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Abstract

Multiple-valued decision diagrams (MDDs) give a way of
approaching problems by using symbolic variables which
are often more naturally associated with the problem state-
ment than the variables obtained by a binary encoding. We
present a more general class of MDDs, containing not only
branching nodes but also functional nodes, labeled by ad-
dition modulop operation,p - prime, and give algorithms
for their manipulation. Such decision diagrams have a po-
tential of being more space-efficient than MDDs. However,
they are not a canonical representation of multiple-valued
functions and thus the equivalence test of two Mod-p-DDs
is more difficult then the test of two MDDs. To overcome
this problem, we design a fast probabilistic equivalence test
for Mod-p-DDs that requires time linear in the number of
nodes.

1 Introduction

Many problems in digital logic design, combinatorial
optimization and formal verification can be expressed as
a sequence of operations on discrete functions. Such ap-
plications would benefit from a data structure, suitable for
both compact representation for the computer’s internal
use and fast manipulation in algorithms. For the case of
Boolean functions, Reduced Ordered Binary Decision Dia-
grams (ROBDDs) [1] have proved to be well qualified for
this purpose. ROBDDs can be extended to discrete case
in different ways, depending on the decomposition applied
to the function in the nodes of the diagram. For example,
[2] presented a generalization of ROBDDs intoMultiple-
Valued Decision Diagrams(MDDs), representing multiple-
valued functionsMn ! M , over a finite set of totally or-
dered valuesM = f0; 1; : : : ;m � 1g. The conventional
ITE-algorithm is extended for this purpose into the CASE-

algorithm, utilizing thegeneralized Boole/Shannon decom-
position[3]:f(x1; : : : ; xn) =0xi � f jxi=0+ 1xi � f jxi=1 + : : :+ m�1xi � f jxi=m�1
wheref jxi=j are the cofactors off defined byf jxi=j =f(x1; : : : ; xi�1; j; xi+1; : : : ; xn) for all i 2 f1; 2; : : : ; ng,j 2M , and"+"; "�"denote the multiple-valued operations

MAX, MIN, correspondently.
ix is a unary operationliteral

of x, defined byix = � m� 1 if x = i;0 otherwise.
(1)

A similar generalization, defined for the discrete functions
of typeP1�P2� : : : Pn !M , wherePi = f0; 1; : : : ; pi�1g are sets of values the variablesxi assume, has been pre-
sented in [4]. A survey of different multiple-valued decision
diagrams is given in [5].

In this paper we introduce a new type of MDDs, extend-
ing the concept of Parity-OBDDs [6] to the multiple-valued
case and representing functions of typef : Mn ! M ,
with M = f0; 1; : : : ; p � 1g, p - prime. We call them
Mod-pDecision Diagrams(Mod-p-DDs). Such decision di-
agrams have a potential of being more space-efficient than
MDDs. The size of a minimum size Mod-p-DD for a given
multiple-valued functionf is never greater than a minimum
size MDD forf .

However, Mod-p-DDs do not provide a canonical repre-
sentation of multiple-valued functions. For non-canonical
representations, testing the equivalence of two graphs is
much more difficult than for canonical ones (i.e. NP-
complete). The speed of equivalence testing crucially af-
fects the efficiency of synthesis of decision diagrams. Syn-
thesis becomes an exponential operation if there is no cache
available to look up, rather than re-compute, the result of
operations that already occurred at a previous step of the



computation. Looking up this cache involves checking the
equivalence of the graphs of the current and the cached op-
eration.

For the Boolean case, the fastest known determinis-
tic equivalence test for non-canonical Parity-OBDDs, pre-
sented in [7], requires time cubic in the number of nodes.
Hence, it doesn’t seem to be suitable for practical pur-
poses. In [8], a fast probabilistic equivalence test for Parity-
OBDDs has been proposed that requires time at most linear
in the number of nodes. In this paper we extend this algo-
rithm to the multiple-valued case.

The paper is structured as follows. In Section 2, Mod-p-
DDs are introduced. Section 3 describes the algorithm for
deciding the equivalence of two Mod-p-DDs probabilisti-
cally. Section 4 presents the reduction and synthesis algo-
rithms for Mod-p-DDs. Section 5 concludes the paper with
an outlook of work to be done.

