 

Element 

Attributes 

window/JavaScript global object 

RegExp Math Date Array etc. 

Web page 

DOMParser XMLSerializer 

XML:Serializer 

Figure 7. WorkerGlobalScope extended with our DOM interface
implementations. DOM interface relying components can now be used inside
of WebWorkers.

VI. EVALUATION OF THE IMPLEMENTATION’S
PERFORMANCE

Our described implementation of an XML parsing/seri-
alization and DOM API for replacing non-existent native
functionality within WebWorker scope is written in JavaScript.
Hence, it is not platform specific compiled code and therefore
inevitable slower than native code. In this chapter, we elaborate
our solution’s performance compared to web browser’s native
API functions.

We measure execution times of the main functionality used
in our application, which are XML parsing and serialization
and DOM navigation in dependence on the number of XML
respectively DOM nodes to be processed. For that, we compare
the performance of XML.Parser.parseFromString(),
XML.XMLDocument.serializeToString() and
XML.XMLElement.getElementsByTagName()
methods with their native counterparts window.DOM-
Parser.parseFromString(), window.XML-
Serializer.serializeToString() and
window.document.getElementsByTagName().

In our test setup, we use the following web browsers:

• Chrome 38
• Firefox 32
• Internet Explorer 11

Tests are run on two devices:

• Desktop PC
– CPU: Corei5 750@2.66 GHz
– RAM: 6GB
– Operating System: Windows 7 Enterprise SP1 x64

• Tablet device Asus Nexus 7 (2012)
– CPU: Nvidia Tegra 3@1.3 GHz
– RAM: 1GB
– Operating System: Android 4.4.4

The results of XML parsing and document serialization
are shown in Tables I and II. Depending on the number
of XML and DOM nodes, execution time increases linear
in our solution and in native API functions. This can be
seen in all tested browsers. As we expected, application runs
faster on desktop hardware. The native performance speedup
is about 10. During the tests with Internet Explorer 11, the

0.1

1

10

100

1000

10000

10 50 100 500 1000 2000 5000

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

 

No. of XML nodes 

Native API JS API

0.01

0.1

1

10

100

1000

10 50 100 500 1000 2000 5000

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

 

No. of DOM nodes 

Native API JS API

Figure 8. Performance of XML parsing and serialization in desktop Chrome
browser. Native as well as custom APIs have linear execution time complexity.

measured values strongly varied as indicated by the high
standard deviation. We did not figure out why this happens
especially in this browser. We saw similar values also on other
machines. Nevertheless, we chose to include the measured
values in order to show their linear course, which is similar to
the results of the other browsers. For better visualization, the
XML parsing and serialization results for Windows 7 Chrome
browser are shown in Figure 8. In both cases, execution time
complexity is linear.

The getElementsByTagName() operation perfor-
mance differs between native API and our JavaScript solution
as it is shown in Table III. The native API provides constant
time access to DOM nodes regardless the number of contained
nodes in the document. It is likely that the native DOM utilizes
mechanisms like HashMaps to assign actual DOM nodes to
tag names and therefore provide constant time access. In
our approach we decided to prefer a fast parsing and DOM
creation, since the usage of a caching mechanism slowed down
our parsing performance. The getElementsByTagName
operation must provide a list of element nodes in docu-
ment order, i.e. in order of the occurrence of their start-tag
in the XML [19]. This corresponds to a pre-order depth-
first traversal of the DOM tree structure. The effort for
keeping this list consistent, grows with the document size.
The appendChild() operation for inserting a DOM node,
therefore takes more time in larger documents. Measuring
appendChild() operation in desktop Chrome browser, we
could confirm this behavior. The operation’s time consumption
increases linear with the number of nodes in the document. In
our solution, the appendChild() operation takes constant
time for inserting a new DOM node. In return, the implemen-
tation of our getElementsByTagName() operation has a
linear execution time complexity, since there is no caching
mechanism. In our networking scenario there are many short
XML messages (see Figure 1) to process. Hence, we preferred
a fast XML parsing, since in our use case it is more important
than later constant time DOM node retrieval.

VII. CONCLUSION

Our proposed implementation covers a common use case
of running network communication and XML processing in
parallel to the web browsers main thread. This is not possible
with standard native browser instruments due to WebWorker’s
limitations. Providing standards compliant APIs, we could



TABLE I
XML PARSING EXECUTION TIMES (MILISECONDS) AND STANDARD DEVIATION OF OUR JAVASCRIPT BASED SOLUTION (JS) COMPARED TO NATIVE

BROWSER API (NATIVE).

Windows 7x64 Android 4.4.4.

