
A Policy Language for Integrating Heterogeneous 
Authorization Policies 

Wei Zhou, Christoph Meinel 
 

Hasso-Plattner-Institute at University of Potsdam, 
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany 

{wei.zhou, meinel}@hpi.uni-potsdam.de 

Abstract. In order to manage and enforce multiple heterogeneous authorization 
policies in distributed authorization environment, we defined the root policy 
specification language and its corresponding enforcing mechanism. In a root 
policy, the involved users and resources can be defined in coarse or fine-
grained. Each involved authorization policy’s storage, trust management and 
enforcement can be defined independently. These authorization policies can be 
enforced in distributed way. Policy schemas, policy subschemas and policy 
hierarchies can deal with complex authorization scenarios. The context 
constraint component makes the root policy is a context-aware authorization 
system. On the other hand multiple root policies can cooperate together to 
complete more complicated authorization tasks. 

Keywords: Access Control, Authorization Policy, XML, X.509, Attribute 
Certificate. 

1   Introduction 

Nowadays governments, businesses and organizations are finding that collaborations 
are increasingly critical to their success. The focus on sharing and protecting 
information is becoming increasingly acute. Authorization policy plays an important 
role in this era where computing resources of organizations with diverse privacy 
protection and information sharing requirements are increasingly connected together 
to carry out joint or common tasks. For information protection, different authorization 
systems and mechanisms are developed.  

For instance, in response to the need to protect classified information, there are 
mechanisms to enforce Multi-Level Security (MLS) [1] policies, and in recognition of 
the needs of industry, Role-Based Access Control (RBAC) [2] mechanisms enforce 
commercial policies. For collaboration purposes, various new authorization systems 
and mechanisms have been proposed and developed recent years. Some of the well 
known systems are Akenti [3], Cardea [4], CAS [5], PRIMA [6], Permis [7] and 
VOMS [8]. So, access control mechanisms come in a wide variety of forms, each with 
their individual attributes, functions, and methods for configuring policy. 

Unfortunately, in many application scenarios one size does not fit all, especially in 
the collaboration application environments such as a Grid system that is a virtual 

In Proceedings of the 4th International Conference on Grid Service Engineering and 
Management (GSEM 2007), Leipzig, Germany, September 2007, pp 9-23. 

published as: Wei Zhou, Christoph Meinel: A Policy Language for Integrating Heterogeneous Authorization Policies; 
In Proceedings of the 4th International Conference on Grid Service Engineering and Management (GSEM 2007);  
Leipzig, Germany, September 2007. pp. 9 - 23, ISBN: 978-3-88579-211-6



organization composing several independent autonomous domains. In grid computing 
environment, each autonomous domain may have its own policies and may change its 
policies dynamically. Authorization in such a system needs to be flexible and scalable 
to support multiple authorization mechanisms and security policies, which suggest 
new challenges to the grid computing platforms. A further example is provided by 
laws concerning privacy issues. The security policy of an organization need combine 
internally specified constraints with externally imposed privacy regulations [9]. 

Even there uses only one authorization policy specification language, it is also 
possible to require an authorization system to combine multiple policies to complete 
some complex decision tasks. Consider a large organization composed of different 
departments and divisions, each of which can independently specify security policies; 
the global policy of the organization results from the combination of all these 
components. Finally, as security policies become more sophisticated, even within a 
single system it may be desirable to formulate the policy incrementally by assembling 
small, manageable, and independently conceived modules [17]. 

Some authorization policy languages, such as XACML [10], already provide 
comprehensive functionality to combine multiple policies if they are written in the 
same language. Some authorization policy languages, such as PERMIS X.500 PMI 
RBAC Policy [11], do not support multiple policies combination. So we need a policy 
language to specify multiple heterogeneous authorization policies combination and 
the corresponding enforcing mechanism. To our knowledge there is still no such kind 
of policy specification language. Motivated by this requirement, we developed a 
XML-based policy language for specifying heterogeneous policies combination and a 
mechanism to enforce these policies. This policy language is called root policy 
specification language, and a policy written in this language is called root policy. In 
this paper we will introduce the root policy structure and enforcing mechanism.  

The remainder of this paper is organized as follows. Section 2 gives the major 
related work. Section 3 introduces the root policy authorization model. Section 4 
describes the root policy language model. Section 5 provides a root policy 
enforcement mechanism. Section 6 investigates the root policy collaboration. Finally, 
Section 7 summarizes the results of this paper. 

