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Abstract. The growing volumes of data that appear on multiple dis-
tributed platforms raise the question of how to compose data meshes
that can be published and/or shared safely amongst multiple cooperat-
ing parties. Data meshes are composed of subsets (or whole sets) of data
repositories that are owned by autonomous parties. This raises new chal-
lenges in terms of guaranteeing privacy across various data mesh com-
positions. In this paper, we present a survey of the issues that emerge
in guaranteeing the privacy of distributed mesh data. We discuss the
limitations of existing solutions in handling personal data privacy with
respect to meshed data. Finally, we postulate that identifying personal
data in such datasets must be handled with a performance efficient algo-
rithm that can determine (on-the-fly), potential linkages across various
data repositories, that could be exploited to subvert privacy.

1 Introduction

Dealing with mesh data from the privacy perspective is important in the IT
industry. In fact, data meshes are in reality, a special case of distributed data
repositories where the data exist in a flexible ecosystem but with clear user-
ownership properties. Unlike standard relational database management systems,
a central authority is absent and is instead replaced by separate authorities that
co-exist in a “mutually exclusive and collectively exhaustive” environment. That
is, data mesh instances can interact with each other and share data across differ-
ent domains. For instance, an online marketing platform shares data with bank-
ing platforms and shopping regulatory services to validate a purchase request
from a given customer. In essence, the goal is that there should be no centralised
communication orchestrator required under this paradigm to guarantee data pri-
vacy across the different domains. While each database instance allows flexibility
nuances, they adhere to overarching architecture principles and guarantees ser-
vice level agreements to each other through data contracts (illustrated in Fig. 1).
This paradigm of data meshes can be referred to as micro-service architecture
in software engineering, where each service is encapsulated and isolated to allow
more flexibility.

Problem Statement. Distributing private information and fragmenting their
identifiers significantly impede their tracing and discovery. This may sound good
in the first moment, but it exacerbates privacy work to protect the same. To
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Fig. 1. Illustration of data meshes within an organisation

adhere to a high ethical standard and be compliant with most legislation like
GDPR, HIPAA or CCPA, personally identifiable information (PII) even being
distributed, must be protected, deleted upon request, and held secure. To do this,
their existence and location must be known, even in a fragmented environment.
Despite that individual data points might not initially be considered a privacy
risk, their combination can be. Such attribute combinations are known as quasi-
identifiers (QID). Traditional use cases of QID discovery imply static datasets
with a standard relational database model, where standard metrics have to be
addressed. In (data) mesh environments, there might be no, or only dynami-
cally changing relational models. With the absence of any centralised layer that
can identify, classify, label and alienate PII data records, differential privacy
mechanisms by nature cannot help and a different solution is needed.

Contribution. In this work, we review, discuss and analyse the privacy impli-
cation of data mesh environments. We consolidate and systematise the state-
of-the-art of related privacy work to do so. Based on this systematisation of
knowledge (SoK), this work derives privacy fallacies in data mesh settings. Fur-
ther, it discusses why practically the right of deletion, and other privacy actions
are difficult to realise. We then offer experiments on implications for the search of
privacy-compromising quasi-identifiers as vanishing points for de-anonymisation
activities through comparing data mesh vs traditional RDBMS setups.

Outline. The rest of the paper is structured in the following manner: We
assemble, consolidate and systematise latest related work in Sect. 2. This
includes research on syntactic data anonymisation in Subsect. 2.3, semantic data
anonymisation and differential privacy in Subsect. 2.4, unique column combina-
tions in Subsect. 2.5, high-dimensional data anonymisation in Subsect. 2.6, quasi-
identifier discovery in Subsect. 2.7, as well as data mesh databases in Subsect. 2.1
and privacy in data mesh environments in Subsect. 2.2. Section 3 then offers a
characterisation of data meshes and quasi-identifiers in their context. Section 4
contributes experiments on discovering quasi-identifiers to avoid private data
exposure in data mesh environments. Section 5 finally concludes our results and
suggests avenues for future work.
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2 State-of-the-Art

Data mesh databases are not a completely new research field, and have been
addressed partially in the fields of peer-to-peer databases, distributed databases,
data mesh topologies, syntactic-, semantic data anonymisation, high-dimensional
data anonymisation and quasi-identifier discovery. The following subsections will
summarise the most recent and extraordinary related work.