Firefox 32 Chrome 38 Internet Explorer 11 Chrome 38

#Nodes Native (ms) SD JS (ms) SD Native (ms) SD JS (ms) SD Native (ms) SD JS (ms) SD Native (ms) SD JS (ms) SD

10 0.48 0.04 7.29 2.74 0.33 0.11 2.13 0.19 3.18 7.18 3.37 3.89 2.58 0.62 25.47 27.72

50 1.62 0.07 23.87 1.82 1.13 0.05 9.29 0.27 2.65 0.12 7.79 0.38 9.47 3.66 73.69 20.74

100 3.46 0.14 47.51 4.75 2.24 0.11 18.89 1.11 4.94 0.33 15.81 4.21 16.23 0.39 130.59 5.96

500 17.85 1.11 238.62 13.12 10.84 0.68 110.45 10.67 24.34 1.41 90.1 19.17 76.41 0.86 760.5 45.56

1000 37.82 1.31 457.98 10.1 20.8 0.71 222.61 10.02 47.87 1.55 202.9 37.81 154.5 5.98 1557.12 103.33

2000 85.89 1.82 943.23 27.01 41.9 1.94 465.63 44.62 97.6 2.24 530.62 44.55 311.66 12.3 3126.19 174.82

5000 296.13 3.05 2511.04 49.57 106.11 4.05 1170.76 70.29 246.97 7.49 2393.83 159.27 776.44 23.8 8048.98 428.71

TABLE II
DOCUMENT SERIALIZATION EXECUTION TIMES (MILISECONDS) AND STANDARD DEVIATION OF OUR JAVASCRIPT BASED SOLUTION (JS) COMPARED TO

NATIVE BROWSER API (NATIVE).

Windows 7x64 Android 4.4.4.

Firefox 32 Chrome 38 Internet Explorer 11 Chrome 38

#Nodes Native (ms) SD JS (ms) SD Native (ms) SD JS (ms) SD Native (ms) SD JS (ms) SD Native (ms) SD JS (ms) SD

10 0.16 0.02 4.54 11.39 0.08 0.01 0.19 0.01 0.29 0.15 0.52 0.36 0.49 0.18 1.17 0.16

50 0.59 0.03 2.21 0.11 0.3 0.02 0.71 0.02 1.07 0.35 1.51 1.45 1.8 0.07 5.46 0.14

100 1.14 0.09 4.38 0.25 0.55 0.03 1.63 0.47 1.88 0.83 1.41 0.05 3.5 0.12 12.24 3.61

500 5.77 0.48 26.14 4.76 2.83 0.37 10.98 3.93 9.83 4.01 20.87 35.04 16.05 0.38 62.25 14.04

1000 11.4 0.64 46.82 1.11 5.38 0.15 19.88 2.38 33.73 43.06 20.11 2.05 31.27 0.37 116.61 7.51

2000 22.04 0.61 101.22 17.9 10.65 0.17 39.06 3.33 72.15 65.04 58.2 56.86 64.6 0.6 259.42 15.32

5000 57.33 1.38 249.22 29.34 29.06 1.03 110.86 16.2 149.86 103.44 237.05 131.78 179.21 9.79 722.9 162.42

TABLE III
DOM NODE RETRIEVAL EXECUTION TIMES AND STANDARD DEVIATION OF OUR JAVASCRIPT BASED SOLUTION (JS) COMPARED TO NATIVE BROWSER

API (NATIVE).

Windows 7x64 Android 4.4.4.

Firefox 32 Chrome 38 Internet Explorer 11 Chrome 38

#Nodes Native (ms) SD JS (ms) SD Native (ms) SD JS (ms) SD Native (ms) SD JS (ms) SD Native (ms) SD JS (ms) SD

10 0.01 0.01 0.15 0.3 0 0 0.01 0 0.01 0.02 0.05 0.01 0.02 0.02 0.08 0.02

50 0 0 0.19 0.16 0 0 0.06 0.01 0.01 0.01 0.09 0.01 0.01 0.01 0.41 0.03

100 0 0 0.12 0.01 0 0 0.14 0.01 0.01 0.01 0.25 0.02 0.01 0.01 0.94 0.12

500 0 0 2.44 0.24 0 0 2.53 3.25 0.02 0.04 3.88 0.22 0.02 0 10.67 7.92

1000 0.01 0 12.02 9.5 0.01 0 15.41 25.8 0.05 0.12 28.34 42.38 0.02 0 24.04 9.06

2000 0.01 0 47.87 36.19 0.01 0 10.42 4.93 0.07 0.17 45.41 2.6 0.02 0 60.43 16.4

5000 0.01 0 294.28 49.39 0.01 0 44.65 3.18 0.22 0.63 463.84 63.6 0.02 0 278.29 18.24

use a JavaScript XMPP library (Strophe.js), relying on native
browser APIs, within an OS level thread spawning WebWorker
script. In performance tests, we could show that the execution
time complexity of our JavaScript XML processing imple-
mentation has the same linear course as corresponding native
browser API functions.