2   Related Work 

Recent years there is considerable work on access control models and languages. 
Many approaches have been proposed to increase expressiveness and flexibility of 
authorization languages by supporting multiple policies within a single framework 
[12, 13, 14, 15, 16]. These proposals, while based on powerful languages able to 
express different policies, assume a single monolithic specification of the entire 
policy. Such an assumption does not fit many real-world situations, where access 
control might need to combine independently stated restrictions that should be 
enforced as one.  

Since different organizations operate under different requirements for protecting 
their data, inevitably their security mechanisms do not share common principles, are 
not implemented in similar languages and do not run on compatible operating 



platforms. This situation is recognized by both [17, 18]. They propose algebras for 
combining security policies with formal semantics. Complex policies are formulated 
as expressions of the algebras. These frameworks provide descriptions of policies that 
are language and implementation mechanism independent. Such descriptions can be 
examined for completeness, consistency, and unambiguity. Environment related 
policy composition also be considered by Siewe et al [19]. 

NIST initiated a project in pursuit of a standardized access control mechanism, 
referred to as Policy Machine (PM) that requires changes only in its configuration in 
the enforcement of arbitrary and organization specific attribute-based access control 
policies [20]. The PM’s enforceable policies are combinations of policy instances. 
The core features of the PM are capable of configuring, combining and enforcing 
arbitrary attribute-based policies. PM categorizes users and objects and their attributes 
into policy classes, and transparently enforces these policies through a series of fixed 
PM functions. This may be a promise approach in future, but currently we need some 
more realistic solutions to resolve the already exists authorization problems.  

XACML is a very rich and flexible language; users and security administrators can 
directly represent in XACML a large variety of authorization policies. XACML is 
becoming popular these years. More and more systems adopt XACML as their 
authorization language. However, XACML has not been built to manage security in 
large distributed systems in which virtual organizations are dynamically built with the 
collaboration of multiple independent subjects sharing their resources [21]. 

Multipolicy Authorization Framework for Grid Security [22] is the most relevant 
work to our work. Basing on the special security needs of the Grid computing, they 
constructed an authorization framework in the Globus Toolkit 4 [23] that can support 
multiple authorization policies. For each existing authorization policy, the framework 
constructs a Policy Decision Point (PDP) for evaluating that kind of policy. There is a 
Master PDP that is responsible for coordinating other PDPs, combining the decisions 
returned by each PDP and renders a final decision. The PDPs managed by a Master 
PDP are specified in a security configuration file. However their approach does not 
touch such as policy storage, interaction among PDPs and multiple Master PDPs 
collaboration. There is not policy language for specifying and enforcing these PDPs, 
and simply adds policy evaluator class names into a configure file. So, all PDPs are 
applicable to all authorization requests. 

3   Root Policy Authorization Model 

Root policy is used to manage and enforce multiple heterogeneous authorization 
policies. A root policy authorization system consists of a root policy and a root policy 
evaluator. The root policy evaluator acts the role of a PDP. It reads a root policy in, 
evaluates input authorization requests, and then renders authorization decisions. 

3.1   Root Policy Data Flow Model 

The architecture of root policy framework adopts the XACML authorization model. 
This model uses an entity named Context Handler to separate Policy Enforcement 



Point (PDP) and Policy Decision Point (PEP). So an application system can 
communicate with a XACML evaluator or other policy evaluator such as our root 
policy evaluator through the context handler. This is the major reason that we adopt 
this authorization model. The root policy authorization model is shown in Fig. 1. 

Policy 
Enofrcement 
Point (PEP)

Policy Decision 
Point (PDP)

Policy 
Administration 

Point (PAP)

Context 
Handler

Policy 
Information 
Point (PIP)

Environment

Obligation 
services

ResourceSubjects

Access 
reuqester

1. root policy

7. request and 
attributes 4. attributes query

6. attributes8. decision 
response

5b. resource 
attributes

5c. environment 
attributes

5a. subject 
attributes

10. obligations2. access request

3. request

9. response

 

Fig. 1. Root policy authorization model. 

The root policy authorization model mainly contains PEP, PDP, Context Handler, 
Policy Information Point (PIP) and Policy Administration Point (PAP). PEP performs 
access control by making decision requests and enforcing authorization decisions. 
PAP creates root policy that is used by a root policy PDP.  

