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Abstract

The semantic-tree approach is the most robust method for deciding QBFs. This method is very
similar to the DPLL algorithm for evaluating SAT instances. In this paper we show how memorization
can be embedded to this method to get better results. In other words we present an algorithm for
evaluating QBFs, which is based on an adopted version of semantic-tree method and ZDDs (which are
variants of BDDs). The capability of ZDDs in storing sets of subsets efficiently, enabled us to store the
formula very compact and led us to implement the search algorithm in such a way that we could store
and reuse the results of all already solved subformulas. We call this idea: ’strengthening semantic-tree
method by memorization’. This idea along some other techniques, enabled our algorithm to solve a
bunch of the standard QBF benchmark problems faster than the best existing QBF solvers.

Keywords: DPLL, Zero-Suppressed Binary Decision Diagram (ZDD), Quantified Boolean For-
mulae (QBF), Satisfiability, QSAT, Memorization, Dynamic Programming.

1 Introduction

Many computational problems such as constraint satisfaction problems, many problems in graph theory
and forms of planning can be formulated easily in propositional logic and be solved as instances of SAT
problem. Theoretical analysis has showed that some forms of reasoning such as nonmonotonic reasoning,
reasoning about knowledge, and STRIPS-like planning, have computational complexity higher than the
complexity of SAT problems. This forms can be formulated by quantified Boolean formulas and be
solved as instances of QSAT problems (e.g., [9]).

Quantified Boolean formula satisfiability (QSAT) is a generalization of the SAT problem. QBFs
give the possibility to represent many classes of formulas more concise than conventional propositional
formulas. This additional conciseness lifts the complexity of evaluating QBFs to PSPACE-complete.
However SAT and QSAT have a close connection, and this is why some recent QBF solvers[16, 12, 11,
10] are extensions of the Davis-Logemann-Loveland procedure [8].

ZDDs are variants of BDDs. While BDDs are better suited for representing Boolean functions, ZDDs
are better for representing sets of subsets. A CNF formula can be viewed as a set of subsets. In our QSAT
solver, we represent the body of the QBF formula in a ZDD, then we employ an adopted version of the
“semantic tree method in evaluating a QBF formula” algorithm to search its satisfiability. It benefits
from an adopted unit resolution which is very fast thanks to the data structure holding the formula. In
addition it stores all already solved subformulas along their solutions and reuses them to avoid resolving
same subproblems. We refer to this idea as ’strengthening semantic-tree method by memorization’.
Sometimes the splitting operation generates two subproblems which are equal. With ZDDs it is very
easy to compare and discover the equality, therefore our algorithm can easily prevent to solve both cases
when it is not necessary. In fact since ZDDs are canonical, such a test can be performed with only one
pointer comparison.

There are some benchmark problems which are known to be hard for DPLL (sematic-tree) algorithms.
Our algorithm which we reference it by ’ZQSAT’, is also a sematic-tree based algorithm, but it manages
to solve those instances very fast. We believe, this superiority has obtained partly due to embedding
memorization (tabulation/dynamic programming) to the search procedure and partly, thanks to ZDDs,
due to fast simplification and unit/mono-resolution operations. We evaluated our algorithm over differ-
ent known benchmarks presented in QBFLIB (Quantified Boolean Formula satisfiability LIBrary) [15].
We run FZQSAT along best existing QBF-Solvers such as QuBE [11], Decide [16], Semprop [12] and
QSolve [10]



2 Preliminaries

2.1 Quantified Boolean Formulas

Quantified Boolean formula is an extension of propositional formula (also known as Boolean formula). A
Boolean formula like(x∨(¬y → z)) is a formula built up from Boolean variables and Boolean operators
like conjunction, disjunction, negation and so on. In quantified Boolean formulas, quantifiers may also
occur in the formula, like in∃x(x ∧ ∀y(y ∨ ¬z)). The∃ symbol is called existential quantifier and the
∀ symbol is called universal quantifier. A number of normal forms are known for each of the above
families. Among them, theprenex normal formand theconjunctive normal form(CNF) are important in
QSAT and SAT problems.