2 Definition of Mod-p-DDs

In this section we define Mod-p decision diagrams and
show some of their properties.

Definition 1 A Mod-p Decision DiagramP is a rooted, di-
rected acyclic graphP = (V;E) with node setV contain-
ing two types of nodes: terminal and non-terminal. Ater-
minal nodev has as attribute a valuevalue(v) 2 M . A
non-terminalnode has as attributes either a variable indexindex(v) 2 f1; 2; : : : ; ng (branching node), or thep-ary
operation addition modulop, p - prime, (�p-node, func-
tional node) andp children
hildi(v) 2 V; i 2M .

Definition 2 A Mod-p Decision Diagram isordered if,
for any non-terminal branching nodev and for all i 2M , if 
hildi(v) is also non-terminal, then it holds thatindex(v) < index(
hildi(v)).
Definition 3 A Mod-p Decision Diagram isreducedif it
contains no vertexv with 
hildi(v) = 
hildj(v), for anyi; j 2M; i 6= j, nor does it contain distinct verticesv andv0
such that the subgraphs rooted byv andv0 are isomorphic.

The function associated with the Mod-p-DDs is deter-
mined in the following way:

Definition 4 A Mod-p Decision DiagramP having root
nodev represents a functionfv defined recursively as fol-
lows

1. If v is a terminal node carrying the valueÆi 2M , thenfv = Æi.
2. If v is a non-terminal branching node withindex(v)=i, thenfv is the functionfv(x1; : : : ; xn) =0xi �f
hild0(v)+ 1xi �f
hild1(v)+: : :+p�1xi �f
hildp�1(v);

where" + " and" � " denote the multiple-valued op-

erations MAX and MIN, and
ix, i 2 M , is theliteral

defined by (1).

3. If v is a�p-node, thenfv is the functionfv(x1; : : : ; xn) =f
hild0(v) �p f
hild1(v) �p : : :�p f
hildp�1(v);
where"�p " denotes the operation addition modulop.

It is easy to see that MDDs are just a special case of Mod-p-DDs, namely Mod-p-DDs without �p-nodes. There-
fore, the size of a minimum sized Mod-p-DD for a given
multiple-valued functionf is not greater than the size of a
minimum size MDD forf .

But, for a fixed variable order, a function can be rep-
resented by several different Mod-p-DDs, with different�p-node placement. Thus, the data structure becomes
non-canonical. As an illustration, consider a 3-variable 3-
valued function defined by the table in Figure 1. There,
two different Mod-p-DDs for this function, for the order< x1; x2; x3 >, are shown. Functional nodes are repre-
sented"� ". The three children of non-terminal branching
nodes are indicated by the edges labeled by0; 1; 2. The
Mod-p-DD on the right does not contain any functional
nodes, i.e. it is equivalent to the MDD of the function.
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Figure 1. Two different Mod- p-DDs of the same
given function.

3 Probabilistic Equivalence Test for Mod-p-
DDs

Since Mod-p-DDs do not provide a canonical represen-
tation of multiple-valued functions, testing the equivalence
of two graphs becomes an essential problem. In this sec-
tion we show that the equivalence of Mod-p-DDs can be



decided probabilistically in linear time, by extending the
probabilistic equivalence test for Parity-OBDDs [8] to the
multiple-valued case. Our extension employs the concept
of multiple-valued signatures introduced in [9] for identify-
ing the equivalence of two multiple-valued functions prob-
abilistically.

In the Boolean case, Parity-OBDDs are a special case
of 
-OBDDs, allowing so calledfunctional nodeslabeled
by an element of a basis
 of binary Boolean functions. It
was shown that while the equivalence test for all
-OBDDs,
 2 ff_g; f^g; f_;^gg is co-NP-complete, for
 2 f�g
it is within co-R [8]. The probabilistic equivalence test for
Parity-OBDDs proposed in [8] needs only linearly many
arithmetic operations in the number of nodes in the graph.
Equivalence of two Parity-OBDDs is determined by an al-
gebraic transformation of the functions represented by the
graphs to polynomials over a finite field of integers modulop. A detailed description of the transformation is given in
[10].