PIP collects information about the request subject, related resource and the 
environment. It's useful to separate this collection process into its own module so that 
different authorization algorithms and policies can be configured with the same 
collection process. Examples of PIPs are the VOMS [8] PIP, which parses a caller’s 
VOMS credential for attributes; and the Shibboleth [24] PIP, a remote callout that 
retrieves Security Assertions Markup Language (SAML) [25] attributes; and the 
Permis [7] PIP, which parses a caller’s X.509 attribute certificates [26] for user roles. 

Context handler constructs root policy canonical requests context based on the 
request sent by the PEP and the additional attributes obtained from the PIP, and then 
presents them to the PDP. PDP evaluates the root policy and renders an authorization 
decision. Context handler converts the authorization decisions from PDP to the native 
format supported by the PEP. The PEP fulfills the obligations and either permits or 
denies the access request according to the decision of PDP.  

3.2   Root Policy Context 

Root policy is intended to be suitable for a variety of application environments. The 
core language is insulated from the application environment by the root policy 



context, as shown in Fig. 2. The root policy context is defined with a root policy, root 
policy evaluator, root policy request context and root policy response context. 

Root 
Policy.xml

Root Policy 
Evaluator 

(PDP)

Root Policy 
Request

Root Policy 
Response

domain-specific 
inputs

domain-specific 
outputs

 

Fig. 2. Root policy context. 

The root policy is written in XML. It describes which authorization policies are 
used, where to get them, and how to combine them to reach a final authorization 
decision. Root policy evaluator is used to evaluate a root policy. It is also called root 
policy PDP. A root policy PDP makes authorization decisions through combining 
other concrete authorization policy evaluators’ authorization results. 

In one root policy there may involve several different types of authorization 
policies and their corresponding policy evaluators. Each kind of policy evaluators 
may need different input data format. The root policy request context is a data 
structure that can provide different request information used to making particular 
decision requests for different policy evaluators, and new request information can be 
easily added into it. It is the responsibility of an authorization policy evaluator to 
create a concrete decision request according to the root policy request context.  

The evaluation result of a root policy can be “Permit”, “Deny”, “Indeterminate” or 
“NotApplicable” that is carried by the root policy response context. It is the 
responsibilities of the context handler to convert the domain-specific inputs to root 
policy requests and convert root policy responses to the domain-specific outputs. 

3.3   Root Policy Trust Management 

Privilege management infrastructure (PMI) was specified by the ITU-T and ISO/IEC 
[27]. The main function of PMI is in providing a strong authorization after the 
authentication has taken place. It has a number of similarities with PKI [28]. The 
basic data structure in a PMI is a X.509 attribute certificate (AC) [26]. Like public 
key certificate (PKC) strongly binds a public key to its subject, AC strongly binds a 
set of attributes to its holder. Attribute certificates have been designed to be used in 
conjunction with identity certificates, i.e. PMI and PKI infrastructures are linked by 
information contained in the ACs and PKCs. For example the holder field in an AC 
contains the serial number and issuer of a PKC.  

In a PMI, the entity that digitally signs an AC is called Attribute Authority (AA). 
The trusted root of a PMI is called Source of Authority (SOA). A SOA may delegate 
its powers of authorization to subordinate AAs. Subordinate AAs may also delegate 
their powers of authorization to further subordinate AAs. Then an AA hierarchy can 



be established. When a user’s authorization permissions need to be revoked, an AA 
will issue an Attribute Certificate Revocation List (ACRL). There are two primary 
models for distribution of ACs: the “push” and “pull” models. ACs may be used with 
various security services, including access control, data origin authentication, and 
non-repudiation. In our work ACs are used to store authorization policies. 

4   Root Policy Language Model 

The root policy language model is shown in Fig. 3. The main components of the 
model are subject domain, resource domain, context constraint, policy, policy 
hierarchy, policy schema and policy subschema. They are described as follows.  

 

Fig. 3. Root policy language model. 

4.1   Subject Domain 

SubjectDomain specifies the domain of users who may be granted within the overall 
root policy. Each domain is specified as a collection of LDAP sub-trees, using Include 



and Exclude statements. The Include statement specifies the LDAP DN of the root 
node of a subject domain, and the Exclude statement specifies which subordinate sub-
trees to be excluded from the domain. Using a null LDAP DN in an Include statement 
specifies the domain of all users in the world.  