2.1 Data Mesh Databases

Back in 1997, Beall et al. reviewed systems for a general-purpose mesh database
based on a hierarchy of topological entities [7]. Their hierarchical analysis for
topology concluded that the hierarchic representation does not add a significant
amount of extra storage to a mesh database. Rather, this representation can
easily be extended to represent non-manifold models properly. In 2001, Gribble
et al. published work on peer-to-peer systems and their behaviour towards the
semantics of data [30]. Further, Gribble et al. highlight that P2P databases
have unique challenges like the data placement problem where it is necessary to
figure out how to distribute data and work so database queries can run at a low
cost under resource and bandwidth constraints. As an outlook, new architectural
designs are mentioned promising to help P2P databases to implement distributed
query answering systems that are more scalable, reliable, and performant.

On a different venue, the mappings between peer-to-peer (P2P) databases
are typically described to be local with no global schema accordingly to Bern-
stein et al. [57]. Also, the configurations and mappings between peers are highly
dynamic that require semi-automatic solutions. In their work, Bernstein et al.
presents Local Relational Model (LRM) as an architecture that can help resolve
these issues for modern P2P databases. Franconi et al. [26] proposed a new
model for P2P databases where nodes can request data from another node and
use the third node for evaluation, but there can be no complex queries across
the entire network. In contrast to standard first-order semantics, Franconi et
al.’s new model captures the intended semantics of P2P systems. The model
also halts the propagation of inconsistencies from node to node, so the database
remains consistent, even if some of the nodes have inconsistent data. Remacle
et al. [64] offered work on an Algorithm Oriented Mesh Database (AOMD) to
manage mesh databases. Due to storage and algorithmic complexity, it is not
possible to maintain complete graphs of data meshes according to Remacle et al.
[64]. AOMD uses dynamic mesh representation to decrease computer memory
use and increase algorithmic efficiency. It results in a light and efficient software
implementation for mesh databases. Eunyoung Seegyoung Seol presented in his
PhD thesis a mesh that is a piece-wise decomposition of the space/time domain
where used by numerical simulation procedures [68]. Flexible distributed mesh
database (FMDB) capable of shaping its representation based on the applica-
tion’s specific needs. FMDB embedded in SCOREC simulation packages effec-
tively supporting automated adaptive analyses. Further, Seol et al. [67] published
work on flexible distributed Mesh database (FMDB), that is a partition model
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and a distributed mesh management system. Seol et al. model has been used
to efficiently support parallel automated adaptive analysis processes. The inte-
gration of mesh technology with the unified theory of acceptance and use of
technology (UTAUT) can help businesses with analytics and technology adop-
tion accordingly to Shirazi et al. [69]. Customised UTAUT models for mesh app,
service, and conversational systems adoption that add motivation, innovation,
privacy, and AI problem solving to traditional UTAUT can lead to intelligent
mesh technology [69]. Rodŕıguez-Gianolli et al. [65] presented a hyperion proto-
type that demonstrates the possibility of using Peer-to-Peer (P2P) computing
to share data. In their prototype, each peer includes a database with its own
schema. The peers can join and leave the network independently. In a Hyperion
P2P Database Network, the peer nodes share data by clustering into interest
groups and pairing up using acquaintance links. The P2P Layer handles the
peer-to-peer data sharing, while the Local Database Layer handles traditional
database functions [65].

A P2P database system (PDBS) is a collection of autonomous databases that
communicate with each other in a peer-to-peer fashion. Bonifati et al. [63] elabo-
rated on how PDBS can borrow ideas from distributed database systems (DDBS)
and multi-database systems (MDBS). For that purpose, Bonifati et al. compared
past distributed database systems to PDBS, emphasising the database-centric
and P2P-centric features of PDBS [63]. On the same note, Masud et al. inves-
tigated transaction processing in a peer-to-peer database network [47]. Their
work looked into the problems around the consistent execution of concurrent
transactions. Masud et al. also proposed solutions like Merged Transactions and
OTM-based propagation to guarantee consistent performance [47].

Various venues broach the issue of data mesh environments, their technical
realisation and implication towards distributed datasets. Yet, the fragmentation
of data records into distributed databases and the consequences to overarch-
ing, traditional central tasks like security and privacy themes remains mostly
unresolved.

