
A Web Service Architecture for Decentralised
Identity- and Attribute-based Access Control

Regina N. Hebig †, Christoph Meinel ∗, Michael Menzel ∗, Ivonne Thomas ∗ and Robert Warschofsky †
Hasso-Plattner-Institute for IT-Systems Engineering

Prof.-Dr.-Helmert-Str. 2-3
D-14482 Potsdam

∗firstname.lastname@hpi.uni-potsdam.de
†firstname.lastname@student.hpi.uni-potsdam.de

Abstract—The loosely coupled nature of Service-oriented Ar-
chitectures raises the question how information for access control
can be managed in an efficient way. Several specifications
for Web Services exist to describe security requirements and
to facilitate a provision of identity information. However, the
integration of different standards regarding the expression of
identity information in policies, claims and assertions comes along
with an increased complexity. In order to identify and address
the problems occurring with the combined use of standards as
XACML, SAML and WS-Trust, we designed and implemented
an architecture for identity- and attribute-based access control
in decentralised environments. Our implementation provides an
automated generation of access control policies in a format called
XACML, a way to communicate required user attributes as
claims across different domains based on the standards WS-Trust
and WS-Policy, and a consistent mapping of retrieved attribute
assertions to the XACML attributes in the access control policy.

I. INTRODUCTION

Service-oriented Architectures (SOA) allow a seamless
communication between applications independent from the
platform on which they run and even across domain bound-
aries; therefore, making them perfectly suitable for the inte-
gration of services provided by independent business partners.
However, such a loose coupling also implies new, critical
security questions, as service providers need to protect their
confidential resources from unauthorized access.

Authorization describes the process of determining whether
or not a subject has the rights to perform a task, such
as accessing a service. Hereby, the access control decision
usually depends on the result of the authentication of the
user who requests access and the provision of additional
user attributes. While traditional systems tend to manage
their users themselves, such an approach does not scale in a
service-oriented environment, in which services are composed
and re-used in different contexts. The management of user
data such as registration and authentication information for
each service leads to an explosion of user accounts and
expensive maintenance costs in order to keep this information
up-to-date. Approaches for the controlled sharing of identity
and attribute information across multiple security domains
evolved, which facilitate the re-use of existing identity and
attribute management systems. This way, the management
of users is decoupled in the architecture from the places

where this information is required. In SOA, identity providers
are the architectural entities which are designated to manage
identity and attribute information and to answer requests for
user information. Having decoupled the identity and attribute
management from the access control at the service provider,
several steps are necessary to perform the authorization. First
of all, the service’s conditions for granting access need to
be expressed and published by the service provider. Further,
this information has to be retrieved by the service user and
communicated to the identity provider. In turn, appropriate
formats and exchange mechanisms are required to transfer the
requested attributes from the identity provider to the service
and to interpret the received information with regard to the
access control decision.

Several Web Service specifications and standards exist to
address these tasks: WS-Policy [1] and WS-SecurityPolicy
[2] can be used to describe security requirements of a Web
Service, XACML [3] specifies a format to express access
control policies, WS-Trust [4] defines the protocol to request
and transfer security tokens and SAML [5] provides a standard
token format to describe authentication, authorization and
attribute assertions about a user.

Although these specifications are designed to complement
each other, many questions are raised when combining them
to secure a Service-oriented Architecture. In particular with
regard to access control, these specifications describe the
handling of user information that consists of different attributes
of a specific type. Since attributes can be expressed differently
or grouped to complex types, the same user information can be
expressed in different ways. This ambiguousness complicates
a mapping between different specifications. In addition, the
manual specification of XACML access control policies and
the corresponding requirements described by claims in WS-
SecurityPolicy is cumbersome and error-prone. The definition
of XACML policies itself is difficult due to the complexity of
this specification.

To address these challenges,
• we describe a prototype implementation with an archi-

tecture based on the standards XACML, SAML, WS-
Policy, WS-SecurityPolicy and WS-Trust which puts the
focus on sharing identity and attribute information across
independent domains for the purpose of access control.

2009 IEEE International Conference on Web Services

© 2009 IEEE



• we provide an easy, declarative way of stating required
attributes, which are translated to XACML access control
policies in an automated manner.

• we enable an automated translation of XACML to WS-
Policy, which exposes the requirements regarding identity
information as claims.

• we define a consistent mapping of retrieved attribute
assertions expressed as SAML tokens to the XACML
attributes in the access control policy in order make the
policy enforcement independent of application-specific
policies.

Following the introduction, Section II gives a short overview
of used standards. Section III presents the architecture and
goes into details about the implementation of the authorization
process based on the architecture. Section V gives an overview
about related work in this area. Finally, Section VI concludes
this paper and highlights some future work.