An example of directory information tree is shown in Fig. 4. The example of 
subject domains specification below specifies the employees of company ABC, 
excluding the Germany branch.  

root

dc=abc.com

l=uk

ou=marketing ou=services

dc=xyz.com

l=de

ou=marketing ou=services

ou=marketing ou=services

 

Fig. 4. Example of subject domain directory information tree. 

<SubjectDomains>
  <SubjectDomain SubjectDomainID=" CompanyABCEmployees ">
    <Include>
      <LDAPDN>dc=abc.com</LDAPDN>
    </Include>
    <Exclude>
      <LDAPDN>l=de, dc=abc.com</LDAPDN>
    </Exclude>
  </SubjectDomain>
</SubjectDomains>

4.2   Resource Domain 

ResourceDomain specifies the resource domain covered by this root policy. Resource 
domains are specified as LDAP DN sub-trees, using Include, Exclude and 
ObjectClasses statements. The Include statement specifies the LDAP DN of the root 
node of a domain, and the Exclude statement specifies subordinate sub-trees to be 
excluded from the domain. Using a null LDAP DN in an Include statement specifies 
the domain of all resources in the world. A domain may optionally be refined by 
specifying a set of object classes. An object class is a general description of an object 
as opposed to the description of a particular object. For instance, the object class 
CustomerInformation represents the customer information of a company. Only 
resources with the full set of object classes are included in the domain. A null set of 
object classes implies all resources in the domain are included. 

The following example comprises a resource domain as shown in Fig. 4, which 
specifies all the customer information in the company ABC. 

 
<ResourceDomains>
  <ResourceDomain ResourceDomainID="CompanyABCCustomers">
    <Include>
      <LDAPDN>ou=services, l=uk, dc=abc.com</LDAPDN>



    </Include>
    <ObjectClasses>
      <ObjectClass>CustomerInformation</ObjectClass>
    </ObjectClasses>
  </ResourceDomain>
</ResourceDomains>

4.3   Context Constraint 

ContextConstraint specifies that certain context attributes must meet certain 
conditions to permit an authorization policy or an authorization policy schema to be 
executed. A context constraint is defined through the terms context attribute, context 
function and context condition: 
• Context attribute represents a certain property of the context whose actual value 

might change dynamically, e.g. time, date, location and etc.  
• Context function is a mechanism to obtain the current value of specific context 

attribute. For example, the function getDate returns the current date. One or more 
context functions are encapsulated into a context observer. For example, functions 
getDate, getTime and getIP can be organized into the observer LocalHostObserver. 

• Context condition is a predicate that consists of an operator and two or more 
operands. The first operand represents a certain context attribute, while the other 
operands may be either context attributes or constant values. Each context attribute 
is replaced with a constant value by using the corresponding context function prior 
to the evaluation of the respective condition. 

• Context constraint is a class clause containing one or more context conditions. It is 
satisfied if and only if all its context conditions are satisfied. 
A conditional policy or policy schema is associated with one or more context 

constraints and grants to be used for making access control decisions if and only if 
each corresponding context constraint evaluates to “true”. The following example 
specifies a context constraint of WorkingTime that specifies the working days are 
from Monday to Friday in a week. 

 
<ContextConstraints>
  <ContextConstraint ContextConstraintID="WorkingTime">
    <ContextCondition ContextConditionID="DaysOfWeek">
      <Operator DataType="WeekDay">in</Operator>  
      <LeftOperand>
        <Observer>LocalHostObserver</Observer>  
        <Function>GetWeekDay</Function>  
      </LeftOperand>
      <RightOperand>
        <Parameter>Monday;Tuesday;Wednesday;Thursday;Friday</Parameter>
      </RightOperand>
    </ContextCondition>
  </ContextConstraint>
</ContextConstraints>



4.4   Policy 

Policy specifies the authorization policy used in a root policy. These polices’ storage 
can be distributed. In order to ensure the policies gotten are the real ones at runtime, 
X.509 attribute certificates are used to hold authorization policies. The items defined 
to specify an authorization policy are described as follows. 
• OID specifies the unique object identifier of an authorization policy. This value is 

also used to extract the corresponding policy from a policy attribute certificate. 
• ValidityPeriod specifies the valid time of a policy. The actual validity time takes 

the intersection of the policy validity time the AC validity time. 
• Critical specifies how to deal with this policy after it is expired. If its value is 

“TRUE”, then all the authorization requests related to this policy will be denied. 
• Evaluator specifies the class that is used to evaluate this policy.  
• ACURI is the unique name used to retrieve the policy AC.  
• ACRLURI specifies the attribute certificate revocation list (ACRL). 
• PKCURI is the unique name used to retrieve the PKC used to verify the policy AC. 
• CRLURI specifies the PKC revocation list (CRL). 
• RealizedBy specifies where an authorization request should be further sent when it 

needs to be evaluated at a remote site. 
The following example specifies two policies. The policy “Permis_Policy” is 

evaluated at the local site. The policy “XACML_Policy” is evaluated in a remote site, 
and the requests are sent to the remote site through SOAP messages. 

