
An Integration Architecture to Enable Service
Providers for Self-sovereign Identity

Andreas Grüner, Alexander Mühle, Christoph Meinel
Hasso Plattner Institute (HPI)

University of Potsdam, 14482, Potsdam, Germany
Email: {andreas.gruener, alexander.muehle, christoph.meinel}@hpi.uni-potsdam.de

Abstract—The self-sovereign identity management model
emerged with the rise of blockchain technology. This paradigm
focuses on user-centricity and strives to place the user in full
control of the digital identity. Numerous implementations em-
brace the self-sovereign identity concept, leading to a fragmented
landscape of solutions. At the same time, traditional identity
and access management protocols are largely disregarded and
facilities to issue verifiable claims as attributes are not available.
Therefore, service providers barely adopt these solutions. We
propose a component-based architecture for integrating self-
sovereign identity solutions into web applications to foster their
adoption by service providers. Furthermore, we outline a sample
implementation as a gateway that enables uPort and Jolocom for
authentication, via the OpenID Connect protocol, as well as the
retrieval of email address attestations for these solutions.

Index Terms—Blockchain, distributed ledger technology, dig-
ital identity, self-sovereign identity, trust, identity management

I. INTRODUCTION AND MOTIVATION

Blockchain technology advanced from an elementary digital
cash system, that did not require an issuing bank, to a general
decentralized execution platform [1]. Therefore, blockchain
technology enables the implementation of a decentralized
identity provider [2] that is not owned by a single entity. Thus,
the identity provider does not represent a trusted third party
and enables digital identities that are under full control of the
associated subject. Christopher Allen [3] proposed principles
of self-sovereignty highlighting user control, access, consent
and protection. These characteristics are favourable for a user
and constitute the basis for the self-sovereign identity (SSI)
management model.

In the course of this development, a multitude of competing
SSI solutions that pursue different concepts and utilize various
blockchains have emerged [4]. Sovrin [5] applies several dis-
tributed ledgers that are dedicated to identity management. The
core of uPort [2] is a set of smart contracts implemented on
Ethereum [6]. Jolocom [7] also relies on smart contracts that
are stored on Ethereum, but follows different implementation
guidelines. Blockstack [8] implements a meta approach that is
independent of a specific blockchain. For a service provider,
the integration into all SSI solutions is neither efficient nor
achievable in terms of cost and maintenance effort.

Standardization initiatives drive the definition of protocols.
World Wide Web Consortium (W3C) working groups specify

standards for Decentralized Identifiers (DID) [9] and verifiable
claims. A DID uniquely references a digital identity and
enables the derivation of the corresponding SSI platform.
Besides that, the DID Auth [10] standard is being developed to
provide a common authentication protocol for SSI solutions.
However, these norms are partially not yet mature enough and
have limited adoption. Apart from that, established identity and
access management protocols, for instance, OpenID Connect
(OIDC) [11] are widely unconsidered.

The SSI ecosystem significantly depends on the attributes
of a digital identity. Trust in attributes cannot be derived
from the reputation of the identity provider as a trusted third
party anymore. Therefore, attributes are modelled as verifiable
claims that are comprised of claims and attestations. A service
provider requires attested claims, for instance, name, address
or age, for service provisioning.

Overall, the SSI solutions are focused foremost on user
requirements, but obviously, disregard the demands on the side
of the service provider. However, the adoption of SSI imple-
mentations by service providers is a fundamental prerequisite
to evolve the complete ecosystem. A user will employ an SSI
solution if enough service providers accept this solution. Vice
versa, the service provider will embrace an SSI solution if the
user base is large enough.

Our main contribution is a service provider friendly inte-
gration architecture with the following characteristics:

1) Abstraction from a single SSI solution
2) Integration by an established protocol
3) Providing a verifiable claim issuance facility

Furthermore, we have implemented a prototype of the
architecture as a gateway1 and integrated it for authentication
with the tele-TASK2 portal.

