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Abstract. The seamless composition of independent services is one of
the success factors of Service-oriented Architectures (SOA). Services are
orchestrated to service compositions across organisational boundaries to
enable a faster reaction to changing business needs. Each orchestrated
service might demand the provision of specific user information and re-
quires particular security mechanisms. To enable a dynamic selection
of services provided by foreign organisations, a central management of
static security policies is not appropriate. Instead, each service should
express its own security requirements as policies that stipulate explicitly
the requirements of the composition. In this paper we address the prob-
lem of aggregating security requirements from orchestrated services. Such
an aggregation is not just the combination of all security requirements,
since dependencies and conflicts between these requirements might ex-
ist. We provide a classification of these dependencies and introduce a
conceptional security model enabling a classification of security require-
ments to reveal conflicts. Finally, we propose an approach to determine
an aggregation of security requirements in cross organisational service
compositions.
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1 Introduction

Service-oriented Architectures (SOA) facilitate the interoperable and seamless
interaction of service consumer and service provider to meet the consumer’s
needs by the service’s capabilities. The standard set of Web Service technolo-
gies, such as WSDL, UDDI, and SOAP provides the means to describe, locate,
and invoke a Web Service based on XML. The independent nature of the ser-
vices, with respect to operating systems and system architectures, facilitate a
composition of different services. In fact, service composition is one of the suc-
cess factors of Service-oriented Architectures to enable the flexible integration
of services provided by independent business partners.

However, the seamless and straightforward integration of cross-organisational
services conflicts with the need to secure and control the access to provided ser-
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vices. Each service may support different security mechanisms and may require
different pieces of user information for access control. Since the user of the com-
posed service might be unknown to the provider of the orchestrated services,
the establishment of an identity federation is a basic necessity to provide re-
quired information across domain borders. In an identity federation all parties
are willing to rely on assertions representing claims about users. These claims
are issued by a trusted identity provider that manages a digital identity of the
service user. For instance, a credit card company can assert the user’s name and
his credit card information in an encrypted security token (e.g. SAML [12]). A
user can request this token on demand of a service’s requirements and include
this token in a SOAP message to invoke a service. Windows CardSpace [3] is one
example for a client technology to manage digital identities from various identity
providers. Based on the requirements of a service, CardSpace acts as an identity
selector and enables a user to choose from a set of identity providers that can
assert the required set of claims. Since this technology is founded on the WS-*
protocols, WS-Policy [5] is used to express the requirements.

Security policies expressing requirements for the users of a service are typ-
ically generated when the service is deployed, and are assigned to the service
statically. This approach is useful in a single domain leveraging a central policy
management, but it is not feasible in the context of service compositions contain-
ing services from independent organisations. The security requirements of the
composed service do not only depend on local security requirements, but also
on security policies and service level agreements specified by the orchestrated
services. In consequence, the security policy of the composed service might have
to be adapted when a service from another service provider is mapped to the
composition. This is especially an issue in service compositions that dynamically
select services based on non-functional properties. Moreover, it must be consid-
ered that there might be dependencies between different security requirements.
Requirements might interact, contradict or conflict, so that a simple combination
of all requirements is not sufficient.

Current research approaches [2, 1] are based on a semantic matching of ser-
vice’s security preconditions to create a service composition that can be executed
with the user’s security capabilities. These approaches are focused on enabling an
automatic composition under the restriction that the user must state in advance
which security credentials and mechanisms he is able to support. This solution
disregards privacy concerns, since it conflicts with the conception that the user
should control the usage of his identity information by selecting an appropriate
digital identity. Moreover, former approaches did not consider dependencies be-
tween security requirements that may result in an insecure policy of the service
provider.

In this paper we propose a method to aggregate and verify security require-
ments for cross-organisational federated service compositions. Therefore, we pro-
vide:
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– a classification of dependencies and effects between requirements (requirement
interactions) that must be resolved when aggregating a consistent set of se-
curity requirements.

– a conceptual security model that describes entities (e.g. security goals, policies
and security mechanisms) and their relationships regarding security require-
ments independently from technical aspects.