A QBFΦ is in prenex normal form, if it is in the form:Φ = Q1x1 . . . Qnxnφ, whereQi ∈ {∀,∃} and
φ is a propositional formula over variablesx1, . . . , xn. The expressionQ1x1 . . . Qnxn is called the prefix
andφ the matrix ofΦ. Sometimes we simply writeΦ = Q.φ. A literal x or¬x is called a universal literal,
if the variablex is bounded by a universal quantifier. Universal quantified variables are also denoted as
∀−variables. A clause containing only∀−literals is called universal clause or∀−disjunction. Similar
definitions exist for existential literals. QCNF denotes the class of QBF formulas with matrix in CNF.
We remind that a propositional formula is in CNF form if it is a conjuction of disjunctions.( also known
as product of sums - POS).

2.2 ZDDs, BDDs and the CUDD Package

Several years ago, Binary Decision Diagrams (BDDs) [4, 18, 13, 5] and their variants [3] entered the
scene of computer science. Since that time, they have been used successfully in industrial CAD tools.
In many applications, specially in problems involving sparce sets of subsets, the size of the BDD grows
very fast, and causes inefficient processing. This problem can be solved by a variant of BDD, called ZDD
(Zero suppressed Binary Decision Diagrams) [14, 1]. These diagrams are similar to BDDs with one of the
underlying principles modified. While BDDs are better for representation of Boolean functions, ZDDs
are better for representation of covers (set of subsets). We denote an internal node byP (x, Γ1, Γ2) where
x is the label of the node andΓ1, Γ2 are SubZDDs stand for its ’Then-child’ and ’Else-child’. As an
example, in Figure 1, the left diagram displays the ZDD representation forS = {{a, b}, {a, c}, {c}},
and the right diagram displaysF = ab + ac + c, which is the characteristic function ofS. We denote
an internal node byP (x, Γ1, Γ2) wherex is the label of the node andΓ1, Γ2 are SubZDDs stand for its
’Then-child’ and ’Else-child’. The size of a ZDDΓ is the number of its internal nodes denoted by|Γ|.

Figure 1: BDD versus ZDD.

CUDD-Colorado University Decision Diagram [17], is a package written in C for manipulating deci-
sion diagrams. The package provides a large set of operations on BDDs, ADDs, and ZDDs, and a large
assortment of variable reordering methods.

2.3 The Semantic Tree Approach

This method is very similar to the well known DPLL algorithm. It iteratively splits the problem of
deciding a formula of the formQxΦ into two subproblemsΦ[x = 1] andΦ[x = 0], then it decides
according to the following rules:

• ∃xΦ is valid iff Φ[x = 1] or Φ[x = 0] is valid.

• ∀xΦ is valid iff Φ[x = 1] andΦ[x = 0] is valid.
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In fact, this method searches the solution in a tree of variable assignments. Figure 2 displays the
semantic tree for:Φ = ∃y1∀x∃y2∃y3(C1∧C2∧C3∧C4), where:C1 = (¬y1∨x∨¬y2) , C2 = (y2∨¬y3)
, C3 = (y2 ∨ y3) andC4 = (y1 ∨ ¬x ∨ ¬y2).

We can follow the tree and realize thatΦ is invalid. Another interesting point can easily be seen in
the tree. It is the duplication problem in semantic tree method. In other words, the same subproblem can
appear two or more times. For a big QBF this situation can happen frequently. The superiority of our
algorithm is recognizing these duplications and avoiding to examine them repeatedly.

3 Representation and Algorithm

3.1 Representation of a CNF Formula in a ZDD

A ZDD can be used to represent a set of subsets. Since each propositional CNF formulaφ = c1 ·c1 ·. . .·cn

can be represented as a set of clauses[φ] = {[c1], . . . , [cn]} where[ci] = {l1, . . . , lm} andlj is a literal
in ci, we can represent a CNF formula in a ZDD. In ZDDs, each path from the root to the 1-terminal
corresponds to one clause of the set. In a path, if we pass throughxi = 1 (toward its ’Then-child’), then
xi exists in the clause, but if we pass throughxi = 0 (toward its ’Else-child’) or we don’t pass through
xi, thenxi does not exist in the clause.

