Security in Tele-Lab – protecting an online virtual lab for security training

Christian Willems, Wesam Dawoud, Thomas Klingbeil, and Christoph Meinel
Hasso Plattner Institute
Potsdam, Germany
{christian.willems, wesam.dawoud, meinel}@hpi.uni-potsdam.de,
thomas.klingbeil@student.hpi.uni-potsdam.de

Abstract

The rapid burst of Internet usage and the corresponding growth of security risks and online attacks for the everyday user or the enterprise employee have emerged the terms Awareness Creation and Information Security Culture. Nevertheless, security education widely has remained an academic issue. Teaching system or network security on the basis of practical experience inherits a great challenge for the teaching environment, which is traditionally solved using a computer laboratory at a university campus. The Tele-Lab project offers a system for hands-on IT security training within a remote virtual lab environment – over the web, accessible by everyone.

Such a system is inherently exposed to various security threats, since it has to provide full access to virtual machines running attack tools for potentially malicious users. The paper at hand introduces usage, management and operation of Tele-Lab as well as its architecture. Furthermore, this work focuses on possible attacks, the challenges when securing such a system, and shows how to set up an infrastructure that ensures the main security objectives identified as authentication, authorisation and availability.

1. Introduction

The increasing propagation of complex IT systems and rapid growth of the Internet more and more attracts notice to the importance of IT security issues. Technical security solutions cannot completely overcome the lacking awareness of computer users, caused by laziness, inattentiveness, and missing education. In the context of awareness creation, IT security training has become a topic of strong interest – as well as for companies as for individuals.

Traditional techniques of teaching (i.e. lectures or literature) have turned out to be not suitable for security training, because the trainee cannot apply the principles from the academic approach to a realistic environment within the class.

In security training, gaining practical experience through exercises is indispensable for consolidating the knowledge. Precisely the allocation of an environment for these practical exercises poses a challenge for research and development. That is, because students need privileged access rights (root/administrator-account) on the training system to perform most of the imaginable security exercises. With these privileges, students can easily destroy a training system or even use it for unintended, illegal attacks (see section 2.2).

The classical approach is to provide a dedicated computer lab for security training. Such labs are exposed to a number of drawbacks: they are immobile, expensive to purchase and maintain and must be isolated from all other networks on the site. Of course, students are not allowed to have Internet access on the lab computers. Teleteaching approaches for security education mostly consist of multimedia courseware or demonstration software, which do not offer practical exercises. In simulation systems users have a kind of hands-on experience, but a simulator doesn’t behave like a realistic environment and the simulation of complex systems is very difficult. Those approaches to security education will be presented more precisely in section 3.

2. Tele-Lab: a remote virtual security lab

The Tele-Lab project was first proposed as a standalone system [6], later enhanced to a live DVD system introducing virtual machines for the hands-on training [5], then emerged to the Tele-Lab server [4, 13]. The Tele-Lab server provides a novel e-learning system for practical security training in the WWW and inherits all positive characteristics from offline security labs. It basically consists of a web-based tutoring system and a training environment built of virtual machines. The tutoring system offers three kinds of content: information chapters, introductions to security- and hacker tools and finally practical exercises. Students perform those
exercises on virtual machines (VM) on the server, which they operate via remote desktop access. A virtual machine is a software system that provides a runtime environment for operating systems. Such software-emulated computer systems allow easy deployment and recovery in case of failure. Tele-Lab uses this feature to revert the virtual machines to the original state after each usage.

With the release of the current Tele-Lab 2.0, the system introduces the dynamic assignment of several virtual machines to a single user at the same time. Those machines are connected within a virtual network (known as team²) providing the possibility to perform complex network attacks such as man-in-the-middle or interaction with a virtual (scripted) victim (see example in section 2.1).

A short overview of the Tele-Lab architecture is given in section 4.

2.1. A learning unit in Tele-Lab

A Tele-Lab learning unit on malware (described in more detail in [12]) starts off with academic knowledge such as definition, classification, and history of malware (worms, viruses, and trojan horses). Also methods to avoid becoming a victim and relevant software solutions against malware (scanners, firewalls) are introduced. Afterwards, various existing malware kits and ways for distribution are presented in order to prepare the hands-on exercise. Following an offensive teaching approach³, the user is asked to take the attackers perspective – and hence is able to lively experience possible threats to his personal security objectives. So the closing exercise for this learning unit on malware is to plant a trojan horse on a scripted victim called Alice – in particular it is the outdated Back Orifice⁴ trojan horse. In order to do that, the student has to prepare a carrier for the BO server component and send it to Alice via e-mail. The script on the victim VM will answer the mail and indicate that the trojan horse server has been installed (mail attachment has been opened). The student can now use the BO client to take control of the victim’s system and spy out some private information. The knowledge of that information is the user’s proof to the Tele-Lab tutoring environment, that the exercise has been solved successfully.