– an approach to determine a consistent aggregation of security requirements
for a service composition

The rest of this paper is organised as follows. In Section 2 we present a
travel agency scenario to illustrate dependencies of requirements in a service
composition and a definition of interaction classes between security requirements.
In Section 3 we introduce our conceptional security model to distinguish different
types of security requirements. Finally, we describe in Section 4 how our model
can be used to determine the interaction classes of security requirements and
how security requirements can be aggregated in a service composition. Section 5
provides an overview about related work, while the final section concludes this
paper.

2 Interactions of Security Requirements

In this section we present an example to clarify the aggregation of security
requirements in a service composition. Moreover, we provide a complete list of
possible interactions between these requirements that have to be considered to
compute a secure aggregation.

2.1 Travel Agency Service Scenario

Consider the example of a composed travel agency service that is capable to
perform a hotel and a flight reservation as shown in Figure 1. We assume that
the request to this service has to include all needed functional parameters, e.g.
preferred hotel, room types, arrival and departure time, and preferred type of
flight. Based on this information, the service is able to book the preferred com-
bination of hotel and flights. The service composition contains four independent
services whereas the services a2, a3, and a4 are provided by business partners of
the service a1. The first service a1 validates and verifies the functional service
parameters and invokes the service a2, which performs the reservation of the de-
sired hotel. Finally, depending on the preferred type of flight, either the service
a3 is called to book a budget flight or the service a4 is called to book a regular
flight.

In addition to these functional parameters, identity related information must
be provided to complete the booking process successfully. The services a2, a3,
and a4 require the name and address of the user as well as his credit card
information for payment. To secure the exchanged information, different security
mechanisms are needed to ensure confidentiality and integrity. While the services
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Fig. 1. Travel Agency Service Composition

a3 and a4 require the user to decrypt the information using the AES algorithm,
it is optional for service a2. WS-Policy can be used to express the requirements
of the individual services.

Although the policies of the basic services are well defined, it is challeng-
ing to generate a secure policy for the service composition. The collection and
simple combination of all security assertions is not sufficient, since independent
requirements might interact. In our example, the simple combination of the ba-
sic policies would allow that two security tokens conveying the same pieces of
identity information are added to the service request with different requirements
for encryption. One security token with the users name and address would be
encrypted with AES, while the other token with the same information can be
added to the same message without encryption. It is obvious that this is a se-
curity breach, but what if service a2 supports a weaker encryption mechanism
(e.g. DES) or AES with a shorter key length? The security level regarding the
identity information would depend on the weakest security mechanism. Another
possibility is that different services require different mechanisms to guarantee
integrity. How can be ensured that they provide the same level of security?

2.2 Classification of Requirement Interactions

A secure service complies with a set of security goals Gi = {g1, . . . , gm} (e.g.
authorisation or confidentiality) requiring a certain behaviour or information
from a client that wants to access the service. These expectations are expressed
as a set of requirements Ri = {ri1, . . . , rimi} associated with this service. To
guarantee a consistent and valid set of requirements, interactions (e.g. conflicts)
between these requirements must be considered. A requirement interaction is the
effect that two requirements have on each other. We introduce a classification of
security requirement interactions in this section based on former work on QoS
interactions described by Wohlstadter et el. [13]. A requirement has a positive or
negative impact that increases or decreases the service’s security. This impact is
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expressed by the function Ψ . Based on the comparison of the individual security
impact of two requirements r1 and r2 with the combined one, eight classes of
interaction can be revealed:

– Independent - Ψ({r1, r2}) = Ψ({r1}) + Ψ({r2})
The requirements are totally independent and do not interfere with each other.
The combined security impact is the sum of the individual ones.

– Equivalent - Ψ({r1, r2}) = Ψ({r1}) = Ψ({r2})
Two requirements will be equivalent, if they have the same effect providing
the same level of security. It is optional to use both requirements together,
although it might be advantageous to gain a greater flexibility by offering
equivalent alternatives to the service consumer.

– Prevent - Ψ({r1, r2}) = Ψ({r1})
The requirement r1 will prevent r2, if r2 has no impact on the security. Con-
sider the aforementioned travel agency scenario describing a service invocation
that contain the same pieces of information in an encrypted and a plain style.
The unsecure requirement prevents the high security requirement to effect the
communication.