In representing boolean functions, which often include positive and negative literals, we need to
assign two successive ZDD indices to each variable, one index for positive and the next for its comple-
mented form [7]. This idea has several benefits, among them we mention the possibility of detecting and
removing the subsumed clauses [2, 7]. Figure 3 shows how this idea works for a small CNF formula.

Figure 2: A semantic tree proof.

Figure 3: ZDD encoding of a CNF for-
mula.

In evaluating QBFs, the freedom of variable selection is strongly restricted (in general, must respect
the prefix order). The semantic-tree method processes the variables according to their oder in prefix of
the formula. We also consider the same order for the literals in the ZDD representing the formula.

3.2 Benefits of using ZDDs

In Figure 3, we can also see another interesting characteristic of the ZDDs, that is, their possibility of
sharing nodes and subgraphs. In fact each node in a ZDD stands for a (sub)function. In many situations,
this property lets ZDDs to hold new (sub)functions with producing a few or no additional nodes. In
our search procedure, after unit-mono-resolution and after the splitting step, new (sub)functions emerge.
We noticed that many of this (sub)functions are the same, therefore we let ZQSAT to retain all already
produced (sub)functions along their solutions, to prevent resolving same (sub)functions. This idea also
helped ZQSAT to generate fewer function calls. In fact, after inserting this possibility, ZQSAT managed
to solve the instances known to be hard for DPLL-based methods very fast (see Table 1).

Considering ZDDs as the data structure holding the formula, affects the search algorithm and its
complexity considerably. In other words, operations like: detecting the unit clauses, detecting mono vari-
ables, performing the unit/mono resolution and detecting the SAT/UNSAT conditions depend strongly
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on the data structure holding the formula. Here we give some rules concerning above operations. These
rules can be concluded from the basic properties known for QBFs, some lemmas presented in [6] and the
properties of representing CNF clauses in a ZDD. Performing these operations with other data structures
is often slower.

Suppose we have read the clauses and represented them in a ZDD,Γ then the following rules are
applicable when we are examining the satisfiability of the formula:

Rule 1 (Finding all unit clauses): A unit clause is a clause with exactly one literal. If the literal
is universally quantified, then the clause and subsequently the QBF is unsatisfiable. If the literal is
existentially quantified, then the truth value of the literal can be determined uniquely. In our ZDD
Γ = P (y, Γ1,Γ2), wherey is the topmost literal in the variable order, then a literalx can is a unit clause
in Γ if:

x = y andΓ1 contains the empty set. In other words, the literal appearing in the root is a unit clause
if moving to its Then-child followed by moving always toward the Else-child leads us to the 0-
Terminal.

x ∈ var(Γ2) andx is a unit clause inΓ2.(Note: if x ∈ var(Γ1) then it can not be a unit clause.)

Finding all unit clauses can be accomplished at most with(2 · n − 1)/2 comparisons, wheren is the
number of variables in the set of clauses represented byΓ1.

Rule 2 (Trivial UNSAT): If x is a unit-clause and it is universally quantified, then the QBF formula is
unsatisfiable. This operation needs only one comparison instruction and can be done during the step of
finding the unit clauses.

Rule 3 (Trivial UNSAT): If x is an existentially quantified unit-clause and its complementary literal is
also a unit clause, then the QBF formula is unsatisfiable. This operation can be performed during the
identification of unit clauses.

Rule 4 (Variable assignment/ Splitting operation): LetΓ = (x, Γ1, Γ2) be our ZDD. Consideringx to
be ’True’, simplifiesΓ to Union(Then(Γ2),Else(Γ2)). Similarly consideringx to be ’False’, simplifies
Γ to Union(Γ1,Else(Γ2)). This operation is quadratic in the size of the ZDD.

Rule 5 (Propagation of a unit clause): Ifx is a unit clause and located in the root node thenΓ can be
simplified toΓ2. If Γ2 has complement ofx at its root then the result will be:Union(Then(Γ2),Else(Γ2)).
On the other hand, ifx is a unit clause but not located in the root node then, first we must remove all the
clauses includingx as a literal fromΓ by Γ′ = Subset0 (Γ, x), then remove the complementary literal of
x, denoted byx from Γ′ by Γ′′ = Union(Subset1 (Γ′, x),Subset0 (Γ′, x)).