II. USED STANDARDS

Several tasks need to be accomplished in order to realize a
scenario in which the management of information required
for access control is decoupled from the place where the
access control step is performed. First of all, an access control
policy has to be defined and enforced at the service side. The
eXtensible Access Control Markup Language (XACML) [3]
is a general XML-based policy language, which is a well
established standard to define and enforce policies. As part
of the standard, the specification describes an authorization
architecture. The core concept of this architecture is a policy
decision point (PDP). The PDP decides about the authoriza-
tion. A policy enforcement point (PEP) requests the PDP
for a decision about an authorization, based on information
extracted from the message and its context. Furthermore, the
WS-Policy [1] specification can be used to communicate the
required information for access control such as assertions
about the identity to the service consumer. While XACML
provides the means to express and enforce a policy, it does not
specify how to request and retrieve the required credentials.
Therefore, WS-Trust [4] has been specified as a standard
token request protocol, which can deal with several token
formats. One standard for such a security token format is the
Security Assertion Markup Language (SAML) [5], which can
be used to express assertions about a user’s authentication,
authorization and attributes.

III. A SAML/XACML BASED SOLUTION FOR
DECENTRALIZED ATTRIBUTE-BASED ACCESS CONTROL

We designed and implemented an architecture for identity-
and attribute-based authorization with the focus on an efficient
handling of user attributes. In particular, we focused on the
specification of service requirements concerning user attributes
and the mapping of received attribute values from the security
tokens to the attributes in the access control policy. Our
solution comprises three steps, in which the authorization
process is performed: the policy definition, the credential
retrieval and the policy enforcement.

A. Authorization Prozess

The policy definition is the first step of an authorization
process, which has to be done by the service owner. Defining
a policy is a complex and tedious task, which bears sig-
nificant security risks, if not done properly. Our approach
is based on an automated policy generation to reduce the
likelihood of errors. It preserve the consistency and uniform
structure of the policy, which in turn enables a consistent
mapping between SAML and XACML attributes during the
enforcement of a policy. This aspect is explained in more
details in the part policy enforcement. Another benefit of
the policy generator is that we can associate attributes with
unique URIs in an automatic manner. This allows the unique
identification of attributes across the border of the service.
The idea of using URIs for the identification is taken from the
Information Card Profile [6], which associates some standard
attributes to URIs within an XML schema file. An example
for such an URI is http://schemas.xmlsoap.org/ws/2005/05/-
identity/claims/emailaddress which expresses the email ad-
dress of a user.

In addition to the generation of the policy, a description of
the attributes is automatically generated as a kind of metadata
which can be shared with other participants in the SOA
infrastructure. The format is described by an XML schema.

Once the policy is defined, the second phase of the autho-
rization process is the credential retrieval. In this phase, in-
formation about required attributes needs to be communicated
to the service requester and to the identity provider (IP) who
will process the request for an attribute. In order to understand
requests for attributes which are not standardized, the identity
provider can resolve the URI, which identifies the attribute in
a global context. This way, the IP becomes independent from
the service. Since an attribute is identified by a global, unique
URI, the local occurrences of the attribute as for example in
the IP storage or in the service domain can be matched even
if they have different names.

The last authorization phase is the policy enforcement.
During policy enforcement attributes extracted from the se-
curity token received with the SOAP message need to be
mapped and matched with attributes in the XACML access
control policy. This requires an attribute of the request to
be located in the same group as in the policy. XACML
distinguishes between four attribute groups: Subject, Object,
Action and Environment. For an automated generation of the
access request out of the security token received with the
SOAP message, this mapping to the attribute group has to be
unambiguous. To ensure this, we define restrictions with regard
to the XACML attribute group an attribute can belong to. Since
we are generating the XACML policy in an automatic manner,
we can assure that these restrictions are followed. The benefit
of this procedure is, that the generation of the XACML request
does not need any information about the XACML policy itself
anymore; therefore making this mapping independent from the
current XACML policy.



Identity Provider

Client Host

Server

Authorization
ClientHandler

Authorization
ServiceHandler

(PEP)

STS

XACML
Policies

WS-Policy

R
WS-Trust

PDP

R

Policy 
Generator

Service
Administrator

ServiceClient
Software

User

R

Attributes.fileAttributeValues

Claims.xsdClaims meta data

R

SOAP

R

Fig. 1. FMC Block diagram [8] of the authorization handler architecture.

B. Architecture

Our architecture comprises the main entities of a SOA as
specified by the Liberty Identity Web Service Framework (ID-
WSF) [7]: a client, a service and an identity provider. The
identity provider offers a Security Token Service to retrieve
security tokens for the identity and attribute information it
manages. A client in our architecture is a piece of software
the subject uses to request a service.