We extend the probabilistic equivalence test for Parity-
OBDDs [8] to the multiple-valued case. The equivalence
of two Mod-p-DDs is determined by an algebraic transfor-
mation of the Mod-p-DDs in terms of polynomials over a
finite field of integers modulop. This algebraic transforma-
tion was introduced in [9].

LetGF (pk) be a Galois Field withpk elements of char-
acteristicp, p - prime,k > 0.

Definition 5 Let P be a Mod-p-DD representing a
multiple-valued functionf : Mn ! M . With each nodev 2 P we associate thepolynomialpv : (GF ((pk))n !GF (pk) defined in the following way:

1. pv = Æi, if v is a terminal node carrying the valueÆi 2M ,

2. pv = p�1Xj=00� Y8r2M�fjg r�xir�j 1A � p
hildj(v), if v is a non-

terminal branching node withindex(v) = i,
3. pv = p�1Xj=0 p
hildj(v), if v is a�p-node,

where the operations"+"; "� " and" � " are carried out in
the fieldGF (pk).

The polynomial ofP , p(P ), is the polynomial associ-
ated with the root node ofP . It was shown in [9], that
this polynomial is unique for a given function. Therefore,p(P ) remains unchanged for different Mod-p-DDs of the
same function. LetjP j denote the number of nodes of
a given Mod-p-OBDD P . It is easy to see from Defini-
tion 5, thatp(P ) can be computed withp � jP j many ad-
ditions, at most2p2 � jP j many subtractions and at most

2p2 � jP j multiplications. UsingGF (pk) of characteristicp, p - prime, simplifies the polynomial for addition mod-
ulo p operation topf1�f2 = pf1 + pf2 . If we consider
the elements ofGF (pk) asp-ary vectors of lengthk, then
field addition can be performed in constant time by bit-
wise addition modulop. Multiplication and subtraction of
two p-ary vectors of lengthk can be carried out in timedlog pek. Therefore,p(P ) can be computed in at mostp � jP j + 2p2 � jP j � dlog pek + 2p2 � jP j � dlog pek time.
Sincep andk are constants, the complexity of computingp(P ) is bounded byO(jP j). Note, that if the computation
of p(P ) is performed on a Mod-p-DD bottom-up, then the
complexity of computing the polynomial for a given node
takes only constant time, because the polynomials for all its
successor nodes have already been computed.

Now we present an algorithm for probabilistic equiva-
lence test of two Mod-p-DDs:

Input: Mod-p-DDsP1 andP2 representingp-valued functions of
typeMn !M .

Output: If P1 andP2 are equivalent, then the algorithm always
answers ”yes”. Otherwise the result is ”no” with probability
greater than1=p.

Assumption: GF (pk) is a finite field of integers modulop, p -
prime, with more thanpn elements.

procedureequivalence(P1; P2);
begin

choose independently and uniformlyx1; x2; : : : ; xn
from GF (pk);

computep(P1) in GF (pk);
computep(P2) in GF (pk);
if (p(P1) = p(P2))
then

return(”yes”); =� P1 andP2 are equivalent�=
else

return(”no”); =� P1 andP2 are not equivalent�=
end.

Figure 2. Algorithm for probabilistic equiva-
lence of two Mod- p-DDs.

Theorem 1 The Algorithm in Figure 2 probabilistically de-
cides equivalence of two Mod-p-DDs in linear time.

Proof: To check whether two Mod-p-DDs, P1 and P2,
are equivalent, the algorithm computes polynomials forP1 and P2 and evaluates them on an independently and
uniformly random assignment of values fromGF (pk) for
the variablesx1; x2; : : : ; xn. The resulting numbers are
called integer hash codes(or signatures) of f . The hash
codes for two equivalent functions are always the same [9].
Therefore, ifP1 andP2 represent the same function, then



p(P1)(x1; x2; : : : ; xn) = p(P2)(x1; x2; : : : ; xn) for any as-
signment of variables fromGF (pk).