Currently, the presented results show the performance of our
implementation in a limited test case. Further tests have yet to

reveal the impact of the proposed approach in a collaborative
environment. Furthermore, the proposed approach is limited
to APIs that can be replaced by implementations using the
standard JavaScript APIs available in WebWorker scope. Re-
strictions remain in cases when access to hardware resources
have to be provided, e.g. persistent data storage supported by
Local Storage API.

Overall, we show that it is possible to distribute application



tasks among separate threads within web browsers, utilizing
today’s common multicore processors more effectively. The
application range of this approach is not limited to our use
case of XML processing, but can be broadened by other
fields, e.g. image processing. This way, our approach helps
to parallelize JavaScript applications by providing APIs to
WebWorkers, aided by application level implementations. The
condition is thus created for additional libraries that rely on
native interfaces to be moved to a dedicated thread.

ACKNOWLEDGMENTS

We thank the HPI-Stanford Design Thinking Research
Program for funding and supporting this project. The authors
are especially grateful to Lutz Gericke for giving his valuable
feedback.

REFERENCES

[1] M. Anttonen, A. Salminen, T. Mikkonen, and A. Taivalsaari,
“Transforming the web into a real application platform: New
technologies, emerging trends and missing pieces,” in Proceedings
of the 2011 ACM Symposium on Applied Computing, ser. SAC
’11. New York, NY, USA: ACM, 2011. [Online]. Available:
http://doi.acm.org/10.1145/1982185.1982357

[2] P. Bright, “Surprise! Mozilla can produce near-native performance on the
Web,” http://arstechnica.com/information-technology/2013/05/native-
level-performance-on-the-web-a-brief-examination-of-asm-js/, May
2013, Ars Technica.

[3] A. Zakai and R. Nyman, “Gap between asm.js and native
performance gets even narrower with float32 optimizations,”
https://hacks.mozilla.org/2013/12/gap-between-asm-js-and-native-
performance-gets-even-narrower-with-float32-optimizations/, December
2013, Mozilla Hacks - the Web developer blog.

[4] D. Flanagan, JavaScript: The Definitive Guide, Sixth Edition. Beijing;
Sebastopol, CA: O’Reilly, 2011.

[5] C. Hewitt, P. Bishop, and R. Steiger, “A Universal Modular
ACTOR Formalism for Artificial Intelligence,” in Proceedings of
the 3rd International Joint Conference on Artificial Intelligence,
ser. IJCAI’73. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1973, pp. 235–245. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1624775.1624804

[6] I. Hickson, “Web Workers,” World Wide Web Consortium (W3C), Can-
didate Recommendation, May 2012, http://www.w3.org/TR/2012/CR-
workers-20120501/.

[7] R. Gumienny, L. Gericke, M. Quasthoff, C. Willems, and C. Meinel,
“Tele-Board: Enabling Efficient Collaboration In Digital Design Spaces,”
in Proceedings of the 15th International Conference on Computer
Supported Cooperative Work in Design (CSCWD 2011). IEEE Press,
June 2011, pp. 47–54.

[8] M. Wenzel, L. Gericke, R. Gumienny, and C. Meinel, “Towards Cross-
Platform Collaboration - Transferring Real-Time Groupware To The
Browser,” in Proceedings of the 17th IEEE International Conference
on Computer Supported Cooperative Work in Design (CSCWD 2013).
IEEE, June 2013, pp. 49–54.

[9] P. Saint-Andre, RFC 6120 - Extensible Messaging and Presence
Protocol (XMPP): Core, Internet Engineering Task Force (IETF),
March 2011. [Online]. Available: http://tools.ietf.org/html/rfc6120

[10] L. Gericke and C. Meinel, “Evaluating an Instant Messaging Protocol
for Digital Whiteboard Applications,” in Proceedings of the 2011 Inter-
national Conference on Internet Computing (ICOMP 2011). CSREA
Press, July 2011, pp. 3–9.

