A Pattern-driven Generation of Security Policies for
Service-oriented Architectures

Michael Menzel
Hasso-Plattner-Institute
Prof.-Dr.-Helmert Str. 2-3
14482 Potsdam, Germany
michael. menzel
@hpi.uni-potsdam.de

Abstract

Service-oriented Architectures support the provision,
discovery, and usage of services in different applica-
tion contexts. The Web Service specifications pro-
vide a technical foundation to implement this paradigm.
Moreover, mechanisms are provided to face the new se-
curity challenges raised by SOA. To enable the seam-
less usage of services, security requirements can be ex-
pressed as security policies (e.g. WS-Policy and WS-
SecurityPolicy) that enable the negotiation of these re-
quirements between clients and services.

However, the codification of security policies is a dif-
ficult and error-prone task due to the complexity of the
Web Service specifications. In this paper, we introduce
our model-driven approach that facilitates the trans-
formation of architecture models annotated with sim-
ple security intention to security policies. This trans-
formation is driven by security configuration patterns
that provide expert knowledge on Web Service security.
Therefore, we will introduce a formalised pattern struc-
ture and a domain-specific language to specify these
patterns.

1 Introduction

Service-oriented Architectures facilitate the flexible
provision and reuse of services to enable a faster adop-
tion to changing business requirements. One of the
fundamental characteristics of SOA is the usage and
orchestration of services in different application con-
texts. However, this flexibility comes along with new
security risks and threats that require an individual
protection of each orchestrated service. Sent and re-
ceived messages must be protected and must convey

Robert Warschofsky
Hasso-Plattner-Institute
Prof.-Dr.-Helmert Str. 2-3
14482 Potsdam, Germany
robert.warschofsky
@hpi.uni-potsdam.de

Christoph Meinel
Hasso-Plattner-Institute
Prof.-Dr.-Helmert Str. 2-3
14482 Potsdam, Germany
meinel
@hpi.uni-potsdam.de

identity information to enable the authentication and
authorisation of users.

In general, these security requirements are stated in
security policies and are provided with the interface
description of the service. Service clients can retrieve
the policy from the service and can use appropriate
mechanisms to invoke the service securely.

In the scope of the Web Service specifications, WS-
Policy and WS-SecurityPolicy provide an XML-syntax
to state security requirements concerning the usage of
WS-Security, WS-Trust and WS-SecureConversation.
For instance, WS-SecurityPolicy can be used to spec-
ify requirements regarding the protection of exchanged
messages (algorithms, key strength, protected message
parts, ...) and the provision of identity information
(Certificates, Username/Password, ...).

However, such policies are hard to understand and
even harder to codify, due to the complexity of the Web
Service specifications. To overcome these limitations,
we foster a model-driven approach that generates se-
curity configurations based on system design models
annotated with security requirements.

Modelling security has been a research topic in re-
cent years. Some approaches (e.g. UMLsec [9]) en-
able the formal specification of security requirements
in system diagrams, but tend to be difficult to under-
stand without a strong security background. Other
approaches [15, 19] proposed enhancements for process
models to express security requirements on a more ac-
cessible level, but do not provide a mapping to security
policy languages.

Our model-driven approach integrates security in-
tentions in SOA system models using the integration
schema introduced by SecureUML in [2] and enables a
modeller to state basic requirements on a technically
independent level. For instance, services modelled in

system architecture diagrams can be annotated to re-
quire authentication.

The transformation of these intentions is challeng-
ing, since different strategies might exist to enforce a
security intention. For example, confidentiality can be
enforced at the transport layer or at the message layer
and requires the provision of cryptographic keys.

The solution presented in this paper is driven by
security configurations patterns for Web Services that
represent, security expert knowledge. To support our
approach, we introduce in this paper:

e A transformation process that translates system
models annotated with security intentions to se-
curity policies.

e The adaption and formalisation of the design pat-
tern approach to represent security expert knowl-
edge that guides the transformation process.

e A formalised structure and a domain specific lan-
guage to specify security configuration patterns.