Such an exercise implies the need for the Tele-Lab user to be provided with a team of three interconnected virtual machines: one for attacking (all necessary tools installed), a mail server for e-mail exchange with the victim and a vulnerable victim system (unpatched Windows 2000 in this case). Remote Desktop Access is only possible to the attackers VM.

Learning units are also available on e. g. authentication, wireless networks, secure e-mail, encryption and signatures, etc. The system can easily be enhanced with new content.

2.2. Security objectives for Tele-Lab

As already stated, the necessity to give Tele-Lab users superuser privileges on the virtual machines in the training environment requires a concept to prevent unintended usage. Moreover, the fact that users are deliberately equipped with hacker tools (port scanners, malware, tools for performing man-in-the-middle or DoS attacks) even reinforces the need for strong isolation of the virtual lab environment – while the Tele-Lab server still must provide remote desktop access. The system must ensure

- protection of the Tele-Lab host system against attacks from malicious VM users,
- protection of the campus network and arbitrary Internet hosts against attacks from VM users,
- separation of the VM teams (no user may attack another user’s VM),
- and of course the protection of the Tele-Lab host against attacks from the Internet.

An additional threat for the overall system are the above mentioned victim machines. The victim VMs must be explicitly vulnerable in most cases to allow the respective attack or attack sequence that shall be exercised. Those vulnerable systems must be inaccessible from the outside (Internet) world in any case. If this can’t be guaranteed, the machines could easily be hijacked and hence used for either attacking other Internet users or e.g. for providing a site for illegal downloads – because of the vulnerability.

These objectives do not only apply for Tele-Lab but for all remote laboratories offering privileged access for the students.

Section 4 explains security relevant components of the Tele-Lab infrastructure. In-depth considerations on certain possible attacks and solutions implemented in Tele-Lab 2.0 are stated in section 5.

3. Related Work

Related work in security education mainly includes web-based training and multimedia courseware, demonstration software, simulation systems, and dedicated computer laboratories for security experiments. Recently, efforts in compiling practical computer science courses using virtual machine technology share basic technologies and concepts with Tele-Lab. Also similar efforts on virtual and/or remote

²see also in [1]
³see [14] for different teaching approaches
⁴BackOrifice (BO) is a Remote Access Trojan Horse run by the hacker group “Cult of the Dead Cow”, see http://www.cultdeadcow.com/tools/bo.php
The author describes the utilization of UML-based virtual requirements to hard- or software configuration. In [3], virtual machines have been established for courses with supporting practical security training – for the cost of the above mentioned disadvantages.

3.3. Virtual machine based computer courses

Instead of dedicated laboratories, at some universities virtual machines have been established for courses with special requirements to hard- or software configuration. In [3], the author describes the utilization of UML-based virtual machines for a course in operating systems maintenance, [2] proposes the use of VMware Workstation for courses on network administration, security and database maintenance. The virtual machines are mainly used for providing an environment, where students are allowed to arbitrarily configure an operating system and different applications. The virtual machines must be compiled individually for every course and distributed to the students in some way. Both authors confirm the opinion of the Tele-Lab research group, referring to the virtual machine technology as a cost efficient replacement for physical dedicated labs.

The VMs in the above described scenarios are issued to the students for either using them on their own computer (no security issues at all) or within a campus computer lab, where user have to authenticate against the physical system they are using.

3.4. Other (virtual) remote labs

In parallel to Tele-Lab, other approaches have been chosen to implement remote labs for computer science courses. Some of them are introduced here, highlighting potential security issues to fit the scope of this paper.

The authors of [7] built a remote lab to educate information security. The lab supports individual and collaborative experiments, and allows the students to setup own interactive experiments. The problem with this lab is its dependency on the physical machines; this makes it difficult to maintain or to reset lab setup after usage or failure. In addition to that, the lab does not isolate the machines from each other. This is not a security issue but a usage restriction: the lab can only be used exclusively by one user or group per timeslot anyway. The lab architecture connects one of the two network interfaces of the host machine to the SPAN port of the switch; this allows the clients to sniff all the traffic including the traffic between the instructor machine and the file server and VPN concentrator.