Rule 6 (Mono Variables): A literall is monoton if its complementary literal does not appear in the
QBF. If l is existentially quantified we can replace it by ’True’, which simplifiesΓ to Γ2, but if l is
universally quantified we must replace it by ’False’, which simplifiesΓ to Union(Γ1, Γ2).

Rule 7 (Detecting SAT/UNSAT): If the ZDD reduces to the 1-terminal then the QBF is SAT. Similarly,
if the ZDD reduces to 0-terminal then the QBF is UNSAT. This operation needs only one comparison
instruction.

3.3 Algorithm

ZQSAT consists of two main parts, the first part gets the QBF and represents it as a ZDD. The second part
which we called it ZQDPLL, is an adopted version of the well known DPLL algorithm. ZQDPLL can
also be seen as an adopted version of ’the semantic tree approach in evaluating QBFs’ which is the most
robust method in deciding QBFs. Q-DIMACS is a suggested format for QBF input files. Almost all QBF
benchmarks are presented in this format. Naturally we also considered this format in our implementation.
First the algorithm reads and stores the prefix of the QBF in an array. This prefix holds the quantifiers of
the QBF variables. Next it reads the QBF clauses and makes a ZDD represeting the formula. The variable
order of this ZDD is the same as the variable order in the prefix. We assign two successive indices to
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each variable, the first for its positive and the second for its complimented form. This is exactly the same
as what we saw in Figure 3. This form of assignment is very important and useful when we process
the ZDD to find the solution. Then the recursive function ZQDPLL, examines the satisfiability of the
QBF (represented in a ZDD). This function, like its original version, is based on unit resolution and
splitting over variables, but ZQDPLL is different in some aspects. For example, the unit and monoliteral
resolution is sometimes different because of the universally quantified variables allowed in the formula.
We implemented the algorithm in C using CUDD package. Figure 4 displays the pseudocode of our
algorithm. What are the special points of this algorithm along ZDDs? First, as we mentioned in Section
2, it is possible to store the original and next ZDDs, generated as a result of simplification or splitting,
with a few overhead. This allowed ZQSAT to retain any already solved subformula along its solution
in a table and avoid to resolve them in future occurrences. This idea could decrease the process time
exponentially. Second, the splitting step could generate equal subformulas. In ZDDs two functions are
equal if and only if both point to the same ZDD node. Therefore equality check could be done by only
one comparison instruction. With other data structures, this could not be so easy. Perhaps most of them
always solve both subformulas. Third, the unit and monoliteral resolution step is very cheap with ZDDs.
It needs to consider the 0- or 1-subgraphs of the root, or union of sub-ZDDs (as mentioned in above
rules).

4 Experimental results

We evaluated our algorithm over different known benchmarks presented in QBFLIB (Quantified Boolean
Formula satisfiability LIBrary) [15]. We run FZQSAT along best existing QBF-Solvers such as QuBE [11],
Decide [16], Semprop [12] and QSolve [10]. Our platform was a Linux system on a 3000-Mhz, 2G-
RAM desktop computer. We also considered 1G-RAM limit which never used totally by any of above
programs, and a 900 second timeout which was enough for must solvers to solve many of benchmark
problems. The results we obtained can be summarized as follows:

1. FZQSAT is very efficient and in many cases better than state-of-the-art QSAT solvers. It solves
many instances which are known to be hard for DPLL (semantic-tree) method, in a small fraction
of a second. This was only possible when we strengthen ZQDPLL with memorization.

2. ZQSAT like almost all other QSAT solvers is inefficient in solving random QBFs. According to
the well known counting theorem, the representation and evaluation of random instances could not
be done efficiently.