This paper is structured as follows. Section 2 in-
troduces our model-driven approach and outlines the
transformation process to security policies. The next
Section provides background information about secu-
rity patterns, while Section 4 introduces our formalised
security pattern structure. The application of these
patterns is described in Section 5. Section 6 describes
related work, while Section 7 concludes this paper.

2 Model-driven Generation of Security
Policies

Our model-driven approach simplifies the generation
of security policies by enabling SOA Architects to state
security intentions at the modelling layer and facili-
tats an automated generation of enforceable security
configurations based on the modelled intentions. As
illustrated in Figure 1, our approach consist of three
layers. Security Requirements, expressed at the mod-
elling layer are translated to a platform independent
model. This model constitutes the foundation to gener-
ate WS-Security policies. The modelling of security re-
quirements, the structure of the platform-independent
model and the transformation process across these lay-
ers are explained in this Section.

2.1 Modelling Security Requirements

System design models such as FMC block diagrams
or UML models are the foundation to enable system

Security
Requirements
Security Security y
i ; Securit
Design Modelling Security Proﬁley
Lalikar Language Intentions || ||
I
v —
sesccliﬁty SOA Policy Security
Meta-model | Model Security Pattern

Constraints |
>:‘I—v7 , <

e WS-Security
Policy Policy
Layer Assertions

Figure 1. Model-driven Security in SOA

designers to state security requirements in an easy ac-
cessible way. The elements in these modelling lan-
guages are annotated with security intentions that are
defined by our security modelling language SecureSOA.
SecureSOA uses the integration schema defined by Se-
cureUML [2] to enable the enhancement of system de-
sign models with security-related modelling elements.

<< Identity Provisioning >> f

<< STS >>
éden%ty Security Profile: High
rovider Required Claims: Credit Card Data
A .
R S
» << Data Confidentiality>> @

RP [<< Client >> << Service >>

l - -| Security Profile: High
O Web —O— Web
Frontend

Service

Figure 2. Modelling Security Intentions

A simple example diagram is shown in Figure 2. A
user leverages a web frontend to access a service. More-
over, a Security Token Service (STS) is deployed that
is trusted by the service and the user. The STS can au-
thenticate the user and issue a security tokens. These
tokens can be send along with the request message to
access the service.

In addition to the system structure, Figure 2 depicts
two security intentions representing security goals that
must be enforced by the security infrastructure.

’ Profile H Security Mechanisms

high X509-Token
low UserName-Token, X509-Token

Table 1. Security Profiles Examples

Each security intention refers to a security profile
that is chosen by the modeller. In Figure 2, the pro-
file ’high’ is used for both security intentions. Profiles
are used to abstract from technical details that should

be hidden from the modeller. For instance, instead of
specifying the algorithms, key strength and other tech-
nical details, a modelled security intention refers to a
profile that provide this information. Table 1 lists two
profiles that are related to authentication.

2.2 A platform-independent model for se-
curity policies

The transformation from modelled security require-
ments to concrete security policies requires a platform-
independent model that is capable to express these se-
curity requirements on an abstract layer, since security
policy languages for SOA (such as WS-SecurityPolicy)
just provide a syntax to state security requirements
declaratively. In particular in the scope of WS-
Security, it must be considered that

1. WS-Policy and WS-SecurityPolicy provide a syn-
tax, but do not define a semantic. In fact, WS-
Policy enables the negotiation and intersection of
requirements between client and service without
the need to know what is actually expressed by an
policy option. However, to enable a mapping from
security intentions to security policies, the mean-
ing of the different requirements, their relation to
security goals and their dependencies must be well
known.

2. requirements that are semantically equal (for in-
stance the encryption of message parts using dif-
ferent keys) have to be expressed in different ways
in WS-Security-Policy.

Therefore, we use a policy meta-model that sup-
ports the expression of security requirements concern-
ing communication related security goals as described
in [11]. Our model serves as an abstraction layer for
security policy languages, simplifies the handling of se-
curity policies, and enables the generation of security
configurations in different policy languages.