Our implementation is based on the handler concept of the
Web Service framework Axis2 [9] to allow an easy integration
with other service implementations. During the authorization
process, several handlers are involved. On the client side, a
handler is required to add information about the user to the
SOAP message. On the service side, a handler is needed to
check the received information and to decide whether or not
the subject of the transaction is authorized to use the requested
service. A detailed overview of the architecture given in FMC
notation [8] is shown in Figure 1.

The handler at the client side is located in the out flow chain
of the client’s Axis2 handler chain. Upon request, it inserts a
SAML assertion received from the STS into the SOAP header
of the outgoing message, including information like the subject
and the issuer of the assertion as well as several attributes
about the subject. In order to request this information from
the Security Token Service via the WS-Trust protocol, the
client needs to have access to the WS-Policy of the service.
The service policy according to the WS-Policy specification
is usually transmitted from the service to the client upon
request. It contains a list of attributes that are needed for the
authorization.

The handler on the service side is responsible for extracting
the SAML assertion from the incoming message, creating a
PDP (policy decision point) instance, configuring this instance
with a given XACML policy and requesting access at the PDP
with the information resolved from the message.

As shown in Figure 1 the service handler and the PDP
both need the XACML policy. This XACML policy is created
by a ‘Policy Generator’ based on inputs from the service
administrator.

IV. IMPLEMENTATION

This sections gives an insight into our implementation.
The emphasis is put on our improvements with regard to an
efficient handling of identity and attribute information from
multiple sources for the purpose of access control. Section
IV-A will start with a description of our automated definition
of access control policies, then section IV-B will describe
the retrieval of credentials, and finally section IV-C will give
details about the policy enforcement step.

A. An automated Policy Definition
In many cases, access to a Web Service is restricted to

certain users identified by specific attribute values such as
a specific role. These attributes can be of a very global
nature like a name or the age of a person. However, as in
many cases such terminologies are used within companies, the
character and names of the attributes might be more specific
or proprietary.

Thus, the definition of an XACML policy for access control
is an individual and tedious task. The following list states
several facts that make the definition of policies difficult.

Complexity: The first challenge arises from the complexity
of an XACML policy. The more complex a policy gets, the
harder it is to maintain without proper tool support; leading to
inconsistencies and errors due to the human factor involved.

Expressiveness: A second problem with such policies is
the vast expressiveness of the XACML standard. Most access
restrictions can be stated in many different ways. Especially,
the mapping of attributes to one of the four attribute groups
in XACML can differ between policies, since different people
sort the attributes in a different way. Although the groups have
a useful semantic, it is not possible for a computer to guess
the right group of an attribute automatically.

Attribute identity: As soon as an application needs more
customized behaviour, it is likely that the required attributes
are so specific that they are not covered by global defini-
tions, such as provided by the XML schema from the Infor-
mationCard Profile: http://schemas.xmlsoap.org/ws/2005/05/-
identity/claims.xsd [10].

Nevertheless, it is desirable to have a common under-
standing about an attribute’s format and meaning and match



attributes in different domains which have the same meaning,
but might have different identifiers as for example ’last name’
and ’surname’.

Our architecture is designed to address these problems. By
providing a policy generator, we hide the complexity of an
XACML access control policy from the service administrator.
Therefore, we restrict XACML policies to a structure which
is sufficient for the purpose of attribute-based access control,
but solves the problems due to the expressiveness of XACML.

In order to deal with the problem of attribute identity we
use URIs to identify them. By using this kind of unique
identification, it is possible for the STS to find the correct
attribute, even if it has another name in the STS workspace
than in the workspace of the service.

When defining an attribute with the policy generator, the
generator automatically creates an adequate XML schema
to describe the structure of the newly introduced attributes.
This schema file can then be deposited under the URI of
the attribute. To express the requirements of the service, the
policy generator finally generates a description of required
attributes, a so-called <Claims>-tag for the WS-Policy of the
service. This <Claims>-tag includes the URIs of all required
attributes.

In the following, we describe the restrictions we made for
the XACML policy. After that we describe the architecture of
the policy generator.

1) Extending the XACML profile for Web Services: Many
rules for access control can be expressed in different ways.
This leads to a high degree of complexity and makes the
evaluation of the policy in the enforcement step more difficult.
In order to formulate an access request, the application-
specific attributes used in the policy need to be known. This
makes it difficult to automate the handling of policies in an
application-independent context. Anne Anderson also refers to
this problem in [12].