[11] A. Taivalsaari, T. Mikkonen, M. Anttonen, and A. Salminen,
“The Death of Binary Software: End User Software Moves to
the Web,” in Proceedings of the 9th International Conference on
Creating, Connecting and Collaborating through Computing, ser.
C5’2011. IEEE, January 2011, pp. 17–23. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5936687

[12] M. Mehrara and S. Mahlke, “Dynamically Accelerating Client-side
Web Applications Through Decoupled Execution,” in Proceedings
of the 9th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, ser. CGO ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 74–84. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2190025.2190055

[13] A. Welc, R. L. Hudson, T. Shpeisman, and A.-R. Adl-Tabatabai,
“Generic workers: towards unified distributed and parallel JavaScript
programming model,” in Programming Support Innovations for
Emerging Distributed Applications on - PSI EtA ’10. New York,
New York, USA: ACM Press, 2010, pp. 1–5. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1940747.1940748

[14] S. Herhut, R. L. Hudson, T. Shpeisman, and J. Sreeram, “River Trail:
A Path to Parallelism in JavaScript,” in Proceedings of the 2013 ACM
SIGPLAN international conference on Object oriented programming
systems languages & applications - OOPSLA ’13. New York, New
York, USA: ACM Press, 2013, pp. 729–744. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2509136.2509516

[15] D. Bonetta, W. Binder, and C. Pautasso, “Tigerquoll: Parallel event-
based javascript,” SIGPLAN Not., vol. 48, no. 8, pp. 251–260, Feb.
2013. [Online]. Available: http://doi.acm.org/10.1145/2517327.2442541

[16] “OpenCL - The open standard for parallel programming of hetero-
geneous systems,” http://www.khronos.org/opencl/, July 2014, Khronos
Group.

[17] A. Erbad, N. C. Hutchinson, and C. Krasic, “DOHA: Scalable
Real-timeWeb Applications through Adaptive Concurrent Execution,”
in Proceedings of the 21st international conference on World Wide Web
- WWW ’12. New York, New York, USA: ACM Press, 2012. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2187836.2187859

[18] T. Leithead, “DOM Parsing and Serialization - DOMParser,
XMLSerializer, innerHTML, and similar APIs,” World Wide
Web Consortium (W3C), Candidate Recommendation, June 2014,
http://www.w3.org/TR/2014/CR-DOM-Parsing-20140617/.

[19] A. Le Hors, P. Le Hgaret, L. Wood, G. Nicol, J. Robie, M. Champion,
and S. Byrne, “Document Object Model (DOM) Level 2 Core Specifi-
cation,” World Wide Web Consortium (W3C), W3C Recommendation,
November 2000, http://www.w3.org/TR/DOM-Level-2-Core/.

[20] R. D. Cameron, “REX: XML Shallow Parsing with Regular
Expressions,” Markup Languages, vol. 1, no. 3, pp. 61–88, 1999.
[Online]. Available: http://www.cs.sfu.ca/∼cameron/REX.html

[21] D. Rousset, “Introduction to HTML5 Web Workers: The JavaScript
Multi-threading Approach,” http://msdn.microsoft.com/en-us/hh549259,
July 2011, Microsoft Developer Network.

[22] J. Resig and B. Bibeault, Secrets of the JavaScript Ninja. Shelter Island,
NY 11964: Manning Publications Co., 2013.

[23] “Concurrency model and Event Loop,” https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Guide/EventLoop, July 2014, Mozilla Devel-
oper Network.

[24] T. Bray, RFC 7159 - The JavaScript Object Notation (JSON) Data
Interchange Format, Internet Engineering Task Force (IETF), March
2014. [Online]. Available: http://tools.ietf.org/html/rfc7159

[25] “Functions and classes available to
workers,” https://developer.mozilla.org/en-
US/docs/Web/API/Worker/Functions and classes available to workers,
July 2014, Mozilla Developer Network.

[26] I. Fette and A. Melnikov, RFC 6455 - The WebSocket Protocol, Internet
Engineering Task Force (IETF), December 2011. [Online]. Available:
http://tools.ietf.org/html/rfc6455

[27] I. Paterson, D. Smith, P. Saint-Andre, J. Moffitt, L. Stout, and
W. Tilanus, “Bidirectional-streams Over Synchronous HTTP (BOSH),”
XMPP Standards Foundation, Draft Standard 1.11, April 2014,
http://xmpp.org/extensions/xep-0124.html.

http://doi.acm.org/10.1145/1982185.1982357
http://dl.acm.org/citation.cfm?id=1624775.1624804
http://dl.acm.org/citation.cfm?id=1624775.1624804
http://tools.ietf.org/html/rfc6120
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5936687
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5936687
http://dl.acm.org/citation.cfm?id=2190025.2190055
http://portal.acm.org/citation.cfm?doid=1940747.1940748
http://dl.acm.org/citation.cfm?doid=2509136.2509516
http://doi.acm.org/10.1145/2517327.2442541
http://dl.acm.org/citation.cfm?doid=2187836.2187859
http://www.cs.sfu.ca/~cameron/REX.html
http://tools.ietf.org/html/rfc7159
http://tools.ietf.org/html/rfc6455