Consider the case whenP1 andP2 are not equivalent.
According to Schwartz-Zippel Theorem [12, p. 165], if the
assignments of values of variablesx1; : : : ; xn are taken in-
dependently and uniformly at random from a fieldF of sizejF j, thenp(P1) and p(P2) can be distinguished with the
probability at least njF j . So, if the size of the fieldGF is
greater thanpn, then the above algorithm distinguishesP1
fromP2 with the probability at least1=p.

Since the complexity of computingp(P ) is bounded byO(jP j), the worst-case complexity of the above algorithm
isO(max(jP1j; jP2j)). 2

Next, we give an estimation of the probability of colli-
sion, i.e. the probability that during the synthesis on Mod-p-DDs the signatures for two nodes representing different
multiple-valued functions are computed to be equal.

Lemma 1 By usings different signatures per node, the
probability of collision is at most� < jP j2 � ns2 � jGF (pk)js
Proof: According to Schwartz-Zippel Theorem [12, p.
165], if the assignments of values of variablesx1; : : : ; xn
are taken independently and uniformly at random from a
field F of size jF j, then the polynomials associated with
two different nodes can be distinguished with the probabil-
ity at least njF j . Blum [11] has shown that withs paral-

lel signatures, the risk of pairwise collision is at mostnsjF js .

AmongjP j considered nodes, there arejP j22 pairs of nodes,
and therefore the chance of having at least one possible col-

lision among them is less thanjP j2�ns2�jGF (pk)js . 2
The probability of error depends on the number of elements
in GF (pk), therefore it can be reduced by enlarging the size
of the field. It can also be reduced by using several different
signatures per node with different random assignment fromGF (pk).
4 Operations on Mod-p-DDs

In this section we describe operations involved in reduc-
tion and synthesis of Mod-p-DDs.

4.1 Reduction rules for Mod-p-DDs

Mod-p-DDs can be reduced in the same manner as
MDDs [2], [13]. In a Mod-p-DD, a branching node is re-
dundant if allp of its out-coming edges point to the same

node. Then, the node can be replaced by reconnecting all
its incoming edges to its child (simple reductionor deletion
rule). Identification of isomorphic subgraphs forms the sec-
ond reduction rule (algebraic reductionor merging rule).
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Figure 3. Deletion rule and merging rule for�-nodes.

For a�p-node, the merging rule is applied in a similar
way as for branching nodes (see Figure 3). The deletion
rule differs in that a�p-node withp of its out-going edges
pointing to the same node is substituted by the 0-terminal
node (see Figure 3). This rule follows from the property of
modulop addition - the modulop sum ofp identical values
is zero.

4.2 Synthesis of Mod-p-DDs

For describing the Mod-p-DDs synthesis algorithm we
assume that the reader is familiar with standard BDD syn-
thesis algorithms [14]. We implement all multiple-valued
operations, except addition modulop, by means of the
CASE-� operator, which is an extension of ITE-� oper-
ator, used in case of Boolean Parity-OBDDs [15]. For ad-
dition modulop we directly create a�p-node in the graph.
To extend the ITE-� operator, the creation of the cofactorsf jxi=j ; j 2M has to be adapted for Mod-p-DDs.

The input parameters of the CASE-� operator are, in
general, multiple-valued functions given in the form of
Mod-p-DDs. The task is to generate the resultant functionh =CASE-�(f; g0; g1; : : : ; gp�1) recursively.

If f is a variablex, then the function returned by CASE-� corresponds to a branching node with a top variablex
and with children functionsg0; g1; : : : ; gp�1:

CASE-� (x; g0; g1; : : : ; gp�1) = (x; g0; g1; : : : ; gp�1)
Moreover, it holds that

CASE-� (f; 0; 1; : : : ; p� 1) = f
If f is an �p-operation, then the function returned by
CASE-� corresponds to a functional node with childreng0; g1; : : : ; gp�1:

CASE-� (�; g0; g1; : : : ; gp�1) = (�; g0; g1; : : : ; gp�1)



The above three equations form the terminal cases for our
recursive algorithm.