A policy in our platform-independent policy meta-
model consists of several Policy Alternatives that con-
tains a list of Security Constraints. In general, a Secu-
rity Constraint describes a requirement to fulfill a Se-
curity Goal and contains information describing what
has to be secured and which security mechanisms must
be used. An example is shown in Figure 3. The User
Authentication Constraint requires that the sender of
a message adds information about his identity to the
message. Therefore, this constraint references a list of
required claims and an issuer of the identity informa-
tion.

(Policy)
;}(Policy Alternative)

User Authentication Constraint)

I[ssuer (Identity Provider))

Claim (Credit Card Information))

Token Type (SAML))

%

Policy Alternative)

Figure 3. Policy Model Exmaple

2.3 A Pattern-based Transformation

Using the policy meta-model, the transformation of
security intentions to security configurations works as
follows: First of all, security constraints are generated
based on the modelled security intentions and com-
bined in policy alternatives.In a second step, these se-
curity constraints are transformed to a policy language.

The first transformation step from abstract security
intentions to security constraints is quite challenging,
since a simple mapping is not sufficient. Expertise
knowledge might be required to determine an appropri-
ate strategy to secure services and resource, since mul-
tiple solutions might exists to satisfy a security goal.

3 Security Pattern — State of the Art

As outlined in the previous section, expertise knowl-
edge is required to determine an appropriate strategy
that specifies how to secure a service by enforcing an
intention.

In this section a short introduction to design pat-
terns is given as well as an overview about the state of
the art in security patterns that can be used to repre-
sent expert knowledge.

3.1 Design Patterns

The idea of design patterns has been introduced by
Christopher Alexander in 1977: A pattern describes a
problem which occurs over and over again in our en-
vironment, and then describes the core of the solution
to that pattern’ [1]. This approach has been applied
to software development in 1987 by Cunningham and
Beck [3]. In general, design patterns are defined in
an informal way, usually in the natural language, to
enable programmer and system designer to adapt the
solution described by a pattern to their own specific

problem.Patterns are described in documents that have
a specific structure as listed in Table 2. As described
in [12], the mandatory elements of a pattern are Name,
Context, Forces, Problem, and Solution.

’ Element ‘ Description ‘

Name is a label that identifies the pattern and
reflects the intention of this pattern.
Context | describes the environment before the
application of this pattern.
Forces are conditions that exist within the con-
text.
Problem | describes a problem that occurs within
the context.
Solution | is a proven solution for the problem
within the context.

Table 2. Design Pattern Structure

3.2 Security Patterns for SOA Security

Security patterns have been introduced by Yoder
and Barcalow [20] in 1997. Based on this work, var-
ious security patterns and pattern systems has been
defined that refer to different phases in the develop-
ment process. An overview about recent work is given
in [21] by Yoshioka et al.

Delessy and Fernandez defined several security pat-
terns for SOA and Web Service security[4, 6] that
describe best practices and concepts such as identity
provider and identity federation. These patterns pro-
vide an informal description, although parts of the pat-
tern’s solution are formalised using UML diagrams.

Microsoft published the book "Web Service Security
- Scenarios, Patterns, and Implementation Guidance’
[18]. This book presents a catalogue of security pat-
terns for Web Services and discusses the usage and
preconditions for each pattern. In accordance with the
design pattern structure, these pattern are described
in an informal way.

The need of an formalization of security patterns has
been addressed by M. Schumacher [17] by providing an
classification. However, his approach is not suitable to
enable an automated application of security patterns.

4 Formalizing and applying Web Ser-
vice security pattern

Web Service Security patterns provide reusable ex-
pert knowledge that can be used by systems design-
ers. As outlined in the previous Section, these pat-
terns are represented in an informal way. In conse-

quence, these approaches are not able to support a
model-driven transformation based on an automated
application of security patterns, since a formalisation
of the pattern structure is required.