The remainder of this paper is organized as follows. In
Section II, we discuss related work and compare it to our
approach. Subsequently, we present in detail our architecture
in Section III. In Section IV, we outline a sample implemen-
tation as a gateway. Afterwards, we evaluate our solution in
Section V and show its practical feasibility based on a generic
authentication process. Finally, we discuss observations in
Section VI and conclude our research in Section VII.

1The prototype of the gateway is available under https://ssixa.de
2tele-TASK is available under https://tele-task.de978-1-7281-2522-0/19/$31.00 ©2019 IEEE



II. RELATED WORK

The Universal Resolver [12] is an approach to integrate
SSI solutions. The basic concept is to resolve a given DID
to a corresponding DID Document [9]. The DID Document
is comprised of information about the subject of the DID,
public keys for authentication, authorization data, various
timestamps and service endpoints. Service endpoints refer to
further interaction possibilities of the corresponding DID. A
driver-based implementation is the core part of the Universal
Resolver. For each SSI solution, a driver is implemented for
querying required information to construct the DID Document
or to directly retrieve the document from the SSI platform.

In our opinion, there are some drawbacks. The Universal
Resolver has a specified application programming interface
but does not implement a standard identity and access man-
agement protocol. The Universal Resolver literally transforms
a DID to a DID Document [12]. Subsequently, authentication
and authorization need to be conducted based on public key
information or service endpoints of the DID Document. In
case the listed public keys are used for authentication, SSI
specific additions, e.g. supplementary verifications, might need
to be implemented on the service provider side. Overall, the
Universal Resolver abstracts from a dedicated SSI solution by
increasing the necessary steps and complexity for authentica-
tion.

III. ARCHITECTURE

The architecture enables a service provider to offer SSI
solutions for user authentication and attribute-based autho-
rization. Fig. 1 presents an overview of the architecture and
the surrounding actors. The service provider offers a web
application for user interaction, for instance an online shop.
Additionally, the user owns an SSI client to create and control
its digital identity.

An implementation of our integration architecture connects
the web application of the service provider, the SSI solution
and the user. It essentially represents a gateway that mediates
communication between these parties and retrieves, respec-
tively provides, the required digital identity data. The archi-
tecture encompasses the components Verified Claim Issuer,
Claim Name Translator, SSI Broker, Trust Engine and Protocol
Handler.

A. Verified Claim Issuer

The Verified Claim Issuer component enables a user to re-
trieve attested claims for its self-sovereign identity. It provides
a user interface to obtain input and conduct a verification
process. The component reflects a framework for verification
due to different validation processes for distinct types of
claims. Additionally, the component may communicate to
further systems to collect validation data.

• Input: Name and value of a claim for a digital identity
• Output: Verified Claim for a digital identity

B. Claim Name Translator
The Claim Name Translator module conveys claim names

from various formats into a consistent internal representation
and vice versa. Different authentication protocols and SSI
solutions identify the same logical attribute by distinct names.
To achieve interoperability, a translation between the different
names is required.

• Input: Claim name in a domain
• Output: Claim name in another domain

C. Protocol Handler
The Protocol Handler controls input and output from estab-

lished identity and access management protocols. The compo-
nent abstracts from the peculiarities of a single protocol and
enables a service provider application to chose between a va-
riety of standards for integration. For each supported protocol
a respective implementation is required that is depicted as e.g.
Protocol 1 in Fig. 1. The Protocol Handler component and
the associated protocols are the connection point to the web
application.

• Input: Credentials of a digital identity
• Output: Assertion of a digital identity

D. SSI Broker
The SSI Broker manages the interaction with different SSI

solutions that are outlined as e.g. SSI 1 in Fig. 1. In general,
the SSI Broker conceptualizes the interaction with the SSI
implementations to authenticate a user, to retrieve attributes
from a user and to assign verifiable claims to a digital identity
of a user. On the one hand, the SSI Broker can interact directly
with the SSI client of the user by creating Quick Response
(QR) codes that are used, e.g. for login. Additionally, direct
communication to the SSI network is done for verification of
the digital identity and the retrieved attributes.