2.2 Privacy in Mesh Networking

A few privacy questions have been discussed in the context of mesh networks and
mesh structures. Wu et al. illustrated privacy attacks on mesh network based
on the open medium property of wireless channel [77]. Traditional anonymous
routing algorithm cannot be directly applied to Mesh network. In their paper,
Wu et al. designed a private routing algorithm that used “Onion”, i.e., layered
encryption, to hide routing information [77]. Ganesh et al. proposed a strategy
that applies self-organising maps (SOM) algorithm separately in each distributed
dataset relative to database horizontal partitions [28]. In the sequence, these
representative subsets are sent to a central site, which performs a fusion of
partial results and applies K-means algorithms.

While research has been done on privacy in mesh networks, their findings and
concepts are not easily transferable to data mesh environments. Data mesh is a
special case of databases, while mesh networks originate from network topologies.
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A similar paradigm but different application context. As open problems remain
the question of how to find distributed describing attributes forming personally
identifiable information (PII), how data deletion or data lineage can be realised
in fragmented landscapes.

2.3 Syntactic Data Anonymisation

Randomisation [33,45], generalisation [27,72], suppression [27,72], and pertur-
bation [45] are among the data transformation methods used in syntactic data
anonymisation. Generalisation restructures the content of a dataset by changing
its values according to a pre-defined term replacement taxonomy, whereas sup-
pression simply erases data. As one travels up the ladder in a hierarchy-based
taxonomy, each value gradually loses its uniqueness.

The k-anonymity Family. One of the first and best-known is k-anonymity,
limiting distinguishability by classifying each tuple in the data set with at least
k − 1 identical data records. Sweeney claims that the k − 1 closest neighbors
are chosen based on similar descriptive features and enforced via generalisation
and suppression [72]. The pattern of generalisation is to aggregate data values
through a pre-defined hierarchy, such as combining the individual year 2021
into a year range of 2020–2025. Suppression, on the other hand, fully removes
the selected data value. The generalisation toolset appears to be sensitive to
attacks based on homogeneity and background knowledge [46]. To mitigate this,
l-diversity takes the granularity of sensitive data representations into account,
ensuring a factor of l diversity for each quasi-identifier within a particular equiv-
alence class (usually a size of k). By evaluating the relative distributions of
sensitive values in specific equivalence classes and throughout the entire dataset,
t-closeness as an extension handles skewness and background knowledge attacks
[42]. k-anonymity is also a privacy metric denoted k-map. If every combination
of attribute values for quasi-identifiers appears at least k times in a dataset, it
meets the k-map constraint [72]. To protect against symmetric assaults, Nergiz
et al. [54] presented δ-presence, which builds on both k-anonymity and k-map.
δ-min and δ-max are hidden in the δ-parameter. These two characteristics deal
with the fact that no one is present.

Data Transformation Techniques. To support data transformation, the prior
anonymisation techniques and their modifications used generalisation and sup-
pression [27,49]. This is useful for theoretical demonstrations, but it quickly
reaches its limits when dealing with larger datasets. Syntactic data anonymi-
sation methods like k-anonymity [72], l-diversity [46], and t-closeness [42] are
NP-hard, as Meyerson et al. [49] and Bayardo et al. [29] have shown. Because of
their iterative and incremental character, the dependent generalisation methods
are NP-hard in and of themselves. Applying generalisation and suppression to
high dimensional data results in considerable information loss, rendering the data
worthless for data analytics, according to Aggrawal et al. [4]. This is especially
true because generalisation’s runtime grows exponentially for several descriptive
attributes, making it unfeasible. As a result, suppression persists and obliterates
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attribute values, resulting in significant information loss. Given the algorithm’s
complexity, all variations can only employ heuristics like k-optimise [6] to get
improved approximations to perfect privacy, not perfect privacy [5].

Perturbation has been proposed as a viable alternative to generalisation [45].
The alternation of the real value to the nearest similar findable value is referred
to as perturbation. This includes the effect of introducing an aggregated value
or employing a close-by value so that just one value needs to be modified rather
than numerous ones to form clusters. Finding such a value can take longer in
certain cases due to iteratively rechecking the newly produced value(s), which
negatively influences performance.