In our implementation, we take the XACML profile for Web
Services [11] as a foundation and add additional restrictions
to the structure of an XACML policy. These restrictions are
done in a way that still every rule for access control can
be expressed, but the number of different ways it can be
expressed is restricted. The XACML profile for Web Services
describes how XACML can be used to protect Web Services
from unauthorized access. Therefore, the profile restricts the
possibilities of the XACML policy 1.1 standard to achieve a
consistent way for expressing access constraints in XACML
policies in the following way:

• The targets of the policy sets and of the policy itself are
restricted to four variables: objective id, port id, operation
id and message id. The objective id ‘indicates the aspect
of a policy addressed by a <Policy> element . . . ’[11].
It defines the target of the overall policy. Since we are
dealing with policies for access control, the objective id
is set to ‘authorization’. The port id defines the target of
the outermost policy set and equals the port id defined in
the WSDL of the requested SOAP service. The operation
id and the message id are also equal to the corresponding

ids of the SOAP service. These ids are used to define the
inner policy set.

• Further, the profile postulates that the effect of a rule
is always ‘permit’. This means no explicit deny can be
defined. This way, we can later interpret automatically
every response of the PDP as ‘deny’ if it is not explicit
‘permit’.

• Furthermore, all parts of a condition shall be connected
by a logical and. This means that all parts of the
condition have to be fulfilled in order for the condition
to evaluate to true.

In addition, we introduce additional restrictions.

• As aforementioned, the XACML specification defines
four attribute sets. An XACML authorization request
requires the attributes to be given in the right attribute set.
Therefore, we restrict the XACML profile by predefining
the mapping to the attribute set. First of all, a policy
contains the subject attributes, which specify the subject
refereed to in access control policy. In our approach, there
is exactly one subject. This is the subject of the security
token, the SAML assertion. Therefore, we define that this
subject belongs to the URI saml/subject/name and
belongs to the subject attribute set.

• We further define all other attributes to be part of the
environment attribute set. This includes the name of the
issuer (the STS who signed the security token) of the
SAML assertion. Since the issuer, like the subject, is
part of every SAML assertion we defined for it the URI
saml/issuer/name.

Since we limit only the number of ways to express the same
policies, the expressiveness stays the same as in the XACML
Profile despite the defined restrictions.

2) The policy generator: Above we identified some prob-
lems, namely complexity, expressiveness and attribute identity.
We also introduced the XACML profile and our additional
restrictions, which solve the expressiveness problem.

However, a human administrator still has to perform a
complex task. The administrator has to choose the right
configuration for the target of the policy and single policy
sets. He has to consider the XACML syntax for the expression
of conditions. How to express that one attribute has to have
a special value? Additionally, the wrapping of expressions in
conditions and rules has an effect to the semantic. Are two
expressions alternatives or have both of them to be fulfilled?

All this has to be done conform to the XACML profile and
our restrictions, because otherwise an automated handling of
the policy is impossible.

Obviously, this is a very complex and error-prone task.
In order to solve this problem our architecture includes a
policy generator. The current policy generator is designed to
prove the feasibility of generating policies from a fixed set of
infomation. It generates XACML Policy files for a given port
id and given policy sets. The policy sets contain rules that
define the requested attributes and attribute values. Listing 1
shows some example code which defines a rule addMember



which restricts access to the operation addMember to all
users owning the role hpistaff.

PolicySet ps = new PolicySet();
List<Rule> rules = new ArrayList<Rule>();
Rule rule = new Rule("addMember");

rule.addAttributeAssignment(
AttributeAssignment.newAttribute(

"member_group",
"hpi_staff",
PolicyGenerator.DataTypes.string,
PolicyGenerator.Function.equal));

rules.add(rule);

ps.addPolicy("addMemberPolicy", rules);
String[] operationids =

new String[] { "addMember" };
ps.set_operationIds(operationids);

Listing 1. Example code for the generation of a policy set

As can be seen from Listing 1, the use of this interface is
much less complex and error-prone than writing an XACML
policy by hand. Using a graphical user interface based on
our generator, the task of defining a XACML policy becomes
manageable with a few clicks.

Simultaneously to the XACML policy file, also an XSD
schema file is generated. This XSD file defines the elements
for the claims of the attributes and their types. On the basis
of this, the identity provider can select the attributes that are
required by the service, even if the names of the attributes are
not the same. This solves the attribute identity problem.

Furthermore, a WS-Policy file which contains the claims is
also generated. This policy file can be merged with an existing
policy file describing the other requirements of the service, so
that a client has to use only one policy file to know which
information has to be send to the service.

B. Policy Credential Retrival

In this section we present the mechanisms to resolve the
attribute requirements from the policy into corresponding se-
curity tokens and describe the implementation of the involved
architecture components, namely the client side handler and
the STS. In order to request access to a service, the client
side handler first has to retrieve and analyse the WS-Policy
document and extract the claims from it. For each claim,
a corresponding security token, which contains proof of the
claim has to be requested from an STS via the WS-Trust
protocol.

Upon request, the STS issues a security token containing an
attribute statement. This attribute statement must contain the
attributes, claimed in the WS-Policy. Therefore, the STS has
to obtain the requested attribute values. Finally, the client side
handler inserts this security token, which is a SAML assertion,
into the security header of the service request.