– Restrict - Ψ({r1, r2}) < Ψ({r1}) + Ψ({r2})
Both requirements lower the impact of the other one. The combined impact
is usually greater than the individual ones, but less than the sum of those.

– Complements - Ψ({r1, r2}) > Ψ({r1}) + Ψ({r2})
The requirements will be complementary, if the combined security impact is
larger than the individual security level. It is more secure to use both require-
ments together.

– Require - Ψ({r1, r2}) > 0, Ψ({r1}) ≤ 0)
A requirement r1 will require r2, if the combined security impact is positive,
while the individual impact of r1 is negative. Both requirements must be used
together.

– Conflict - Ψ({r1, r2}) < 0, Ψ({r1}) ≥ 0 ∧ Ψ({r2}) ≥ 0
Two requirements will conflict, if their combined impact is negative, although
their individual impacts are positive. These requirements must not be deployed
together.

– Exclude - Ψ({r1, r2}) = Ψ({r1}) ∨ Ψ({r1, r2}) = Ψ({r2})
The requirements r1 and r2 represent an excluding alternative that may be
selected in dependency on functional or non-functional parameters of a service.

Although the possibility of interacting security requirements for a single ser-
vice has to be considered, this problem is much more serious in terms of service
compositions. In a service composition there are multiple sets of security re-
quirements Ri = {ri1, . . . , rimi

}, mi ∈ N involved that are associated with each
service i. Each service can have its own understanding of security and states its
own requirements regarding the same security goals. Therefore, if Rcomp is the
set of consistent security requirements for the service composition satisfying a
set of predefined security goals, then Rcomp ⊆

⋃
i=1...n Ri. Due to possible inter-

actions between security requirements, it is likely that Rcomp is unequal to the
union of all requirements.
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3 Security Model

Security requirements are expressed by security policies, usually in a very tech-
nical and policy language dependent way. To determine the interaction type of
two requirements, we need a security model that abstracts from technical de-
tails. The model must reveal all security aspects in an SOA landscape and the
relationship among affected entities. Therefore, our conceptual security model
describes basic security goals and outlines the relationship to specific security
attributes and mechanisms.

3.1 Specifying Security Goals

The abstract concept of security can be defined precisely by specifying a set of
security goals [11]. Although these goals can be further specialised, subdivided
or combined, we will focus solely on basic goals in this paper:

1. Confidentiality provides protection against the unauthorised notice of stored,
processed, or transferred information.

2. Integrity ensures the properness (intactness, correctness, and completeness)
of information (data integrity). Transferred, processed, or stored data must
not be modified with proper rights and - in economic terms - modifications
must correspond to business values and expectations.

3. Authentication ensures the credibility of information - such as a claimed
identity - by confirming this information as authentic.

4. Authorisation is the process of granting rights to participants to perform an
interaction, for instance to access a resource.

5. Traceability and Auditing provide verifiability regarding all performed ac-
tions in an information processing system. This can be related to simple
logging mechanisms, but also to monitoring as real-time auditing e.g. in
intrusion detection systems.

6. Availability ensures that data, resources and services, which are needed for
the proper functioning of a system, are available at each point in time re-
garding the requested quality of service.

These goals can be related to various entities in a Service-oriented Archi-
tecture. The relations among security goals and affected entities are typically
described by Constraints that are composed in a security Policy as indicated by
Figure 2. A subset of constraints can be exposed as requirements to service user.
Since some constraints regulate the internal functioning of the service, they are
not revealed to the service user.

The basic entity in such a model is an Object. We define an object as an
entity that is capable of participating in an Interaction with other objects. This
interaction will always lead to an Effect, which can comprise the provision of
information or the change of state in a system. The effect can, but does not
need to be, related to the object that initiated the interaction. For example, one
object could be an application and another object could be a service to store
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Fig. 2. Security Policy Model

data. The process of accessing this service would be the interaction resulting in
the effect that data is stored or some information is returned to the application.
This conception is close to the model that is described in the OASIS reference
model for SOA [10] and enables a straight mapping to this model.

Each object is related to a set of attributes describing its meta information.
For instance, if the object represents a user, attributes, such as name, email
address, age, etc. will be assigned. Altogether, policy constraints always refer to
a set of objects, a particular set of objects’ attributes, and optionally a set of
interactions and effects that are related to the objects. Based on these relations,
specific constraints for particular security goals can be defined. These specific
constraints define requirements for associations between the entities with regard
to the particular security goals.