Here we give detailed information on above findings.
Structured formulas: Most structured Formulas come form real word problems represented as a

QBF. We used the benchmarks of Letz [15] and Rintanen [16]. The benchmarks of Letz include in-
stances known to be hard for DPLL (tree-based) QBF solvers. Table 1 shows how FZQSAT is faster
than other recent QBF solvers in evaluating these benchmark problems. FZQSAT is also a DPLL based
algorithm, but it manages to solve those instances because of data structure holding the formula and
the memorization techinqe embedded to the search algorithm. Next, we considered the benchmarks of
Rintanen, where some problems from AI planning and other structured formulas are included. The ex-
perimental results for these benchmarks are presented in Table 2. This table show that ZQSAT works
well on most instances. We are comparable and in many times cases better than other solvers. It is needed
to mention that ’Decide’ is specially designed to work efficiently for planning instances.

Random formulas: For random formulas we used the benchmarks of Massimo Narizzano [15].
ZQSAT is inefficient in big unstructured instances. ZDDs are very good in representing sets of subsets,
but they are less useful, if the information is unstructured. In other words, ZDDs explore and use the
relation betwean the set of subsets, therefore if there is no relation betwean the subsets (clauses) then it
could not play its role. Fortunately in real word problems there is always some connection betwean the
problem components. In our effort to investigate why ZQSAT is slow on the given instances, we found
that in these cases the already solved subformulas never or too few times used again, also the mono and
unit resolution functions could not reduce the size of the (sub)formula noticeably.
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main() / * ZQSAT* /
{

Get QBF and represent its clauses in a ZDD;
Result=ZQDPLL(ZDD); Output the Result;

}

/ * ---------------------------------------- * /

Boolean ZQDPLL( FormulaZDD F )
{

if ( F is Primitive or AlreadySolved ) return Solution;
S=Simplify F by UnitMonoReduction;
if ( S is Primitive or AlreadySolved )

{Add F along the Solution to SolvedTable;return Solution;}
Split F according to RootNodeLiteral to get F0 and F1;
Solution=ZQDPLL( F0 );
Add F along the Solution to SolvedTable;
if( F0==F1 ) return Solution;
if( SplittedLiteral is Universal and Solution==FALSE ) return FALSE;
if( SplittedLiteral is Exsitentil and Solution==TRUE ) return TRUE;
Solution=ZQDPLL( F1 );
Add F along the Solution to SolvedTable;
return Solution;

}

/ * ---------------------------------------- * /

UnitMonoReduction( FormulaZDD F )
{

do{
do{

1.Find all Unit-Literals in F, but if any Universally Quantified
Literal found to be Unit return UNSAT, also if a literal is Unit
and its complement is also Unit return UNSAT;

2.Reduce F for all found unit Literals;
} while(more iterations needed);

while( Index of rootnode is mono Lteral)
if (the Index is universally quantified)

F=Else(F);
else

F=Union(Else(F),Then(F));

}while(more reductions is possible);
}

/ * ---------------------------------------- * /

UnitResolution(FormulaZDD F, ListOfNodes L)
{

for all Indices in L
if (Index is in root of F)

F=Else(F);
else

{
F=RemoveClauses(F,Index);
F=RemoveLiteral(F,NotIndex);

}
}

Figure 4: The ZQSAT algorithm.
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problem QuBE
tree-exa- ZQSAT BJ Rel Decide Semprop QSolve

10-10 < .01 < .01 < .01 < .01 < .01 < .01
10-15 < .01 < .01 < .01 0.06 0.01 < .01
10-20 < .01 < .01 0.01 1.89 0.27 < .01
10-25 < .01 0.01 0.07 63.95 8.51 < .01
10-30 < .01 0.11 0.75 (?) 273.28 0.03
2-10 < .01 < .01 < .01 < .01 < .01 < .01
2-15 < .01 < .01 < .01 0.01 < .01 < .01
2-20 < .01 0.01 < .01 0.1 0.01 < .01
2-25 < .01 0.12 < .01 1.16 0.1 0.04
2-30 < .01 1.29 < .01 12.9 1.06 0.53
2-35 < .01 14.42 < .01 144.16 11.98 5.85
2-40 < .01 158.41 < .01 (?) 130.19 65.73
2-45 < .01 (?) < .01 (?) (?) 729.7
2-50 < .01 (?) < .01 (?) (?) (?)
(?): Not solved in 900 seconds

Table 1: Comparison of the runtimes of different QBF
solvers over a number of QBFs. The instances are hard for
tree-based QBF solvers (see Letz [15]).