The remainder of this section is structured as follows. First
we introduce how the client side handler deals with the policy
of the service and communicates with the STS. After that we

introduce how the STS resolves claims into actual security
tokens.

1) The client side handler: The client side handler has the
task to extract the claims from the WS-Policy, to request a
SAML assertion at the STS and to insert this assertion into
the message header of the service request.

Inside WS-Policy documents, claims are used to declare,
which information is needed by a service. Since WS-Policy
documents are XML files, the claims are encapsulated in a
<Claims> tag that declares the dialect. The dialect identifies
a group of claims, which are defined at the same location (e.g.
the same XML schema file). Each required attribute is then
declared in a <ClaimType> tag by an URI. The definition
of a dialect is done in an XML schema file.

Following the WS-Trust standard, the client side handler has
to extract this <Claims> tag from the WS-Policy. After this,
it adds this tag to a request security token (RST) message as
child of the <RequestSecurityToken> tag. This RST
message is sent to the STS within the body of a SOAP
message.

Figure 2 shows an example of a RST message including a
<Claims> tag. The <TokenType> tag defines what kind
of token is requested. As we choose SAML assertions for
the communication, we can see in this example that a SAML
assertion is requested. The <RequestType> tag defines the
kind of request. Finally, the <Claims> tag defines attributes
which have to be included in the assertion nested in an
<AttributeStatement> tag.

<wst:RequestSecurityToken
xmlns:wst=".../ws-trust/200512">

<wst:TokenType>
ht tp : / / . . . / oa s i s−wss−saml−token−p r o f i l e −1.1#SAMLV2.0

</wst:TokenType>
<wst:RequestType>

ht tp : / / . . . / ws−t r u s t /200512/ BatchIssue
</wst:RequestType>
<wst:Claims

ws t :D i a l e c t="http://myPort/claims"
xmlns : i c="http://schemas.xmlsoap.org/ws/2005/05/identity">
<ic:ClaimType

URI="http://myPort/claims/myattribute"/>
</wst:Claims>

</wst:RequestSecurityToken>

Fig. 2. Example of a Request Security Token according to WS-Trust [4]

The STS has to trust the client in order to accept the
user’s authentication information it receives within the SOAP
message from the client. As the mechanisms of authentication
are well standardized and probed, it is out of scope of this
paper to describe this aspect in detail.

The STS returns the requested SAML assertion within a
request security token response (RSTR) message. Finally the
client extracts the assertion (the <saml:Assertion> tag)
and inserts it into the header of the service request.

2) The STS module: If the STS gets a request for a secu-
rity token that can be authenticated, it resolves the required
attributes in order to return an appropriate RSTR message.
Therefore, the STS iterates through the attributes in the
<Claims> tag of the RST message.



For each <Claims> tag the STS consults the metadata
of the attributes. In a simple implementation the STS would
hold XML schema files (XSD), which define attribute URIs,
for every supported service. However, to follow up the vision
of a flexible SOA, the STS can use the URI of each attribute
to resolve the appropriate metadata information over the web;
therefore making the STS independent from the services.

After consulting the metadata, the name of the attribute and
its type (in our implementation this can be integer or string)
is known. With this information the requested data can be
extracted from the storage, which contains the attribute values
and can be inserted in an <AttributeStatement> ele-
ment. Later on, this <AttributeStatement> element is
included in the SAML assertion as the third child beneath the
<Issuer> tag, which refers to the STS and the <Subject>
tag, which identifies the user.

The access to the attribute data is done through the interface
IAttributeResolver. This allows changing the imple-
mentation of the access and with it the type of storage. If for
example the data should be stored in a database, the location
and structure of the attribute values can easily be changed by
substituting the implementation of this interface.

Figure 3 shows an example of a RSTR message.
The requested SAML assertion is included in the
<RequestedSecurityToken> tag. As said above
the assertion includes an <Issuer> tag and a <Subject>
tag for the information about issuer and subject. The claimed
attribute data is included in the <AttributeStatement>
tag.

<wst:RequestedSecurityTokenResponse
xmlns:wst="http://.../ws-trust/200512">

<wst:TokenType>
ht tp : / / . . . / oa s i s−wss−saml−token−p r o f i l e −1.1#SAMLV2.0

</wst:TokenType>
<wst:RequestedSecurityToken>

<saml:Assertion
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
Vers ion="2.0">

<saml:Issuer>myIssuer</saml:Issuer>
<saml:Subject>

<saml:NameID>mySubject</saml:NameID>
</saml:Subject>
<saml:AttributeStatement>

<saml:Attribute Name="myattribute">
<saml:AttributeValue . . .>

. . .
</saml:AttributeValue>

</saml:Attribute>
</saml:AttributeStatement>

</saml:Assertion>
</wst:RequestedSecurityToken>

</wst:RequestedSecurityTokenResponse>

Fig. 3. Example of a Request Security Token Response according to WS-
Trust [4]

C. Policy Enforcement

The last part of the authorization process, handled by
our architecture is the policy enforcement. During the policy
enforcement the access request is evaluated against the policies
of the service.