As shown in Figure 2, constraints specify security mechanisms that enforce
or guarantee the defined constraint. For instance, a confidentiality policy usually
specifies an algorithm (e.g. DES) that must be used to guarantee this require-
ment.

3.2 Enforcing Security Constraints

In our model a Security Mechanism is designed to characterise techniques that
are used to enforce security constraints (cf. Figure 3). It provides the foundation
to specify a comprehensive ontology for security mechanisms, see [4].

Besides security mechanisms, a Credential represents another important en-
tity in our model that subsumes evidences used by security mechanisms. A de-
tailed classification of security credentials was presented by Denker et al. [4].
In this work they introduced an ontology that divides credentials in simple cre-
dentials (e.g. key, login, certificate) and composed credentials (e.g. Smart Card,
SAML, WS-Security Token) that contain a set of simple credentials.
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Based on the given security policy model (cf. Figure 2), we defined semantics
for specific types of Constraints, each guaranteeing one of the security goals
listed above. Each constraint is related to a specific set of entities and define
rules restricting particular associations between those entities. These rules must
be enforced by security mechanisms and credentials. We will not elaborate upon
the constraint models during the course of this paper, since these details have
only a minor impact on the relationship among security requirements.

4 Aggregation of Security Requirements

In the previous section we introduced a security model that provides semantics
for all security aspects related to a service. It has revealed that policy constraints
(describing security requirements) are based on two basic ontologies: mechanisms
to guarantee a certain security goals and credentials to provide required informa-
tion. In this section we will present how this model can be used to determine the
interaction class of security requirements. Finally, we will describe an approach
to aggregate security requirements concerning a service composition.

4.1 Determining a consistent Aggregation of Security Requirements

Determining the interaction class of multiple requirements demands an evalua-
tion of these requirements regarding the different aspects in our model and their
relationships. First of all, it must be considered, if two requirements belong to
the same class of security goals. Second, it is important, whether they refer to
the same set of entities in terms of objects, attributes, and object interactions.

A requirement interaction will belong to the class

– Independent, if the requirements refer to different entities.
– Prevent, Restrict, or Equivalent, if the requirements refer to the same security

goals and relate to the same entities. It is necessary to compare the security
mechanisms and security credentials specified in the requirements to determine
the interaction type precisely. A comparison of security mechanisms can be
realised similar to the concept of trust indicators, which was proposed by
Haller et al.[6]. Trust indicators are based on specific metrics to measure and
compare security properties concerning service level agreements.

– Require, Complements, or Conflict, if the requirements refer to different se-
curity goals and relate to the same entities. In general, these requirement
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interactions are inherited from dependencies between the associated security
goals. The provision of authentication and authorisation information might re-
quire confidentiality and integrity to secure this information. Moreover, there
might be contracting security goals that lead to conflicting requirements (e.g.
monitoring and confidentiality).

– Exclude, if there are conditions defined in policy constraints that limit the
application to one requirement exclusively, regardless of the related security
goals or referred entities.

Security constraints defined in existing standards (e.g. WS-Policy) can be
mapped to our model to ensure the policy’s consistency. Restricting or prevent-
ing requirements can be eliminated if they are optional considering the revealed
dependencies. In general, conflicting requirements demand a conflict resolution
strategy to decide which requirements should be preferred. For instance, confi-
dentiality requirements could take preference over monitoring requirements.

4.2 Aggregating Security Requirements in a Service Composition

To enable an aggregation of security requirements regarding a service composi-
tion, we have to consider that

– each service has its own security requirements that might cause complex de-
pendencies between the requirements of different services.

– the execution of services results in an effect that can satisfy the requirement
of a successive service. This requirement does not have to be satisfied by the
user.

– the service composition might include xor-splits and -joins depending on con-
ditions based on functional parameters. This might result in different sets of
requirements that exclude each other.