QuBE
problem ZQSAT BJ Rel Decide Semprop QSolve

B*3i.4.4 (?) (?) 0.02 0.02 (?) (?)
B*3i.5.3 (?) (?) 516.67 10.51 (?) (?)
B*3i.5.4 (?) (?) (?) 1.84 (?) (?)
B*3ii.4.3 (?) 0.81 0.01 0.01 2.25 (?)
B*3ii.5.2 (?) 23.25 0.41 0.02 65.76 (?)
B*3ii.5.3 (?) (?) 33.12 0.36 160.93 (?)
B*3iii.4 (?) 0.25 0.01 < .01 12 (?)
B*3iii.5 (?) (?) 0.48 0.1 0.53 (?)
B*4i.6.4 (?) (?) 264.76 1.28 (?) (?)
B*4ii.6.3 (?) (?) 27.64 1.1 (?) (?)
B*4ii.7.2 (?) (?) (?) 2.28 (?) (?)
B*4iii.6 (?) (?) 13.62 0.59 (?) (?)
B*4iii.7 (?) (?) (?) 67.28 (?) (?)
C*12v.13 2.66 0.12 1.41 0.19 0.06 1.96
C*13v.14 3.76 0.26 3.44 0.38 0.13 6.52
C*4v.15 5.27 0.55 9.17 0.77 0.27 21.98
C*15v.16 7.08 1.22 24.21 1.62 0.54 62.53
C*16v.17 9.43 3.09 60.68 3.31 1.14 205.72
C*17v.18 12.49 5.86 148.58 6.9 2.43 633.44
C*18v.19 16.2 12.87 352.21 14.4 5.12 (?)
C*19v.20 21.01 31.93 840.26 30.29 10.59 (?)
C*20v.21 26.69 91.23 (?) 61.93 22.24 (?)
C*21v.22 33.17 195.12 (?) 129.24 46.61 (?)
C*22v.23 40.8 494.26 (?) 272.24 98.53 (?)
C*23v.24 50.24 (?) (?) 571.12 202.3 (?)
i*02 < .01 < .01 < .01 < .01 < .01 < .01
i*04 < .01 < .01 < .01 < .01 < .01 < .01
i*06 < .01 < .01 < .01 0.01 < .01 < .01
i*08 < .01 < .01 < .01 0.14 0.02 0.01
i*10 < .01 0.01 < .01 1.12 0.14 0.07
i*12 < .01 0.04 < .01 8.69 1.04 0.5
i*14 < .01 0.18 < .01 65.27 7.74 3.69
i*16 < .01 0.74 < .01 482.97 56.88 27.04
i*18 < .01 3.12 < .01 (?) 423.41 200.82
i*20 < .01 13.06 < .01 (?) (?) (?)
l*A0 0.06 < .01 < .01 < .01 ? 0.01
l*A1 (?) 50.28 5.79 0.67 3.68 (?)
l*B0 0.2 < .01 < .01 0.01 ? 0.01
l*B1 (?) 407.65 14.62 3.25 13.91 (?)
T*10.1.iv.20 2.65 (?) (?) 0.58 (?) (?)
T*16.1.iv.32 26.08 (?) (?) 7.38 (?) (?)
T*2.1.iv.3 < .01 < .01 < .01 < .01 < .01 < .01
T*2.1.iv.4 < .01 < .01 < .01 < .01 < .01 < .01
T*6.1.iv.11 (?) 2.1 205.75 4.78 2.25 3.66
T*6.1.iv.12 0.24 0.79 29.44 0.04 0.4 2.65
T*7.1.iv.13 (?) 37.45 (?) 63.87 39.7 134.02
T*7.1.iv.14 0.5 12.25 521.59 0.09 5.22 64.17
(?): Not solved in 900 seconds

Table 2: Comparison of different QBF solvers on a number
of QBFs from the set of benchmarks of Rintanen [16, 15].
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5 Conclusion

The experimental results show that our algorithm is comparable and in many cases much faster than the
best existing QSAT solvers. We realized that this superiority is partly form the idea of strengthening the
search method with memorization and partly from fast unit-mono-resolution, thanks to ZDDs used to
represent the formula.
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