• Input: Selected interface function and required data
• Output: Communication to SSI client and platform

E. Trust Engine
The Trust Engine is the central element that applies a trust

model to the attributes of the digital identity. The attestation
issuers of a verifiable claim are evaluated. In case, the attesta-
tion issuers or a combination of different issuers are considered
as trustworthy by the assessed trust model, the claim is taken
as a valid attribute of the digital identity and forwarded to
the service provider upon request. The recorded trust model is
required to be aligned to the opinion of the service provider
about the trustworthiness of certain issuers. Either the service
provider hosts an instance of the gateway or trusts the hosting
party.

• Input: Claim and its attestations
• Output: Validity of the claim

IV. IMPLEMENTATION

In the following section, we outline specific details of a
sample implementation of our proposed integration architec-
ture. Thereby, we present the implemented modules according
to the different components.



SSI broker

SSI 1

SSI 2

...

Claim name
translatorTrust engine

Protocol handler

Protocol 1

...

Protocol 2

Verifiable claim  
issuer

User

Service provider web
application

SSI network

SSI client

Gateway

(1) (2)

(3)

(4)

(5)

Fig. 1. Architecture and environment

A. Verified Claim Issuer

The implementation encompasses the attestation of email
addresses. After authentication to the gateway, the user is
able to start the verification process of an email address.
In the first step, the user enters an email address and starts
the validation. The gateway sends a verification email to the
address. This email comprises a link to the gateway containing
a randomly generated number. By opening the provided link,
the user proves control over the mailbox. Subsequently to the
successful completion of the verification, the user is able to
retrieve a verifiable claim about the email address. The user
obtains the claim with the support of the SSI client by scanning
the provided QR code.

B. Claim Name Translator

The Claim Name Translator compensates for differences in
the naming of claims within the supported protocols and SSI
solutions. Claim name translation is used for issuing verifiable
claims and the retrieval of user attributes during the authen-
tication process. An overview of the different names is listed
in Table I. The email address of a user is requested via the
OIDC authentication flow as attribute email. In a comparable
way, the SSI solution uPort references the email address by the
term email. In contrast, Jolocom refers to this property with
the notion ProofOfEmailCredential. The gateway utilizes the
default OIDC claim name for an attribute in case the evaluation
of the trust model succeeds. Otherwise, the attribute is made
available through the claim name by appending unverified.
An application may decide to use unverified attributes for non-
critical scenarios, e.g. displaying a welcome message for a
user.

C. Protocol Handler

The protocol handler implements the authorization code
flow of the OIDC protocol including the authorization, user
info and token endpoints. A web application can request user
authentication with blockchain-based self-sovereign identity

uPort Jolocom OIDC
Email email ProofOfEmailCredential email
Name name ProofOfNameCredential name
Firstname firstname ProofOfFirstnameCredential given name
Lastname lastname ProofOfLastnameCredential family name

TABLE I
OVERVIEW ABOUT CLAIM NAMING AND TRANSLATION

methods by using the relative path /blockchain/challenge as
authorization endpoint. The attributes of the digital identity
of the user are not stored in the gateway. In contrast, the
properties are temporarily retrieved during the authentication
process. The characteristics are encoded into the SSI specific
authentication challenge as requested claims.

D. SSI Broker

The SSI Broker controls the communication with the im-
plemented SSI solutions through a standard interface. The
integration interface offers the following functionality.

• Create Identity The command creates an application
identity for the gateway on the respective SSI solution.
This digital identity is used by the gateway to issue
and request verifiable claims. Additionally, it serves as
a trusted communication partner for the SSI client.