 
<Policies>
  <Policy PolicyID="Permis_Policy">
    <OID>1.2.826.0.1.3344810.1.1.13.1</OID>  
    <ValidityPeriod Start="2006-06-01T00:00:00" End="2007-08-31T23:59:59" />  
    <Critical>TRUE</Critical>  
    <Evaluator>PDP_PERMIS</Evaluator>  
    <ACURI>ldap://localhost:389/cn=PermisPolicy1,ou=Security,dc=uni-
trier.de</ACURI>  
    <ACRLURI>http://localhost:8080/Trier/ACs/ACRL/</ACRLURI>  
    <PKCURI>ldap://localhost:389/cn=aaRSA1024Trier,ou=Security,dc=uni-
trier.de</PKCURI>  
    <CRLURI>http://localhost:8080/Trier/PKCs/CRL/</CRLURI>  
  </Policy>
  <Policy PolicyID="XACML_Policy">
    <OID>1.2.826.0.1.3344810.1.1.15.1</OID>  
    <Critical>TRUE</Critical>  
    <RealizedBy>http://remotehost:8080/root-policy/coordinator</RealizedBy>  
  </Policy>
</Policies>

4.5   Policy Hierarchy 

PolicyHierarchy specifies the inheritance relation among policies. At the top of the 
hierarchy, the policy is the most general to all other policies. Policies near the bottom 
of the hierarchy provide more specialized specification. Except the policy at the root 
node, any other policy has one and only one direct superior policy. So the policy 
hierarchy is a simple tree. An example of policy hierarchy is shown in Fig. 5. 



Policy hierarchy caters the requirement of large organization composed of different 
divisions, each of which can independently specify security policies; the global policy 
of the organization results from the combination of all these policies. Similar 
requirement also exists in virtual organization that needs to combine the virtual 
organization scope policies and the policies from the participant organizations. 

When an authorization request is checked by a policy that is in a policy hierarchy, 
all the policies from the given policy to the root node policy may be checked. Each 
policy hierarchy is associated a policy combining algorithm used to combine these 
policies. They are “deny-overrides” and “permit-overrides”. The following example 
specifies a policy hierarchy shown in Fig. 5, and the associated policy hierarchy 
combining algorithm is “permit-overrides”. 

P0

P1 P4

P2 P3  

Fig. 5. Example of policy hierarchy. 

<PolicyHierarchies>
  <PolicyHierarchy PolicyHierarchyID="Policy_Hierarchy" 
PolicyCombiningAlgID="policy-combining-algorithm:permit-overrides">
    <PolicyReference PolicyID="P0">
      <SubPolicyReference PolicyID="P1" />
      <SubPolicyReference PolicyID="P4" />
    </PolicyReference>
    <PolicyReference PolicyID="P1">
      <SubPolicyReference PolicyID="P2" />
      <SubPolicyReference PolicyID="P3" />
    </PolicyReference>
    <PolicyReference PolicyID="P2" />
    <PolicyReference PolicyID="P3" />
    <PolicyReference PolicyID="P4" />
  </PolicyHierarchy>
</PolicyHierarchies>

4.6   Policy Schema 

PolicySchema specifies what kinds of authorization requests should be checked by 
which policies, and how these policies are combined together to make access control 
decisions. As shown in Fig. 3, the policy schema contains five data elements, they are 
described as follows.  

SchemaSubjectDomains specifies the domains from which the subjects of 
authorization requests are valid. SchemaResourceDomains specifies the domains in 
which the objects of authorization requests are valid. A policy schema is applicable 
only if the authorization request satisfied the schema subject domains, schema 



resource domains and its associated context constraints are evaluated to “true”. 
SchemaPolicyHierarchies specifies which policy hierarchies should be considered. 