Therefore, our security pattern system is based on a
formalised meta-model and a domain specific language
that are explained in this Section.

4.1 The Data Model

As a foundation for our security pattern definition,
we use our meta-model for SOA security that has been
introduced in [11]. This model describes participants
in an SOA — referred to as Objects — and the interac-
tion between these objects by exchanging messages. In
particular, we distinguish three types of participants:
Service, Client, and STS. We can formalize this meta-
model as a relational model (based on sorts and rela-
tions) as described by Lodderstedt [10]. Classes in the
meta-model are mapped to a set that contains an entry
for each instance of a specific class or association. For
instance, the example shown in Figure 2 contains three
participants (1: Web Frontend, 2: Web Service, 3:
STS). These instances can be expressed as the following
Sets: Object = {1,2,3}, Client = {1}, Service = {2},
and STS = {3}. In addition, the following rela-
tions can be defined that represent the interactions and
trust relationships in the example: OOruteraction =
{(1,2),(1,3)} and OO7,st = {(2,3),(3,1)}

Security intentions (Data Confidentiality, User Au-
thentication, ...) refer to participants as shown in Fig-
ure 2 and can specify multiple parameters such as re-
quired claim types. Similar to the formalization de-
scribed above, security intentions can be represented
as sets and association as well.

These sets and associations can be created based
on the instances modelled in the system design model
(see Section 2.1) and define the context for our security
patterns.

4.2 Pattern structure

In our approach, a security pattern facilitates the
generation of security constraints (as introduced in Sec-
tion 2.2) for a specific security intention. The applica-
bility of a pattern depend on the forces of this pattern
that specifies conditions in the scope of the context
provided by the system design model.

Figure 4 illustrates relationship between our secu-
rity configuration patterns and our data model. The
structure of our security patterns is defined as follows:

name — A String that identifies the pattern.

problem — The problem addressed by a security con-
figuration pattern is identified by a security inten-
tion.

context — As mentioned in the previous section, the
context is determined by the entities and their re-
lationship described in the system model.

forces — Forces determine the applicability of a pat-
tern in a specific context and can be expressed as
conditions over the entities and their relations in
the context.

solution — The solution to the problem defines oper-
ations that results in the instantiation and config-
uration of security constraints that has been de-
scribed in Section 2.2. These constraints comply
with the security intention referenced by the prob-
lem. Moreover, the solution might require the us-
age of other patterns that results in the generation
of additional security constraints.

Security Pattern Data Model
Name
I Security Intention
Problem 18
'y Conditions on the model
Forces a8
- [Security constraints
Solution Il

Figure 4. Security Configuration Pattern

To sum up, our security patterns provide a solution
in terms of security constraints for a security inten-
tion. The applicability of a pattern is determined by
the context and related forces.

4.3 A domain Specific Language for Secu-
rity Configuration Patterns

To specify the forces and the solution of a pattern,
a language is required that provides a syntax to state
conditions and operations on the data model. Lan-
guages such as QVT [14] or ATL [13] have been spec-
ified in the scope of the Model-Driven Architectures
(MDA) approach and provide an expressive and stan-
dardized syntax to define model transformations. How-
ever, the flexibility of these languages comes along with
an increased complexity that would complicate the def-
inition of a security pattern. Therefore, we propagate
the usage of a concise domain specific language (DSL)
that is defined specifically for the usage in our security
pattern system.

A security configuration pattern DSL operates on
a data model that is represented by domain-specific
sets and relations. The transformation of system de-
sign models to such a representation has been intro-
duced in Section 4.1. Consequently, our DSL operates
on three basic data types that we refer to as values
with (value = set | number | boolean). A set can con-
tain multiple elements of type value.

We use the following sets to represent different types
of actors: ’Service’, ’Client’, and ’STS’. Moreover, rela-
tions might be defined between these participants that
are represented by the following functions in our DSL:

1. Interaction(< number >, < number >) and
Trust(< number >, < number >) determine
whether there is a trust or interaction relationship
between two objects and return a boolean value.