Optimal k-anonymity has been demonstrated to be an NP-hard task [5,49].
Due to their algorithmic nature, applying generalisation and suppression strate-
gies to high-dimensional data results in a substantial level of information loss,
leaving the data essentially unusable for data analytics. Tassa et al. [74] recom-
mend using k -concealment to reduce the information loss caused by generalising
database entries. However, in the case of high-dimensional application fields,
both contributions degrade the NP-hardness. Fredj et al. [27] provided an in-
depth review, categorisation, and advice for selecting generalisation algorithms.

The problem of ensuring k-anonymity with either optimal or holistic tech-
niques to syntactic data anonymisation has been demonstrated to be an NP-hard
task [49]. Heuristics can only be used to achieve better approximations to per-
fect privacy, not perfect privacy, in all types of k-anonymity algorithms [5]. As a
result, scaling, particularly generalisation and perturbation in high-dimensional
data, produces an impractical runtime [58,62] and a large level of information
loss, rendering the data worthless for data analytics. With the help of GPU
acceleration [61], it has been proven to shift the time complexity amplitude as
runtime explosion from smaller n < 20 to larger n < 150 for 2n, yet the nature
of the growth remains.

2.4 Semantic Data Anonymisation and Differential Privacy

Semantic data anonymisation approaches sum up the statistical distributions of
data values and the semantic meanings drawn from linking (defining patterns)
between data points in an attempt to re-define privacy not just as a process
of syntactically transforming datasets but also to consider both the statisti-
cal distributions of data values and the semantic meanings drawn from linking
(defining patterns) between data points. The data veracity is tampered with by
deleting significant ties between the data and an individual. Noise injection, per-
mutation, or statistical shifting are commonly used to achieve this [19,33,44].
These algorithms are also known as differential privacy, and their statistical
approaches are highly optimised for pre-defined use cases and mass data pro-
cessing. In differential privacy, for example, this is accomplished by deciding how
many noise injections to add to the output dataset at query runtime to assure
anonymity in each situation [18]. Further, Dwork et al. extend their work with
a vast introduction into the algorithmic foundations of differential privacy [22].
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Individual contributions to differential privacy include the use of the exponen-
tial mechanism to expose statistical information about a dataset while concealing
the private specifics of individual data items [48]. By applying controlled ran-
dom distribution sensitive noise additions, the Laplace method for perturbation
facilitates statistical shifting in differential privacy [20,38]. Because both sen-
sitive attributes and quasi-identifiers are evaluated on a per-row basis during
anonymisation [41], the discretised version [44] is known as a matrix mechanism.
Because these anonymisation are done at runtime and on a case-by-case basis,
the anonymisation processing is deferred until query runtime, increasing the risk
of data leakage [36]. Leoni introduced “non-interactive” differential privacy [40]
by performing statistical adjustments a priori to user searches. Another diffi-
culty with differential privacy is that it is computationally infeasible to apply
differential privacy to huge datasets (impractical). Dwork et al. shows that dif-
ferential privacy is likewise NP-hard [21]. Experts are still debating whether
approximation differential privacy algorithms provide adequate privacy assur-
ances. An arbitrary family of attribute sets could be used to link a single data
record back to its owner in certain conditions [24]. Abadi et al. offered the appli-
cation of incorporating differential privacy into the deep learning context [1].
Even the US Census Bureau plans to adopt differential privacy accordingly to
John Abowd [3]. But as Lee et al. have highlighted, the concept of differential
privacy received considerable attention in the literature, yet little discussion is
available on how to apply it in practice [39].

These revelations lead to an unsolved issue. Due to their complexity,
anonymising a large dataset using either approximate procedures that may leave
data inferences that can be exploited to de-anonymize people or precise coun-
terparts results in exponentially growing runtime.