In [1] the author describes multipurpose remote lab for networking, security, and system administration classes. To isolate the students work from each other, the virtual machines are divided into teams (similar to Tele-Lab); only the virtual machines in the same team can communicate with each other. The problem with this system is its complete dependence on commercial applications e.g. MS Remote Desktop Access and VMware GSX – resulting in high cost and the dependency on a Windows system on client side. In Tele-Lab, the dependency on open source packages makes the system expansion cheaper, and allows a wide range of users to use our system (client side must only have a web browser supporting Java).

Another multipurpose remote lab is proposed in [9]. The solution schedules VPN access to a limited number of term-
minal servers. After each session termination, the system restored to the initial state by reverting back to the pre-defined images. The architecture described may allow users to attack the lab servers and the other terminal servers (besides the own) since they are on the same network segment. Also the Console Server (system for managing network equipment like switches or routing appliances) can be used to affect the other users’ concurrent experiments.

4. Architecture of the Tele-Lab server

The current infrastructure of the Tele-Lab 2.0 server is a refactored enhancement to the architecture presented in [13]. Basically it consists of the following components (illustrated in Figure 1).

Portal and Tutoring Environment The Web-based training system of Tele-Lab is a custom Grails application run in a Glassfish application server. This web application handles user authentication, allows navigation through learning units, delivers their content and keeps track of the students’ progress. It also provides controls to request a team of virtual machines for performing an exercise.

Virtual Machine Pool The server is charged with a set of different virtual machines needed for the exercise scenarios after bootup – the pool. The maximum total number of VMs in the pool is limited by the resources of the physical server. In practice, a few (3-5) machines of every kind are started up. Those machines are dynamically connected to teams and bound to a user on request. The current hypervisor solution used to provide the virtual machines is KVM/Qemu.

Database The Tele-Lab database holds all user information, the WBT content and learning unit structure and, the information on virtual machine and team templates. It also persists current virtual machine states.

Remote Desktop Access Proxy The Tele-Lab server must handle concurrent remote desktop connections for users performing exercises. Those connections are proxied using a free implementation of the NX server. The NX server forwards incoming connections to the respective assigned virtual machine accessing the Qemu framebuffer device via VNC (Virtual Network Computing).

Administration Interface The Tele-Lab server comes with a sophisticated web-based administration interface that is also implemented as Grails application (not depicted in Figure 1). On the one hand, this interface is made for content management in the web-based training environment and for user management. Additionally, the admin interface can be used for manual virtual machine control, monitoring and for registering new virtual machine or team templates.

Tele-Lab Control Services Bringing all the above components together is the purpose of the central Tele-Lab control services. To realise an abstraction layer for encapsulation of the virtual machine monitor (or hypervisor) and the remote desktop proxy, the system implements those as lightweight XML-RPC webservice.

The **vmService** is for controlling virtual machines – start, stop or recover them, grouping teams or assigning machines or teams to a user. The **nxService** is used to initialize, start, control and end remote desktop connections to assigned machines. The above Grails applications (portal, tutoring environment, and web admin) control the whole system using the webservice.

On the client side, the user only needs a web browser supporting SSL/TLS and the appropriate Java-Plugin for the browser. For the remote desktop connections, the NX Web-Companion is included in the tutoring web application. The WebCompanion is a variant of the NX Client wrapped in a Java applet.

NX Clients connect to the NX Server using SSH-based authentication: client and server mutually certify each other’s identity using public-key authentication. Subsequently, the NX Client connects to a specific session with extra user credentials (session management described in detail later on). For mandatory encryption of the remote sessions, NX offers transport layer security (TLS).

5. Securing the Tele-Lab server

As explained, the nature of the Tele-Lab architecture poses the server-side infrastructure to various security threats. This section will discuss general security objectives and possible attack classes and also introduce specific security solutions to avoid certain attacks.

5.1. Objectives and Attacks

The main security objectives for the Tele-Lab are

- **authentication** (users have to prove their identity against the system)
- **authorisation** (only qualified users may access the virtual lab)
Figure 1. Overview: architecture of the Tele-Lab server

- **availability** (the systems services should be reliably accessible)

Privacy is a minor issue for Tele-Lab. Of course, also in the field of e-learning it is necessary to protect users’ personal data from unauthorized access and prevent eavesdropping on user sessions. But since the above mentioned objectives are more important, this is considered to be beyond the main scope of this paper.