Results from research work [9] about the generation of semantics of service
compositions provide a suitable foundation for the determination of the compo-
sition’s security requirements. These approaches are based on the aggregation
of semantic preconditions of basic services that correspond to our requirements.
Meyer [9] introduces a formal workflow model based on petri nets and describes
how to express the semantics of services inside this petri net. To calculate the
functionality of the aggregation, Meyer introduced graph algorithms that work
by recursively defining the state for the markings in the workflow net. Using our
security model, and comprising ontologies for security mechanisms and creden-
tials, we are able to translate policies into semantic preconditions for services.
These preconditions can be used with the description of the service composition
as input to the aforementioned algorithms to generate the requirements of the
service composition expressed as Boolean formula. This output can be checked
for consistency as described in the previous section and be mapped to a policy
again.
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5 Related Work

Our conceptional data model for service based systems is mainly driven by the
semantic security annotation approach for web services proposed by Denker et
al. in [4]. These annotations are used to describe the security capabilities of
web services. A reasoning engine is used to perform a security matchmaking
between service providers and requesting agents. While providing suitable secu-
rity ontologies for security mechanisms and credentials, they do not consider the
relationship to policy constraints and possible interactions.

Only a few approaches have been published so far that intent to enable the
dynamic composition of services regarding security constraints. Carminati et al.
described an approach to compose web services based on security requirements of
web service consumers and web service providers in [2, 1]. Semantic matchmaking
is used to create a service composition under security constraints. This approach
assumes that service consumers are willing to specify their requirements and
capabilities in advance. Dependencies between security requirements are not
considered in this work.

Cheikh et al. proposed technique for automatic web service compositions in
trust-aware communities based on reduction to satisfiability in propositional dy-
namic logic. Their work is focused on access control and authorisation constraints
and do not consider other security goals.

The abstract description of security properties has also been addressed in
previous work. However, there is no comprehensive approach that relates all se-
curity aspects in a SOA to security goals. Huang presents in [14] a framework for
semantic descriptions for web service security constraints. His approach intents
to enable a reasoning over non-functional properties and the integration of busi-
ness rules. Although a general framework to perform a reasoning is described,
the paper does not provide a concrete security ontology to describe security
constraints and their relationship to security goals. Moreover, an aggregation of
security constraints is not considered.

Jürjens presented in [7] the UMLSec extension for UML to express security
relevant information within a system specification diagram. The focus of UMLSec
lies primarily on the modelling of communication-based security goals, such as
confidentiality, for software artefacts rather than a more general approach to
modelling a variety of security goals and their relationship.

6 Conclusion

In this paper we presented an approach to aggregate security requirements of
services that are composed across organisational boundaries. Each orchestrated
service provides its own security policies that stipulate the security requirements
of the composed service. Our vision is to facilitate the dynamic composition of
services by enabling the calculation of a consistent requirement aggregation that
can be communicated to the service user as a security policy. The provision of
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such an aggregated security policy enables the service user to securely select an
appropriate digital identity representing the required information.

We showed that interactions may occur between security requirements ex-
posed by services from different trust domains. We provided a definition and a
complete classification of requirement interactions based on an abstract model.
To distinguish these requirements, we introduced a conceptual security model
to add semantics to different types of security constraints. Our model revealed
the structure of these constraints that describe requirements, their relationship
to high level security goals and their dependency to security mechanisms and
credentials as basic ontologies. Finally, we described how our model can be used
to determine and resolve the interaction classes and introduced an approach to
aggregate security requirements based on the computation of preconditions in
semantic workflows.

In contrast to current research approaches that are focused on the dynamic
composition of services with the intention to meet predefined capabilities of a
service user, we introduced a solution that does not require the user to expose
all security capabilities in advance. Moreover, the interaction of requirements is
not considered by former semantic approaches.

6.1 Future Work

We stated that our security model is an approach to describe requirements and
their interactions. There is an ongoing effort to map our security model to WS-
Policy and it must be proved that our model can be used to determine the
interaction classes of security requirements. Moreover, we presented a basic ap-
proach to resolve requirement conflicts in this paper. More complex strategies
can be integrated as it has been presented in research work concerning the res-
olution of policy constraint conflicts [8]. Finally, we have to prove that the petri
net models used to calculate the semantic precondition of workflows can be ex-
tended with our model to determine the aggregation of security requirements.
These topics will be addressed by future work.
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