If f is a complex function, then we first recursively com-
pute the CASE of its cofactors, and then compose them us-
ing Boole/Shannon decomposition. To speed up the perfor-
mance of the CASE-� operation, we are using acomputed
table, which is organized as a hash based cache, to store and
recall the results. Before a new node is created, we always
refer to aunique tableorganized as a hash table, to prevent
the creation of already allocated nodes. In both,computed
table andunique table, every reference is made by appli-
cation of the probabilistic equivalence test to identify the
underlying Mod-p-DDs. A nodev with index(v) = i is
represented by anp+1-tuple(xi; v0; v1; : : : ; vp�1), with vj
being the node connected to
hildj(v). To avoid redundant
entries in thecomputed tablewe transform thep + 1-tuple
to a standard form by reordering it.

procedure CASE-�(f; g0; g1; : : : ; gp�1)
begin

transformto standardtuple(f; g0; g1; : : : ; gp�1);
if terminal case(f; g0; g1; : : : ; gp�1; res)
then

return res;
reorder tuple acc to variable order(f; g0; g1; : : : ; gp�1);
if in computedtable(f; g0; g1; : : : ; gp�1; res)
then

return res;
if f=�p
then

res=newnode(lab=�p,child0 = g0; : : : ;childp�1 = gp�1);
else

begin
for j = 0 to (p� 1) dohjx=j=CASE-�(f jx=j ; g0jx=j ; : : : ; gp�1jx=j);
if signature(hjx=0)=signature(hjx=2)=. . .

. . .=signature(hjx=p�1)
then

res =hjx=0;
else

res=newnode(lab=x,child0 = hx=0; : : :: : :,childp�1 = hx=p�1);
insert in computedtable(f; g0; g1; : : : ; gp�1; res);

end;
find or add in uniquetable(res);
return res;

end.

Figure 4. CASE- � algorithm for Mod- p-DD
synthesis.

The pseudo-code of CASE-� is shown in Figure 4. First,
the algorithm checks the terminal cases. If the result-
ing function has already been computed and stored in the
unique table, then it is returned. Further, iff = �p, then

a new functional node with childreng0; g1; : : : ; gp�1 is cre-
ated. Iff is a branching node, then the cofactorshjx=j of
the functionh are computed by calling CASE-� recursively
with the cofactorsf jx=j ; g0jx=j ; g1jx=j ; : : : ; gp�1jx=j as
its arguments. These are composed using Boole/Shannon
decomposition as(x; h0jx=0; h1jx=1; : : : ; hp�1jx=p�1).

The adaption of the algorithm involves the creation of
Mod-p-DDs for cofactorsf jxi=j ; j 2 M of a multiple-
valued functionf associated with a node. For a branching
nodev with index(v) = i, the cofactors are derived by sim-
ply returning
hildj(v) of v. For an�p-nodev, creating the
cofactors with respect to a variablexi necessitates the allo-
cation of a new�p-node connected to the cofactors of thep children ofv (see Figure 5), if this node does not already
exist in the Mod-p-OBDD.
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Figure 5. Cofactor creation f jx1=0 for Mod- p-
DDs.

5 Conclusion

In this paper, a new data structure for representation and
manipulation of multiple-valued logic functions - Mod-p-
DDs - is introduced and algorithms for its manipulation are
given. Mod-p-DDs have a potential of being more space-
efficient than MDDs. However, they are not canonical and
therefore the equivalence test of two Mod-p-DDs is more
difficult then the test of two MDDs. To overcome this prob-
lem, we design a fast probabilistic equivalence test for Mod-p-DDs that requires time linear in the number of nodes.

An implementation of the Mod-p-DDs package is sub-
ject of currently ongoing research. We are working on two
possibilities: (1) direct implementation of Mod-p-DD struc-
ture, and (2) implementing a Mod-p-DD by performing an
arbitrary encoding the multiple-valued functionMn ! M
represented by Mod-p-DD into the Boolean function of typeBdlog pe�n ! Bdlog pe. By manipulating the same ordering
between the associated groups of Boolean variables, we can
perform the same operations on the Parity-OBDD as on the
Mod-p-DD. This allows us to implement Mod-p-DDs using
the already developed Parity-OBDD package [15].
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