PolicyItem is the basic data element used to describe policy relations. Each 
PolicyItem holds a policy reference or a policy subschema reference. Its related policy 
or policy subschema is organized in CombinedPolicyItem. The combined policy items 
are organized into PolicySet elements. One PolicyItem can have multiple PolicySet 
elements that are organized into PolicySets element. The algorithms used to combine 
multiple CombinedPolicyItems or PolicySets are “deny-overrides” and “permit-
overrides”. The relation between PolicyItem and PolicySets is conjunction. A policy 
reference held by a CombinedPolicyItem can also be held by a policy item, through 
this way, any relation among these policies can be specified. A policy item can be 
associated with context constraints that are used to limit the usage of the policy items 
based on the context information.  

In each policy schema there is a policy item defined as the start point from which 
authorization requests are checked. The evaluation result of policy schema can be 
“Permit”, “Deny”, “NotApplicable” or “Indeterminate”. It is also possible that 
multiple policy schemas satisfy one authorization request, then the policy schema 
combining algorithm will be used to combine the multiple policy schemas. The policy 
schema combining algorithm can either be “deny-overrides” or “permit-overrides”. 

The following example shows an authorization policy schema definition. In this 
example, the policy schema defines two schema subject domains and one schema 
resource domain. The schema also defines two policy hierarchies. A context 
constraint is also associated to this policy schema. The start point of this policy 
schema is the policy item “Permis_Policy_1”. There two policies are related to this 
policy item and organized into one policy set. 

 
<PolicySchemas SchemaCombiningAlgID="schema-combining-algorithm:permit-
overrides">
  <PolicySchema PolicySchemaID="B2BMCPolicySchema1">
    <StartPolicyItem PolicyItemID="Permis_Policy_1" />  
    <SchemaSubjectDomains>
      <SubjectDomainReference SubjectDomainID="TrierEmployees" />  
      <SubjectDomainReference SubjectDomainID="PotsdamEmployees" />  
    </SchemaSubjectDomains>
    <SchemaResourceDomains>
      <ResourceDomainReference ResourceDomainID="B2BMCFiles" />  
    </SchemaResourceDomains>
    <SchemaPolicyHierarchies HierarchyCombiningAlgID="hierarchy-combining-
algorithm:deny-overrides">
      <PolicyHierarchyReference PolicyHierarchyID="Policy_Hierarchy_1" />
      <PolicyHierarchyReference PolicyHierarchyID="Policy_Hierarchy_2" />
    </SchemaPolicyHierarchies>
    <SchemaPolicyRelations>
      <PolicyItem PolicyItemType="Policy" PolicyItemID="Permis_Policy_1">
        <PolicySets PolicySetCombiningAlgID="policy-set-combining-
algorithm:permit-overrides">
          <PolicySet PolicyItemCombiningAlgID="policy-item-combining-
algorithm:permit-overrides">
            <CombinedPolicyItem PolicyItemType="Policy" 
PolicyItemID="XACML_Policy_1" />  
            <CombinedPolicyItem PolicyItemType="Policy" 
PolicyItemID="XACML_Policy_2" />  
          </PolicySet>



        </PolicySets>
      </PolicyItem>
    </SchemaPolicyRelations>
    <Context>
      <ContextConstraintReference ContextConstraintID="WorkingTime" />  
    </Context>
  </PolicySchema>
</PolicySchemas>

4.7   Policy Subschema 

PolicySubSchema is a simplified policy schema. It can be invoked by policy schemas 
or other policy subschemas. The major difference between policy schema and policy 
subschema is that the subschema does not specify the schema subject domains and 
schema resource domains. This characteristic makes policy subschemas can be 
invoked by different policy schemas that have different applicable scopes. 

 

Fig. 6. Root policy evaluator. 

5   Root Policy Enforcement 

The components used to enforce a root policy are shown in Fig. 6. The class 
RootPolicyContext is the container that holds a RootPolicy object and the 
authorization policy evaluators used to evaluate corresponding authorization policies 
specified in the root policy. Each policy evaluator is an instance of the class 
PolicyEvaluator, and is used to evaluate a concrete authorization policy. In order to 



initialize a policy evaluator, the policy evaluator class name and policy filename are 
passed into the PolicyEvaluator class constructor. Each policy evaluator can be seen 
as an independent PDP that is managed by the root policy PDP. 