Randomisation techniques have gained increased attention as a result of the
issues surrounding syntactic data anonymisation [33,45]. This semantic data
anonymisation technique aims to re-define privacy as a process of considering
both statistical distributions of data values and semantic meanings extracted
from linking (defining patterns) between data points, rather than simply as a
process of syntactically altering datasets. Dwork et al. [23] provide an in-depth
survey of past work, in addition to the previous description of relatively recent
contributions. Dankbar et al. have provided a comprehensive overview of the
current literature on unequal privacy. They also pointed out some important
general constraints, such as the theoretical character of the privacy parameter,
which limits the ability to quantify the level of anonymity that would be guaran-
teed to patients [14]. Ji et al. explored the relationship between machine learning
and differential privacy [34]. To illustrate both its strong guarantees and limi-
tations, Li et al. focus on empirical accuracy performances of algorithms and
semantic implications of differential privacy [43].

Semantic data anonymisation methods, such as differential privacy, have
been demonstrated to be NP-hard for big datasets [21]. Given their runtime
and use case-specific nature, they are computationally infeasible (impractical
performance-wise) when applied to large high-dimensional data.
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2.5 Unique Column Combinations

Unique column combinations (UCC) are attribute combinations that generate a
unique identifier for the given dataset in data profiling (table). Discovering these
unique column combinations (UCC) is a major scientific challenge.

Abedjan et al. [2] compiled and formalised the most recent breakthroughs in
the finding of UCCs in their paper. Heise et al. built on their work by presenting
a scalable discovery of unique column combinations based on parallelisation and
the scale-out concept [32]. Feldmann has done the same thing [25]. Han et al.
build on similar ideas [31] and use Hadoop with its MapReduce technology [15]
to create a distributed computing environment. Papenbrock et al. [56] offered a
comparison of alternative discovery strategies. Papenbrock et al., on the other
hand, proposed a hybrid of quick approximation approaches and efficient vali-
dation procedures for UCCs [56]. Ruiz et al. published a patent recently that
summarised several dataset profiling tools, techniques, and systems, including
efficient UCC finding [66].

The search for UCC may be encapsulated in a cyclical dependence on the
Hitting-Set issue as a family of W[2]-complete problems [9,17], according to
Bläsius et al. [9]. In the worst-case scenario, this implies a super polynomial
runtime, rendering its use to huge, high-dimensional data impracticable for the
time being.

2.6 High-Dimensional Data

Given past advances in syntactic and semantic data anonymisation, more atten-
tion has shifted to hybrid systems that incorporate aspects from the initial syn-
tactic and semantic data anonymisation approaches and provide abstractions
from the raw dataset via aggregations or separations. For example, in attribute
compartmentation [58,62], privacy is ensured by separating attributes that con-
stitute quasi-identifiers using the notion of maximum partial unique column com-
binations (mpUCC) from the data profiling domain (mpUCCs). Quasi-identifiers
are attribute value combinations that uniquely identify persons in a dataset
(QID). By removing those QIDs, the re-identification attack of mixing QIDs
with auxiliary data to draw inferences and extract private information is also
prevented [76]. However, finding quasi-identifiers is difficult.

The enormous number of rows and columns distinguishes high-dimensional
data. While the growing number of rows is seldom a problem, the growing num-
ber of columns can fast cause state-space explosions in enumeration issues [8].
The higher the dataset dimensions, the faster it reaches computational infea-
sibility. As can be seen from the preceding subsections, several disciplinary
approaches for obtaining privacy, such as data profiling and mining, anonymisa-
tion processing, and differential privacy, eventually run into NP-hard difficulties.

In a few cases, high-dimensional data is being anonymized in great detail.
Kohlmayer et al. proposed adaptations based on the Secure Multi-party Comput-
ing (SMC) protocol as a flexible approach on top of k-anonymity, l-diversity, and



CoK: A Survey of Privacy Challenges in Relation to Data Meshes 93

t-closeness, as well as heuristic optimisation, to anonymize distributed and sepa-
rated data silos in the medical field [37]. Mohammed et al. propose LKC-privacy
to achieve privacy in both centralised and distributed scenarios [50], promis-
ing scalability for anonymising large datasets LKC-privacy, however, restricts
the length of quasi-identifier tuples to a pre-determined number of characters
that offers a practical approach but does not guarantee the entire absence of
privacy-violating identifiers in high-dimensions. Other initiatives, such as Zhang
et al. [80], employ a MapReduce approach based on the Hadoop distributed
file system (HDFS) to increase compute capacity. On the other hand, the NP-
hard nature swiftly beats the economic scalability options. Large numbers of
entities defining characteristics (hundreds of attributes) must be handled in a
performance-efficient and privacy-preserving way.