• Create Challenge The function creates an authentication
challenge for the user. The challenge contains a request
for required attributes and a random number including a
callback address. The user processes the challenge with
its SSI client and sends a response back.

• Verify Challenge The function verifies the user’s re-
sponse to a previously generated challenge. The user is
successfully authenticated if the verification succeeds.

• Create Verifiable Claim The command generates a
verifiable claim for a certain attribute of a user’s digital
identity. The verifiable claim is issued under the digital
identity of the gateway.



The implemented functions to create an authentication chal-
lenge is required to produce interaction patterns. Differences
in these patterns between the SSI solutions indicate a missing
adoption of standards. An interaction pattern is a JSON
Web Token (JWT) that is exchanged between the gateway
and the SSI client. We concentrate on a presentation of the
authentication challenges for uPort (see Fig. 2) and Jolocom
(see Fig. 3).

1 {
2 "iss": "2oyjAieDKiMvL...VRd3AbEZU3QZN",
3 "iat": "1548559818",
4 "requested": ["email"],
5 "verified": ["email"],
6 "permissions": ["notifications"],
7 "callback": "https://.../We333MaPRGli1k",
8 "net": "0x4",
9 "exp": "1548588618",

10 "type": "shareReq"
11 }

Fig. 2. uPort challenge

Common factors of both challenges are default JWT at-
tributes. These properties indicate the issuer (iss), the issuing
time (iat) and an expiry time (exp). The JWT is valid between
the mentioned timestamps. Considering the issuer attribute, the
first difference becomes obvious. In the uPort challenge, the
issuer attribute references the multi network identifier of the
digital identity of the gateway. In contrast, the Jolocom JWT
contains as issuer the DID of the digital identity including
the reference to a specific key. Furthermore, either JWT has
a property that indicates the request type for the SSI solution.
Jolocom named the attribute typ and uPort refers to it by type.

1 {
2 "interactionToken": {
3 "credentialRequirements": [{
4 "type": ["Credential",
5 "ProofOfNameCredential"
6 ],"constraints": []}],
7 "callbackURL": "https://...BKkWFFACSKqW"},
8 "typ": "credentialRequest",
9 "iat": "1548581905743",

10 "exp": "1548585505743",
11 "iss": "did:jolo:3c79034...c6ba9#keys-1",
12 "jti": "b53f28695fe0a"
13 }

Fig. 3. Jolocom challenge

Further attributes of the JWT are listed on the top-level
by uPort. Jolocom creates a nested hierarchy with the name
interactionToken. Both challenges list a callback address as a
target for the response. uPort lists the network in the JWT
to differentiate between the testing and production networks
of Ethereum. Although Jolocom is also based on Ethereum, a
network identifier is omitted.

The attributes requested and verified are used to obtain
verifiable claims during the authentication process with the SSI

client. Any self-attested claims are provided by the requested
property. The verified keyword retrieves only claims with at-
testations. In contrast, Jolocom specifies the credentialRequire-
ments tag to nominate verifiable claims. For all requests, the
keyword Credential is supplied besides the actually requested
claims. Additionally, constraints can be determined.

E. Trust Engine

The trust engine controls the validation of the verifiable
claims of a digital identity upon an authentication request. The
engine applies a predetermined trust model for evaluation. The
implemented trust model reflects the opinion of the gateway’s
hosting entity towards the trustworthiness of one or several
attestation issuers. Referring to a general trust model [13],
we implemented an entirely simplified version that accepts
verifiable claims that are issued by the digital identity of
the gateway itself. These verifiable claims are considered
trustworthy and will be provided as verified attributes within
the flow of the OIDC protocol.