A complicated access control system may involve multiple types of policies, and 
new type of policies may also arise over a period of time. So the root policy evaluator 
is designed for policy agnostic. Each kind of policies has its own evaluator, and 
different kinds of policy evaluators have the same interface so that the root policy 
evaluator can treat them in a unified way. New policy evaluator can be dynamically 
added or removed from the system at runtime. In Fig. 6 the PDP_PERMIS, 
PDP_EMPTY and PDP_RPEC are three kinds of policy evaluators. The 
PDP_PERMIS is the evaluator for evaluating X.509_PMI_RBAC_Policy policies 
[11]. In a root policy system, we can define any number of such kinds of policy 
evaluators. The PDP_EMPTY and PDP_RPEC are used to deal with empty policy 
items and remote root policy callings, respectively. The PolicyEvaluator manages 
them through the interface AuthorizationPolicyEvaluator. Each policy evaluator is 
implemented separately and independently. The only restriction is all of them must 
share a similar interface. The corresponding Java interface is defined as: 

 
public interface AuthorizationPolicyEvaluator {  
  public int evaluate(RequestContext requestContext); 
}  

 
This method must be implemented in a concrete authorization policy evaluator, 

through which decision request contexts are passed into the policy evaluator and then 
the evaluation results are returned. Each policy evaluator is an instance of the class 
PolicyEvaluator. The PolicyEvaluator inherits from the abstract class 
AuthorizationPolicyEvaluatorCreator that is responsible for creating an 
AuthorizationPolicyEvaluator object. 

6   Root Policy Collaboration 

Multiple root policies can collaborate to finish some common tasks. These root 
policies can coexist in one domain or different domains. The implementation of root 
policy collaboration is through the way that the authorization policy specified in one 
root policy is realized by another root policy. In this case the policy specification field 
RealizedBy provides a URL pointing to an endpoint where the policy will be 
enforced. All the decision requests related to this policy will be sent to this endpoint. 
Every root policies and the authorization policies specified in these root policies have 
a unique identification (OID) in the whole scope that these policies are applied. In the 
case that one policy is realized by another root policy, its OID is another root policy 
OID. One example of these relationships is shown in the Fig.7. 

In this example there are four root policies. In the Root Policy1 there define three 
authorization policies. Among of them the Policy2 is realized by the Root Policy2. In 
the Root Policy2 there define two authorization policies, both of them are realized by 
some other root policies, i.e. the Policy4 is realized by the Root Policy 3 and Policy5 



is realized by the Root Policy4. Through this way, one decision request check can be 
propagated among many root policies.  

Root Policy1

Policy1

Policy2

Policy3

Root Policy2

Policy4

Policy5

Root Policy3

Policy6

Root Policy4

Policy7

Policy8  

Fig. 7. Example of root policy collaboration. 

7   Conclusion 

Root policy specification language is a XML-based language for specifying 
heterogeneous authorization policy management and enforcement. It allows security 
administrators to freely define the involved authorization policy’s storage, trust 
management and enforcement independently. New kinds of policy evaluators and 
policies can be dynamically added into the system. With the help of policy schemas, 
policy subschemas and policy hierarchies, complex authorization policy relations can 
be easily defined. The context constraint component makes the root policy is a 
context-aware specification language that is important for specifying virtual 
organization management, in which the involved users and resources are dynamically 
changed. On the other hand multiple root policies can cooperate together to complete 
more complicated authorization tasks. 

References 

1. D. Bell and La Padula, “Secure computer systems: unified exposition and MULTICS”. 
Report ESD-TR-75-306, The MITRE Corporation, Bedford, Massachusetts, March 1976. 

2. D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli, “Proposed NIST 
standard for role-based access control”, ACM Transactions on Information and System 
Security, vol. 4, pp. 224-274, Aug. 2001. 

3. M. Thompson, A. Essiari, S. Mudumbai, “Certificate-based Authorization Policy in a PKI 
Environment”, ACM Transactions on Information and System Security (TISSEC), Volume 
6, Issue 4 (Nov. 2003) pp 566-588 

4. R. Lepro, “Cardea: Dynamic Access Control in Distributed Systems”, NASA Technical 
Report NAS-03-020, November 2003. 

5. L. Pearlman, C. Kesselman, V. Welch, I. Foster and S. Tuecke, “The Community 
Authorization Service: Status and Futures”. Computing in High Energy Physics (CHEP03), 
2003. 

6. M. Lorch, D. Adams, D. Kafura, M. Koneni, A. Rathi and S. Shah, “The PRIMA System for 
Privilege Management, Authorization and Enforcement in Grid Environments”, 4th Int. 
Workshop on Grid Computing - Grid 2003, 17 November 2003, Phoenix, AR, USA. 