After receiving a request, the service has to check its
own policies and to decide whether or not the requester has
permission to access the service. Therefore, the service has to
inspect the SOAP message and extract the token, which is the
input for the access control decision. As we use SAML this
token is a SAML assertion located in the header of the SOAP
message.

The important information for access control in a SAML
assertion are the subject and the issuer of the assertion as well
as all statements about the subject. This information has to
be converted into the standard request format for the policy
decision point (PDP). As we use XACML for access control
the service must map the attributes defined with the SAML
language to XACML attribute definitions to request the PDP.

1) The mapping from SAML to XACML: To be specific,
attributes in the SAML assertion need to be mapped to policy
sets of XACML. This mapping is listed in table I.

Analogous to the previously made restrictions we simply
map the subject attribute of the SAML assertion to the attribute
with the URI saml/subject/name, which belongs to the
subject attribute set.

The resource attribute set shall contain attributes describing
the requested resource. Therefore, according to the XACML
profile this set contains the port id and the message id.
The operation id does not specify the requested resource
but the action to be performed on the resource. This means
the operation id is an attribute of the action attributes set
like the objective id ‘authorization’.

Again, according to the restrictions we defined all other
possibly important attributes are part of the environment
attributes set. The issuer of the SAML assertion is put in this
attribute set together with all attributes contained in the SAML
assertion. To match with the attributes specified in the XACML
policy the names of the SAML assertion attributes must equal
the corresponding URIs in the XACML policy and the types
must also be the same.

SAML Attributes XACML Attribute Set
SAML Subject Subject Attribute Set
SAML Issuer Environment Attribute Set
SAML Assertion Attributes
WSDL Port ID Resource Attribute Set
WSDL Message ID
WSDL Operation ID Action Attribute Set

TABLE I
MAPPING SAML ATTRIBUTES TO XACML ATTRIBUTE SETS

2) Requesting the Policy Decision Point: The PDP we use
is part of the XACML library from Sun [14]. In order to query
it, we create an instance of the PDP and send an XACML
request. The request is constructed with the four attribute sets
described above. It can be serialized to XML. An example
request is shown in Figure 4.

The PDP evaluates this request with the XACML policies
it has access to. After that, the PDP delivers a response, such
as shown in Figure 5.



<Request>
<Subject SubjectCategory="...">

<Attribute Attr ibute Id="saml/subject/name"
DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue> . . . </AttributeValue>
</Attribute>

</Subject>
<Resource>

<Attribute Attr ibute Id="...:portId"
DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue> . . . </AttributeValue>
</Attribute>
<Attribute Attr ibute Id="...:messageId"

DataType="http://www.w3.org/2001/XMLSchema#string">
<AttributeValue> . . . </AttributeValue>

</Attribute>
. . .

</Resource>
<Action>

<Attribute Attr ibute Id="...:objectiveId"
DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>authorization</AttributeValue>
</Attribute>
<Attribute Attr ibute Id="...:operationId"

DataType="http://www.w3.org/2001/XMLSchema#string">
<AttributeValue> . . . </AttributeValue>

</Attribute>
</Action>
<Environment>

<Attribute Attr ibute Id="saml/issuer/name"
DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue> . . . </AttributeValue>
</Attribute>
<Attribute Attr ibute Id="..."

DataType="http://www.w3.org/2001/XMLSchema#...">
<AttributeValue> . . . </AttributeValue>

</Attribute>
. . .

</Environment>
</Request>

Fig. 4. Example of a XACML request

<Response>
<Result ResourceID="/ID">

<Decision>Permit</Decision>
<Status>

<StatusCode Value="...:status:ok"/>
</Status>

</Result>
</Response>

Fig. 5. Example of an XACML response.

There are four possible responses: permit, deny, not appli-
cable and indeterminate. In the case of permit the access to
the requested SOAP service is granted, otherwise not.

V. RELATED WORK

Various major authorisation systems exist that are tradition-
ally based on a centralised approach to be deployed in a single
trust domain. With the advent of Web Services and Service-
oriented Architectures, these frameworks are enhanced to meet
the requirements of a distributed environment. For example,
the Privilege and Role Management Infrastructure Standards
Validation (PERMIS) framework is a policy-based authoriza-
tion infrastructure implementing a hierarchical Role Based
Access Control (RBAC) model [15]. It has been designed to
be used in a single trust-domain and is based on a privilege
management infrastructure to maintain the user attributes

in X.509 attribute certificates (AC), which are published in
LDAP directories. An extension is described in [15] to enable
PERMIS to issue SAML authorization tokens in order to use
PERMIS as a central authorization service in a distributed
environment. Since the negotiation of requirements for access
control is not supported, the usage of this approach in an
environment based on loosely coupled services is restricted.