There are two reasons why discriminating between sensitive and non-sensitive
properties is problematic, according to Manolis Terrovitis’ study [75]. First, we
can see that sensitive features are not the main reason for the success of de-
anonymisation assaults (homogeneity, similarity, and background information).
Second, creating an exhaustive collection of sensitive and non-sensitive qualities
is problematic for high-dimensional datasets with distinct patterns that expand
with the amount of data acquired on an individual. Podlesny et al. proposed
modeling the attribute linkage problem for generating privacy-preserving data
silos as a Bayesian network [59,60] to reduce the complexity of the compartmen-
tation problem [58,62]. To train a Bayesian network, exact inference learning
[53] and approximate inference learning [13] have the same NP-hardness. Recent
contributions, however, show that using attribute linkage techniques to com-
press the network enables for performance-scalable data processing even on huge
datasets [60]. Clifton et al. provided a balanced review of outstanding concerns
in both syntactic and semantic data anonymisation methods, as well as its ben-
efits, belongings, and summarised critiques [12]. Clifton et al. point out that the
differences between different syntactic and semantic anonymisation origin mod-
els are less pronounced than previously supposed. Both archetypes, however,
will have problems in large-scale data settings. Differential privacy is frequently
the best empirical privacy for a fixed (empirical) utility level, however syntactic
anonymity models may be preferred for more precise answers.

Regardless of where it came from, data anonymisation is yet to be applied to
large-scale, multi-attribute, high-dimensional datasets in a reasonable amount
of time and with limited resources. Each solution suffers from considerable com-
plexity restrictions for huge quantities of descriptive characteristics (columns),
resulting in massive information loss, calculation demands, and hence runtime,
or privacy guarantees through approximation approaches.

2.7 Quasi-Identifier Discovery

Byun et al. addressed the lack of diversity through equivalence classes and their
information-loss by transforming the k-anonymity problem to a k-member clus-
tering problem [11], based on Sweeneys work on the family of k-anonymity tech-
niques [72,73]. While Byun et al. technique uses distance and cost functions
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works for numeric and categorical data, it does not guarantee approximation fac-
tors. For clustering purposes, the projection of quasi-identifier similarity remains
data-specific.

Xiao et al. published anatomy, a novel approach that immediately releases
all quasi-identifiers and sensitive values in two independent tables [78]. This, in
conjunction with grouping operations, should allow for the capture of correlation
while minimising reconstruction error. Zhang et al. investigated the scalability
benefits of horizontal scaling in cloud computing environments, as well as the use
of a quasi-identifier index-based technique to speed up data querying on huge
datasets [79]. Statistical de-anonymisation attacks on high-dimensional datasets
were proven by Narayanan et al. for re-identifying people in the Netflix Prize
dataset with tolerance for certain inaccuracies in the adversary’s prior infor-
mation [51]. Soria-Comas et al. summarised the topic of re-linkage using quasi-
identifiers. They explored data governance issues like user permission, purpose
limitation, transparency, individual rights of access, correction, and deletion.
When deleting specified qualities against extra personally identifiable informa-
tion (PII), Narayanan et al. expounded on the PII fallacy of the HIPAA privacy
law [52], as the eradication of all quasi-identifiers is not assured. Soria-Comas
et al. work also highlighted the need for new privacy models built from the
ground up with big data requirements in mind, such as continuous and vast
data collected from numerous source systems, resulting in multi-attribute and
high-dimensional datasets [70]. Braghin et al. have submitted an optimised quasi-
identifier strategy that uses parallelisation for efficient QID discovery [10], even
though parallelisation is not a novel concept. Braghin et al. study can serve
as a comparative baseline for our research due to its extensive description and
encouraging outcomes.

The discovery of quasi-identifiers summarised as Find-QID problem [61]
remains NP-hard and W[2]-complete [9,61]. Heuristic and greedy approach exist,
they even weaken the exponential implication of the same Find-QID problem, yet
particularly in high-dimensional spaces a lasting solution remains open unless the
W-hierarchy collapses [9]. This assumes an already pre-compiled, static dataset.
Adding now a distributed factor in, like in the case of data meshes, the search
and identification of QIDs become even more complex.