V. EVALUATION

For evaluation, we conduct an user authentication at the
tele-TASK portal. During the authentication process, all com-
ponents of the integration architecture interoperate with each
other. Upon successful authentication, the user is logged in at
tele-TASK and required attributes are available. The gateway
is hosted in the same trust boundary as tele-TASK.

tele-TASK is a web application that enables users to watch
recorded videos. The attribute-based access model differenti-
ates two categories of users. Users in the first category have
extended access rights and are allowed to view additional
recorded sessions. Whereas persons that belong to the second
cluster have limited access to certain video streams. These two
categories are distinguished by the email address of the user.

Certain prerequisites are required for executing a successful
authentication process. The user has created a digital identity
with uPort and obtained a verifiable claim for an email address
from the gateway. The gateway considers its attestations as
trustworthy. Furthermore, the tele-TASK portal is known by
the gateway with a client identifier, a corresponding secret and
a set of redirect Uniform Resource Identifiers (URI) to fulfil
requirements of the OIDC protocol.

In the first step, the user opens tele-TASK and selects
the option to authenticate via SSI solutions by using the
gateway. Based on this request, tele-TASK redirects the user
to the gateway. Fig. 4 outlines the redirection call. The target
of the call is the relative path of the gateway that is used
for SSI based authentication. Information about the actual
authentication workflow is transmitted as parameters of the
request. The scope argument contains openid to indicate the
usage of the OIDC protocol. Additionally, the attribute email
is requested. The value email refers to the respective attribute
of the user. Furthermore, a redirection URI (redirect uri) and
a client identifier (client id) are transmitted.

After redirection, the gateway requests the authentication of
the user. The user is able to select its preferred SSI solution



1 https://gateway.local/blockchain/challenge?
2 scope=openid+email&
3 redirect_uri=https%3A%2F%tele-task.local&
4 client_id=v5Zd7isg8932ghjk&
5 response_type=code

Fig. 4. Redirect URI

that is either uPort or Jolocom. uPort is preselected and the
respective authentication challenge is presented as QR code.
The QR code contains an encoded JWT token that is signed
by the identity of the gateway. It comprises the attribute email
as requested information of the user’s digital identity. The
user scans the QR code with the uPort mobile app. uPort
decodes the QR code and verifies the obtained JWT with
regard to the signature originating from the identity of the
gateway. Furthermore, uPort extracts the requested attributes
from the JWT and prompts the user for consent to transmit the
corresponding verifiable claims to the gateway. In this case, the
attested claim of the email address is relayed. When the user
confirmed to convey the data, the uPort mobile app creates a
JWT that comprises the requested email attribute and sends
the token to the callback address listed in the authentication
challenge.

The gateway parses the information of either JWT and
verifies the signatures. Furthermore, the received verifiable
claim about the email address of the user is validated against
revocation and expiry. Subsequently, the implemented trust
model is applied to the verifiable claim of the email address.
As the attestation issuer is the gateway itself, the provided
email address is accepted as a verified attribute of the user’s
digital identity. Based on this information, the gateway gener-
ates the OIDC ID token. The ID token contains the attributes
email, ssi and sub (see Fig. 5).

1 {
2 "email": "max.mustermann@test.com",
3 "ssi": "uport",
4 "sub": "001c67fc2e3f91b...77f95ff77546"
5 }

Fig. 5. ID token

Finally, the user is forwarded to the tele-TASK portal along
conveying the ID token. tele-TASK analyzes the ID token
and extracts the email address. Having the email address as
a trustworthy attribute of the user, tele-TASK is enabled to
make the access decision.

VI. DISCUSSION

A significant characteristic that differentiates self-sovereign
identity solutions from traditional identity management ap-
proaches is the nature of decentralization. The identity
provider is implemented on a blockchain and therefore, it does
not represent a trusted third party anymore. Our implemented

gateway supports on the one hand service provider by offering
self-sovereign identity solutions to their users. On the other
hand, it can introduce centralization to a certain extent. The
service provider does not verify the digital identity and as-
sociated verifiable claims on the blockchain. In contrast, the
service provider trusts the gateway for correct execution.