Another approach is the proposed multipolicy authorization
framework for Grid infrastructures by Lang et al. in [16].
This framework is based on the specifications XACML and
SAML. The authorization mechanisms of the Grid computing
platform support multiple security policies and dynamic policy
changes. A PEP intercepts a user’s access request and executes
the authorization decision of the PDP. To decide whether an
authorization is granted or not, the requested PDP chooses
a dedicated PDP for each type of policy that is used in
the Grid architecture. The access decisions are based on a
requester’s attributes, such as the service, the resource, or the
environment. The general concept of this framework describes
a centralized resource and authorization management that
does not fit into the decentralised concept of Service-oriented
Architectures. Although this concept describes a promising
approach to enforce different types of policies, the translation
and communication of security requirements in a distributed
environment is not in the scope of this work.

Cardea [17] as another distributed authorization framework
protects potentially accessed resources through local access
control policies that are specified within the XACML syntax.
It dynamically evaluates authorization requests according to a
set of relevant characteristics of the request and the requester.
The system tries to abstract from locally defined identities and,
therefore reduces the amount of user information for access
control.

In general, these frameworks assume a tight binding be-
tween the identity provider and the service. Therefore, an
intense negotiation and exchange of user attributes between
both parties is not required, making them less suitable for the
vision of SOA to provide a global market place of ubiqui-
tously available services. With regard to the combination of
standards, several profiles have been developed which describe
how one standard can be used in the context of another one. As
one of these profiles which is widely accepted and ratified as
an OASIS standard, the SAML profile of XACML describes
the integration of SAML and XACML. It was proposed by
Anderson and Lockhart [18] in 2005.

Many solutions for authentication and access management
exist which use these two specification SAML and XACML
in combination for different purposes. Schlaeger et al. [19]
provide an holistic approach to attribute-based access control
in Service-oriented Architectures. Their solution uses XACML
and SAML and is based on the architecture of the Liberty
Alliance Project featuring an identity provider and several
service providers. The focus of their prototype clearly lies on
preserving the privacy demands of the user; therefore including
a privacy-enhancing protocol into their solution. They do
not consider metadata for attributes nor the policy definition



process. Moreover, their implementation is based on SAML
1.1 while we support SAML 2.0.

VI. CONCLUSION

To grant the right people access to the right information
at the right time is crucial to improve efficiency of business
collaborations. Therefore, a strong and secure authentication
and authorization infrastructure is a must, which can adapt
flexibly and quickly to fast changing business and security
requirements.

In this paper, we describe our implementation of an ar-
chitecture to support the authorization in a decentralized
environment, in which identity and attribute information can
be managed by independent entities. Our architecture com-
prises the main elements for decentralized authorization as
described by the Liberty Identity Web Service Framework
[7]: identity provider, service providers and client. We com-
bine the standard protocols and formats of XACML, SAML,
WS-Policy and WS-Trust to perform a decentralised user
authorization, which consists of the steps: policy definition,
credential retrieval and policy enforcement. While the general
authorization process is well understood, our focus lies on
improving the authorization process in specific aspects. First
of all, we ease the policy definition process by providing
a policy generator for XACML and WS-Policy. Our pol-
icy generator takes as input solely a set of required user
attributes declared by type, name and value and generates
corresponding XACML and WS-Policy documents. This frees
a service administrator from understanding the complicated
meaning of policies and from working directly with XML
elements. In addition, consistency between the different policy
formats XACML and WS-Policy is ensured.Moreover, our
implementation addresses the problem of describing the user
attributes which are required for the access control decision.
As described by the InformationCardProfile [6], we associate
user attributes to a dialect which points to an URI, which
provides meta information for user attributes within a policy.
This allows for a looser coupling between identity and service
provider, which is, in particular, an important pre-requisite to
provide efficient communication across multiple domains.

We believe that these two aspects – metadata for attribute
policies and a more intuitive policy definition – are important
aspects in any authorization architecture. Since our imple-
mentation is purely based on open standards, our results can
be used for integration into other authorization processes.
Moreover, our implementation is based on the handler archi-
tecture of Axis2 and therefore flexible enough to allow an easy
integration with other service implementations.

In our architecture, the attributes that are the basis for the
access control decisions, are defined in XSD schema files. In
future work, we intend to extend this definition with a semantic
meaning by using a language like OWL or RDF instead of
XSD schema files. Having semantically defined attributes,
a mapping between two attribute which are syntactically
different but semantically equal, can be done easily. Especially
complex attributes would profit from this.

Furthermore, with regard to automated service composi-
tions, a correct merge of multiple policies which contain
semantically related attributes would be possible.