7. D.W. Chadwick and A. Otenko, “The PERMIS X.509 role based privilege management 
infrastructure”, Future Generation Computer Systems, Volume 19, Issue 2, February 2003, 
Pages 277-289. 

8. R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, Á. Frohner, K. Lőrentey and F. 
Spataro, “From gridmap-file to VOMS: managing authorization in a Grid environment”, 
Future Generation Computer Systems, 21(4), pp. 549-558, 2005. 

9. D. Banisar and S. Davies, “Privacy & Human Rights—An International Survey of Privacy 
Laws and Developments”, EPIC, 1999. 

10.XACML and OASIS Security Services Technical Committee, “eXtendible Access Control 
Markup Language (xacml) committee specification 2.0”, Feb 2005. 

11.D.W. Chadwick, A. Otenko, “RBAC Policies in XML for X.509 Based Privilege 
Management”, SEC 2002, Egypt, May 2002. 

12.H. Hosmer, “The multipolicy paradigm”, in Proceedings of the Fifteenth National Computer 
Security Conference (Baltimore, Oct.), 409–422, 1992. 

13.T. Woo and S. Lam, Authorizations in distributed systems: A new approach. J. Comput. 
Sec. 2, 2,3, 107–136, 1993. 

14.E. Bertino, S. Jajodia and P. Samarati, “A flexible authorization mechanism for relational 
data management systems”, ACM Trans. Inf. Syst. 17, 2 (April), 101–140, 1999. 

15.N. Li, J. Feigenbaum and B. Grosof, “A logic-based knowledge representation for 
authorization with delegation”, in Proceedings of the Twelfth IEEE Computer Security 
Foundations Workshop (Mordano, Italy, June), 162–174, 1999. 

16.S. Jajodia, P. Samarati, M. Sapino and V. Subrahmanian, “A unified framework for 
supporting multiple access control policies”, ACM Trans. Database Syst. 26, 2 (June), 214–
260, 2001. 

17.P. Bonatti, S. Vimercati, and P. Samarati, “An Algebra for Composing Access Control 
Policies”, ACM Transaction on Information and System security, 5(1):1-35, February 2002. 

18.D. Wijesekera and S. Jajodia, “A Propositional Policy Algebra for Access Control”, ACM 
Transactions on Information and System Security, 6(2):286–325, May 2003. 

19.F. Siewe, A. Cau and H. Zedan, “A Compositional Framework for Access Control Policies 
Enforcement”, in proceedings of the ACM FMSE’03, Washington, DC, USA, pp. 32-42, 
October 2003. 

20.D. F. Ferraiolo, S. Gavrila, V. Hu, D. R. Kuhn, “Access control policy management: 
Composing and combining policies under the policy machine”, in Proceedings of the 
SACMAT’05, Stockholm, Sweden, pp. 11-20, 2005. 

21.P. Mazzoleni, E. Bertino, B. Crispo, S. Sivasubramanian, “XACML policy integration 
algorithms: not to be confused with XACML policy combination algorithms!”, in 
Proceedings of the SACMAT’06, Lake Tahoe, California, USA, pp. 219-227, June 2006. 

22.B. Lang, I. Foster, F. Siebenlist, R. Ananthakrishnan and T. Freeman. “A Multipolicy 
Authorization Framework for Grid Security”, in Proceedings of the Fifth IEEE Symposium 
on Network Computing and Application, Cambridge, USA, pp. 269-272, July 2006. 

23.The Globus Project: http://www.globus.org/. 
24.The Shibboleth project, http://shibboleth.internet2.edu/. 
25.Security Assertion Markup Language (SAML) v1.0 - OASIS Standard, 5 November 2002 - 

http://www.oasis-open.org/committees/download.php/3406/oasis-sstc-saml-core-1.1.pdf. 
26.S. Farrell, R. Housley, An Internet Attribute Certificate Profile for Authorization, Internet-

draft April 2002, http://www.ietf.org/rfc/rfc3281.txt. 
27.ITU-T Rec. X.509 ISO/IEC 9594-8, The Directory: Public-key and Attribute Certificate 

Frameworks, May, 2001. 
28.R. Housley, W. Ford, W. Polk, D. Solo, Internet X.509 Public Key Infrastructure Certificate 

and CRL Profile, January 1999, http://www.ietf.org/rfc/rfc2459.txt. 