In summary, the community has done a lot of research on peer-to-peer
database, mesh network and anonymisation techniques individually. Yet, to the
best of our understanding, the paradigm of data mesh in databases and its side
effects with, against and towards privacy is largely unexplored. In particular, this
includes the topics around data deletion, quasi-identifier discover and data lin-
eage under the constraint of distributed, highly fragmented data records across
multiple data mesh instances. To emphasis the underlying complexity, we demon-
strate the differences of data mesh to more traditional database approaches in
the experiments of the following Sect. 4.
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3 Data Meshes

To recapitulate on essential terminologies, we briefly summarise the current
understanding and state of data mesh in database and quasi-identifiers in the
same domain. The concept of data mesh centers around the democratisation and
decentralisation of development activities. Instead of a central and predominat-
ing database with strict governance, a distributed setup build the basis of data
meshes. Each data repository is somehow coupled, can have upstream and down-
stream dependencies guaranteed through data contracts defining their usage,
availability, quality and content. This structural paradigm offers flexibility in
its configuration. Still, the same gained flexibility introduces looser governance
challenges like the absence of data lineage, which we will describe in the follow-
ing more profoundly. A similarity can be found in software engineering, where
a trend from monolith- towards microservices as architecture patterns has been
observed [35,55].

Characteristics of a Data Mesh. Given the decoupled nature of data meshes
[16], different data records might be split or even duplicated across multiple data
repositories. Traditionally, each data mesh instance is dedicated to a certain data
domain, with a clear owned business entity and corresponding dependencies,
inputs and outputs objective. While each data mesh instance is somehow autar-
kic, it may directly consume each other. Figure 1 illustrates this setup on a high
level perspective. Data between each instance can be linked through identifiers,
but this is not guaranteed. Such a fractured landscape brings value through its
flexibility. Each data domain can act and scale independently, yet learnings from
different sectors include that the same paradigm re-balances the weight against
arbitrary governance structures. As seen in the healthcare domain, the archetype
of various detached data repositories introduces a challenge for overarching top-
ics like data privacy, common interfaces and standardisation.

In the case of a central place, the same overarching objectives can be eas-
ily monitored, traced and supported like in the case of the implementation of
GDPRs data deletion right. A simple act like deleting personally identifiable
information (PII) sounds trivial, but imagine there are hundreds of data mesh
instances across hundreds of teams and each acts on its own. In various decou-
pled data repositories, tracking down distributed user attributes can only work
with thoroughly conducting data lineage which requires a lot of dedication and
documentation work for each development team as cross-linkages may be possi-
ble. Figure 2 depicts such perspective, where each domain holds a subset of user
data. Each subset individually may not look concerning from a privacy perspec-
tive, but joining these through existing identifiers they can become concerning.

Quasi-identifiers in a Data Mesh. Quasi-identifiers (QID) are attribute com-
binations that jointly form identifiers while independently might seem unsuspi-
cious. A quasi-identifier does not have to identify all individuals, but serves at
least one individual to be exposed and cause harm to their privacy. Formally,
QIDs are defined as
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Definition 1. Quasi-identifier
Let F = {f1, ..., fn} be a set of all features and B := P(F ) = {B1, ..., Bk}
its power set, i.e. the set of all possible feature combinations. A set of selected
features Bi ∈ B is called a quasi-identifier, if Bi identifies at least one entity
uniquely and all features fj ∈ Bi are not standalone identifiers.

To make this tangible, the readers attention is pointed towards Fig. 2 one more
time. Here, one can see that Domain A holds a ZIP code information, Domain B
age and gender and both are linked through the Call Center ID. Further, Domain
D holds analytical results like the disease prediction or medical adherence. When
following all identifiers, one can easily build a data profile including age, gender,
ZIP code, disease prediction and medical adherence without touching the Domain
C. Now, as Sweeney et al. showed that 87% of the entire population are identifiable
through the combination of age, gender and zip [71], an attacker may infer disease
prediction and medical adherence to those 87%.