VII. CONCLUSION

The SSI model focuses on the users by placing them
in full control of their digital identity and associated data.
However, service provider adoption has been neglected due to
a fragmented SSI landscape, non-usage of established identity
and access management protocols and missing verifiable claim
issuance facilities. We have proposed an SSI integration archi-
tecture for service providers to address these shortcomings.
Furthermore, we have implemented a gateway that integrates
to web applications via OIDC for authentication. The gateway
mediates the communication and allows the user to authenti-
cate with uPort or Jolocom by providing verifiable claims as
attributes of the digital identity.

REFERENCES

[1] C. Meinel, T. Gayvoronskaya, and M. Schnjakin, “Blockchain: Hype
oder innovation,” Hasso-Plattner-Institute, Prof.-Dr.-Helmert-Strae 2-3,
14482 Potsdam, Germany, 2018.

[2] C. Lundkvist, R. Heck, J. Torstensson, Z. Mitton, and M. Sena. (2016)
uport: A platform for self-sovereign identity. [Online]. Available:
http://blockchainlab.com/pdf/uPort whitepaper DRAFT20161020.pdf
[Accessed: 2018-07-19]

[3] C. Allen. (2016) The path to self-sovereign identity. [Online].
Available: http://www.lifewithalacrity.com/previous/2016/04/the-path-
to-self-soverereign-identity.html [Accessed: 2019-08-22]

[4] Unknown. (2018) Awesome decentralized identity. self-sovereign,
blockchain and decentralized identity resources. [Online]. Available:
https://github.com/infominer33/awesome-decentralized-id [Accessed:
2019-08-22]

[5] D. Reed, J. Law, and D. Hardman. (2016) The technical foundations
of sovrin. a white paper from the sovrin foundation. [Online].
Available: https://www.evernym.com/wp-content/uploads/2017/07/The-
Technical-Foundations-of-Sovrin.pdf [Accessed: 2019-08-22]

[6] G. Wood. Ethereum: A secure decentralised
generalised transaction ledger. [Online]. Available:
https://pdfs.semanticscholar.org/ac15/ea808ef3b17ad754f91d3a00fedc8f
96b929.pdf [Accessed: 2019-08-22]

[7] Jolocom. (2018) Jolocom whitepaper. self-sovereign and
decentralised identity by design. [Online]. Available:
https://github.com/jolocom/jolocom-lib/wiki/Jolocom-Whitepaper [Ac-
cessed: 2019-08-22]

[8] M. Ali, J. Nelson, R. Shea, and M. J. Freedman, “Blockstack: A global
naming and storage system secured by blockchains,” in Proceedings of
the 2016 USENIX Annual Technical Conference. Usenix. The Advanced
Computing Systems Association, 2016.

[9] D. Reed, M. Sporny, D. Longley, C. Allen, R. Grant, and
M. Sabadello. (2018) Decentralized identifiers (dids). data model
and syntaxes for decentralized identifiers (dids). [Online]. Available:
https://w3c-ccg.github.io/did-spec/ [Accessed: 2019-08-22]

[10] RWoT. (2018) Did auth: Scope, formats, and protocols. [Online]. Avail-
able: https://github.com/WebOfTrustInfo/rebooting-the-web-of-trust-
spring2018/blob/master/topics-and-advance-readings/DID%20Auth [Ac-
cessed: 2019-08-22]

[11] OpenID Foundation. Openid connect core 1.0. [Online]. Available:
https://openid.net/specs/openid-connect-core-1 0.html [Accessed: 2019-
08-22]

[12] Universal resolver. [Online]. Available: https://github.com/decentralized-
identity/universal-resolver [Accessed: 2019-08-22]

[13] A. Grüner, A. Mühle, T. Gayvoronskaya, and C. Meinel, “A quantifiable
trust model for blockchain-based identity management,” in Proceedings
of the 2018 IEEE International Conference on Blockchain, 2018.