Since Tele-Lab offers its services on the Internet, there is no possibility to reduce the attack surface below a certain point: at least the services for http/https (used for the web application) and the ssh port (22, used for the NX remote desktop) must listen for connections from the outside world.

Possible attacks include but are not limited to:

- denial of service (DoS),
- session hijacking (as well as for sessions in the web app as for the remote desktop session),
- and privilege elevation in order to gain unauthorized (administrative) access using e.g. replay attacks.

Also lots of the common web attacks are prevented or at least made more difficult just by the choice of the framework. *SQL injections* are hardly possible since the Hibernate-powered ORM (object relational mapping) automatically escapes data before persisting to the database. *XSS attacks* (cross-site scripting) mainly rely on unescaped user input from form fields or URLs. Due to typification of user input and the usage of carefully implemented tag libraries, this cannot happen within Tele-Lab.

To prevent eavesdropping on the authentication procedure in order to gain a valid username/password combination, submission of that kind of data (any personal user data) is strictly encrypted using TLS/SSL. Optionally, the Tele-Lab server can be switched to a mode where it only delivers https requests. In that case, also privacy for the current user session can be ensured.

Of course there may be possible future security issues arising from the *famous framework problem*: the more people use a web framework (or an application server), the more people attack such applications, the more general exploits will be published. The system administrators must be aware of this problem and watch out for security relevant updates at any time.

5.2. Attack Vector: Web Application

As already mentioned, the WBT application of Tele-Lab has been implemented using Grails\(^\text{10}\) – a modern web framework based on Groovy and the Java world. Grails incorporates numerous well-known Java (web) frameworks such as Hibernate for persistence, Spring and in particular Spring Security. In general, Java-based (web) applications are considered to be quite secure, since Java is largely immune against common buffer overruns or malformed URL exploits.

Also any kind of method compromising web applications in general could be suitable for attacking portal and tutoring interface of Tele-Lab.

5.3. Attack Vector: Remote Desktop Access

The remote desktop access is a crucial factor for the overall security of the Tele-Lab system, since the most dangerous attacks on the server (or other Internet hosts) may be performed using one of the virtual training machines. To gain unauthorized access to a virtual machine, an attacker has to either bypass the authentication mechanism or to hijack a remote desktop session. As already described in section 4, the design of the NX technology makes attacks on the authentication mechanism very difficult for an attacker without valid user credentials. The NX server is as secure as the underlying implementation of the SSH server used for authentication. Hijacking a running session can be hin-
dered by forcing the NX server to encrypt all connections using SSL. An exception to that would be an attack based on an intercepted NX session file (covered in the following paragraph). In conclusion, the Tele-Lab administrator also must scan for security bulletins concerning ssh- and openssl-packages.

This situation is a different for an legitimate user – being in possession of valid user credentials. To understand this, the Tele-Lab authentication mechanism must be explained in more detail: basically, a user logs on to the web application (portal/tutor) submitting his username and password or OpenID through an SSL tunnel.

When it comes to performing an exercise and requesting a team of VMs, the authentication against the NX server is managed user-transparent by the system: a so called NX session file is created containing all necessary credentials an the internal IP address of the respective VM. The file is transferred to the user’s NX client browser plugin in a human-readable XML format. So the user has full access to the NX session file and might use the contained information for a *replay attack* in order to log in to a VM that has not been assigned to that student.

To prevent that kind of replay attack, the *nxService* (see section 1) carefully restricts the temporal and spatial validity of NX session credentials:

1. NX user accounts are disabled by default. On a valid VM request, the respective account is activated.
2. The NX session files are created dynamically for every connection. The password transmitted in that session file is randomly generated and only valid for the current session.
3. The filename of the session file is obfuscated using a hashed (MD5) concatenation of username and a timestamp.
4. This obfuscated session filename is transferred to the user (SSL encrypted). The NX browser plugin will download the session file – also through the SSL tunnel.
5. When a session terminates (timeout, user quits, connection is interrupted), the session file is deleted and the NX user account is disabled again.

This procedure ensures, that an authenticated user can’t login unauthorized by replaying the NX session data. The encrypted transmission of all session data and the masquerade of session file names circumvents outside attackers from stealing valid credentials.