Call Center

Call_Center_ID

ZIP

Medical drug Subscription

Marketing

Marketing_ID

Call_Center_ID

Age

Gender

Purchase_History

User_ID

Call_Center_ID

Name

Analytics

Marketing_ID

Disease Prediction

Medical Adherence

Fig. 2. Indirect linkage of quasi-identifiers in a data mesh

4 Experiments

To fortify the novolum that the data mesh paradigm creates towards data pri-
vacy topics, we will build on the prior knowledge and characteristic summary and
outline through a series of experiments the same theses and raised challenges.
For that purpose, we leverage a semi-synthetic dataset and state-of-the-art hard-
ware to compare different database archetypes and their runtime implications
on finding PII compromising quasi-identifiers.

Hardware. Our examination runs on a GPU-accelerated high-performance com-
pute cluster, housing 64 vCPU cores (E5-4650), 240 GB RAM, and 8x NVIDIA
GeForce 3060 with 3584 CUDA cores each and a combined Tensor performance
of 816 Tensor TFLOPs. GPU-related experiments’ execution environment will
be restricted to one dedicated CPU core and a single, dedicated Tesla V100
GPU.

Dataset. For the purpose of evaluation, a semi-synthetic health dataset has been
compiled based on publicly available contributions, previous work and publica-
tions. The dataset consists of genomic data, fake but consistent names, addresses,
SSN, passwords and telephone numbers, as well as medical records randomly
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(a) .. in traditional RDBMS to a data mesh (b) in different data mesh settings

Fig. 3. Projected runtime growth of discovered QID over increasing columns.

assigned but adhering to known statistical distributions. For transparency, the
full dataset can be downloaded from github.com1.

Evaluation. To demonstrate the differences in time complexity when different
database archetypes are being introduced, these experiments build on Sweeney’s
k-anonymity approach of finding quasi-identifiers [73]. A GPU-accelerated search
schema without heuristics purely based on groupby and count statements devel-
oped by Podlesny et al. [61] is being utilised in the following. Figure 3a delineates
the runtime growth for discovering the quasi-identifiers. The Y-axis represents
the execution time to find all QIDs in an exact manner (not heuristic) while
the x-axis the increasing number of describing attributes being stored in the
associated database archetype. The different database archetypes of traditional
central RDBMS and data mesh are clearly visible. Both runtime portray an
exponential increase, while the growth of the data mesh answers to a higher
factor (see Fig. 3a). While both, a traditional central RDBMS and a data mesh
can be scaled horizontally and vertically in number of nodes and hardware used,
the data mesh suffers a fragmentation of describing data attributes that can
form quasi-identifiers. This fragmentation needs to be first compensated which
essentially answers to more network I/O and therefore longer processing time.
The larger the fragmentation, the higher the network I/O and the longer the
compute.

Following the same line of thoughts, Fig. 3b depicts the evolution of the same
metrics over different data mesh sizes. The data mesh size answers to the number
of instances involved with equally distributed data attributes, starting from two
and increasing. Given the nature of the search, the complexity is exponential
already. Yet, two things stand out. First, the more data mesh instances exist
with equivalent data distribution, the sooner runtime increases due to the higher
degree of fragmentation and therefore, more data shifting and joining is required.
Second, the more data meshes exist, the earlier one experiences an uncontrolled
explosion of execution time as, given the hardware constraint, the capacities of
main memory and GPU memory are exceeded.

1 https://github.com/jaSunny/synthetic genome data.

https://github.com/jaSunny/synthetic_genome_data
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5 Conclusion and Future Directions

The previous sections offered a systematisation of knowledge and clarified charac-
teristics of data mesh and how quasi-identifiers potentially exposing PII. Further,
the summarised state-of-the-art delineates gaps for privacy and anonymisation
concepts in distributed data mesh environments. To demonstrate the unique-
ness and scalability of this problem, we have offered a variety of experiments to
discover quasi-identifier exposing PII in a traditional RDBMS setup and com-
pared these metrics against same algorithms running in a data mesh setup. The
increase of complexity and runtime is clearly visible.

Based on this understanding, we formulate the open distributed Quasi-
identifiers problem: To find usage of PII data within a data mesh, elements
of one quasi-identifiers (QIDs) might be distributed and linked across more than
one database instance. To find these distributed QIDs, all describing attribute
combination of any length that can be cross-linked through arbitrary identifiers
need to be considered. Due to its distributed nature, this represents a special
case of the W[2]-complete Find-QID problem [61].
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