REFERENCES

[1] S. Bajaj, D. Box, D. Chappell, F. Curbera, G. Daniels, P. Hallam-
Baker, M. Hondo, C. Kaler, D. Langworthy, A. Nadalin, N. Nagaratnam,
H. Prafullchandra, C. von Riegen, D. Roth, J. Schlimmer, C. Sharp,
J. Shewchuk, A. Vedamuthu, mit Yalinalp, and D. Orchard, “Web
Services Policy 1.2,” W3C, http://www.w3.org/Submission/WS-Policy/,
Tech. Rep., apr 2006.

[2] G. Della-Libera, M. Gudgin, and et all, “Web Services Security Policy
Language (WS-SecurityPolicy),” Public Draft Specification, Juli 2005.
[Online]. Available: ”ftp://www6.software.ibm.com/software/developer/
library/ws-secpol.pdf”

[3] T. Moses, “eXtensible Access Control Markup Language (XACML)
Version 2.0,” OASIS, Tech. Rep., 2005.

[4] A. Nadalin, M. Goodner, M. Gudgin, A. Barbir, and H. Granqvist,
“WS-Trust 1.3,” OASIS Standard Specification, Organization for the Ad-
vancement of Structured Information Standards (OASIS), 2007, OASIS
Standard.

[5] S. Cantor, J. Kemp, E. Maler, and R. Philpott, “Assertions and
Protocols for the OASIS Security Assertion Markup Language (SAML)
V2.02,” OASIS Standard Specification, 2005. [Online]. Available:
http://docs.oasis-open.org/security/saml/v2.0/

[6] A. Nanda, “A Technical Reference for the Information Card
Profile V1.0,” http://msdn.microsoft.com/en-us/library/bb298802.aspx,
Microsoft Corporation, Tech. Rep., Dec. 2006. [Online]. Available:
http://msdn.microsoft.com/en-us/library/bb298802.aspx

[7] J. Tourzan, Y. Koga, M. Aoyagi, R. Aarts, J. Beatty,
C. Canales-Valenzuela, G. Ellison, J. Hodges, J. Kainulainen, J. Kemp,
P. Madsen, J. Rouault, P. Thompson, and T. Wason, “Liberty ID-WSF
Web Services Framework Overview, Version: 2.0,” Liberty Alliance,
2006, non-normative specification.

[8] A. Knpfel, B. Grne, and P. Tabeling, Fundamental Modeling Concepts.
John Wiley & Sons Ltd, 2005.

[9] Apache, “Apache Axis2 Version 1.4,” Apache Software Foundation,
http://ws.apache.org/axis2/, Tech. Rep., 2008.

[10] D. Chappel, “Understanding Windows CardSpace,” April
2006. [Online]. Available: http://msdn2.microsoft.com/en-
gb/library/aa480189.aspx

[11] T. Moses, A. Anderson, S. Proctor, and S. Godik, “XACML profile for
Web-services,” OASIS, Tech. Rep., 2003.

[12] A. H. Anderson, “Domain-independent, composable web services policy
assertions,” in POLICY ’06: Proceedings of the Seventh IEEE Inter-
national Workshop on Policies for Distributed Systems and Networks.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 149–152.

[13] S. Olshansky and S. Cantor, “OpenSAML,”
https://spaces.internet2.edu/display/OpenSAML, Jun 2008. [Online].
Available:
https://spaces.internet2.edu/display/OpenSAML

[14] Sun Microsystems Inc., “Sun’s XACML Implementation,” Sun Mi-
crosystems Laboratories, http://sunxacml.sourceforge.net, Tech. Rep.,
2006.

[15] D. Chadwick, S. Otenko, and V. Welch, “Using SAML to Link
the GLOBUS Toolkit to the PERMIS Authorisation Infrastructure,”
in Proceedings of Eighth Annual IFIP TC-6 TC-11 Conference on
Communications and Multimedia Security, Windermere, UK, September
2004.

[16] B. Lang, I. Foster, F. Siebenlist, R. Ananthakrishnan, and T. Freeman,
“A multipolicy authorization framework for grid security,” in NCA ’06:
Proceedings of the Fifth IEEE International Symposium on Network
Computing and Applications. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 269–272.

[17] R. Lepro, “Cardea: Dynamic Access Control in Distributed Systems,”
Technical Report TR NAS-03-020, NASA Advanced Supercomputing
Division, 2003.

[18] A. Anderson and H. Lockhart, “SAML 2.0 profile of XACML v2.0,”
OASIS Standard Specification, February 2005.

[19] C. Schläger, T. Priebe, M. Liewald, and G. Pernul, “Enabling attribute-
based access control in authentication and authorisation infrastructures,”
Proc. of the 20th Bled eConference-eMergence (Bled 2007).