5.4. Attack Vector: Admin Web Interface and Control Services

Since the administration panel for Tele-Lab is a grails web application, it would be posed to all above mentioned web-based attacks – and inherits all benefits and flaws from the framework. While the tutoring interface must be accessible from the Internet and implicitly poses an attack surface, the administration interface does not. There is no need for configuring Tele-Lab over (the public part of) the Internet. The basic setup only allows connections to the administration panel itself only from the local network, requests to the Tele-Lab control services (XML-RPC webservice) are actually only permitted from localhost.

Access to the administrative interface or the webservice would enable an attacker to perform not only massive DoS attacks on the whole system (deleting and shutting down VMs, etc.), but would also allow creation or modification of user accounts and the illegal acquisition of the restricted user data.

To boost the access control for the admin interface even more, the Tele-Lab server even can be equipped with a second network interface for the local control/configuration network making prevention of spoofing-based attacks easier. Finally, access to the admin panel from outside the local network can be realized using a sufficient VPN solution, where the second NIC would only accept incoming connections from the respective VPN.

5.5. Attack Vector: Virtual Machine Pool

The main security issue for the virtual machine pool is – as already mentioned – the separation of the VMs. Though they share the same hardware, those common resources (memory, CPU registers, networking) must be strictly detached. For the separation of memory and CPU, Tele-Lab must rely on the underlying virtualization technology. Since the hypervisor component in Tele-Lab can be easily replaced (by implementing an interface), the most secure hypervisor solution can be used at any time.

Another dimension of separation is implemented in the virtual networking. Within a team of VMs network communication must be enabled, while communication with other teams or the physical host cannot be allowed. Tele-Lab connects the members of a VM team using multicast groups – each team is provided with an individual multicast address that represents the particular virtual network. Routing, firewall, and virtual network devices on the physical host are dynamically configured to separate the network segments from each other. Each multicast group can only communicate internally.

One known vulnerability of Tele-Lab was the possibility of repeated requesting of VM teams, which may end up

11web-based single-sign-on technology, see http://openid.net
with Denial of Service (DoS). If a user requests a team and immediately quits the session, he could have requested another team while the VMs just released were still recovering. Doing this repeatedly, the user could bring all VMs to the recovering-state causing a very high load on the physical server and hindering other users from performing any exercises.

The solution is to keep a record of the owner of each running team and a timestamp for the moment of granting this VM request. This record is stored until the user abandons the VM (for any reason) and a safe recovery period is exceeded. Appropriate values for this period are between 2 and 5 minutes. It is selected to be not very long for users with bad connection and repeated disconnects, and to be enough for the VM to recover.

Each time the user asks for new virtual machines team, the Tele-Lab Control Service checks for this record. If found, the request will be denied and the user is asked to try again later. The disadvantage of this technique is that it prevents the user from running more than one experiment in parallel which is not (yet) a common case in our system.

6. Conclusions and Future Work

The paper at hand describes a comprehensive infrastructure for a remote virtual computing lab and its secure operation at the example of “Tele-Lab Internet Security”. This work focusses on the complex of problems arising from the need to provide privileged rights in an untrusted lab environment (the Internet) – which is inavoidable when teaching security with an open remote system.

Continuous work on Tele-Lab includes the creation of new content and exercise scenarios on the one hand and evaluation of the learners experience on the other. For evaluation, the system is being used for tutoring students who attend the lecture on “Internet Security – Weaknesses and Targets” at Hasso Plattner Institute.

Technical enhancements planned for the next iterations of the Tele-Lab server are tools for remote collaborative learning and tutoring (e.g. Remote Desktop Assistance), clustering on application level to provide larger virtual machine pools, and the implementation of sophisticated virtual networking devices to allow more complex networking scenarios (several network segments in a team, i.e. DMZ).

Another future activity is the functional detachment of the virtual lab management system from the tutoring environment. Tele-Lab will be one use case for that virtual lab management, others are upcoming (i.e. the “SOA Security Lab”12).

References

\begin{thebibliography}{14}
\bibitem{3} R. Davoli. Teaching operating systems administration with user mode linux. In \textit{ITiCSE '04: Proceedings of the 9th annual SIGCSE conference on Innovation and technology in computer science education}, pages 112–116, New York, NY, USA, 2004. ACM.
\end{thebibliography}

12see \url{http://www.hpi.uni-potsdam.de/meinel/web_lab/soasecurity1/soa_security_lab.html}