2. InteractionPath(< number >, < number >) and
TrustPath(< number >, < number >) determine
whether two objects relate concerning the transi-
tive closure of the respective relations and return
a set of numbers that represent the objects on the
path.

A security pattern provides a solution for a problem
that is identified by a security intention. As outlined in
Section 4.1, a security intention refers to a specific sub-
ject and multiple parameters. The concrete instance of
an intention that is referenced by an applied pattern is
denoted as intention. The related parameters and the
subject of this intention can be accessed as properties.
For instance intention.subject returns a number that
identifies the participant.

So far, we have defined basic sets and functions re-
lated to the domain-specific data model. Next, we
will introduce mathematical functions that provide the
foundation to express the condition of the forces in a
pattern. Therefore, each of the following operations
return a boolean value:

<set> CONTAINS <walue> — checks whether an
value is contained in a set. If this value is a set,
then it is verified that each element of the second
set is contained within the first set.

<walue> AND/OR <walue> — these operators corre-
spond to the boolean operators. If the expression
is a set, then it is considered whether the set has
elements or not.

<walue> IMPLIES <wvalue> — represents an implica-
tion.

Moreover, we have to define Pattern-specific opera-
tions that support the expression of a pattern’s forces
and solution.

FORALL (<set>){ <operation>* } — executes a list
of operations for each element in a given set.

ENSURE (<value>) — is used to define the forces of
a pattern. A pattern can be applied in a certain
context, if the value evaluates to true.

ENFORCE (<security_intention>) — this operation
can be used in the scope of a solution and indi-
cates that a specific security intention must be en-
forced. A set of security constraints is returned
that is created by the application of appropriate
patterns for the intention.

Finally, we have to specify domain-specific opera-
tions that facilitates the creation and manipulation of
security constraints.

REQUIRE (<String>) — this operation results in the
creation of security constraints that are returned
by the solution.

SET (<String>, <Object>) — sets a specific property
(identified by a String) of the constraints that has
been created during the execution of the solution.

USE (< String>) — similar to the SET-operation, this
operation sets a specific property at the con-
straints. The value is resolved from the profile
as introduced in Section 2.1.

Using our DSL, we can define the forces and
the solution of a pattern as a list of operations:
pattern. forces = operationsx
pattern.solution = operationsx.

4.4 A Security Pattern Example

Name: Brokered Authentication
Problem: User Authentication
Forces:

ENSURE ((intention.subject IN STS)
OR (intention.subject IN Service))

FORALL (Clients) {
ENSURE (InteractionPath(it, intention.subject) IMPLIES
TrustPath(intention.subject, it)) }

Solution:

FORALL (TrustPath(intention.subject, Clients)) {
ENFORCE('Authentication') }

Table 3. Pattern 'Brokered Authentication’

As an example, we will introduce the formalisation
of the brokered authentication pattern for Web Ser-
vices as described in [18]. As shown in Table 3, the

forces of this pattern state that the subject of the in-
tention must be an STS or a Service. Moreover, for
each client it must be ensured that an interaction with
the subject implies a trust relationship between the
subject and this client. This means that an interaction
between a client and a service requires a trust relation-
ship to enable the subject to authenticate the user. For
example, consider the application of this pattern to the
service in Example 2. The forces are fullfiled, since the
subject is a service and the client that interacts with
this service, has a trust relationship with this service
(established over the STS).

Identity Provisioning User Authentication

v v
Brokered Identity Brokered
Provisioning Authentication
\ 7
v~
Authentication
§ T | 2
Direct Issuer

Authentication Authentication

Figure 5. Authentication Patterns

The solution of this pattern states, that the security
intention ’Authentication’” must be enforced for each
element on the trust path. In Example 2, the inten-
tion ’authentication’ will be enforced for the Service
and the STS. This will result in the application of ad-
ditional security patterns (see Section 4.3). Figure 5
shows a part of our security configuration pattern sys-
tem for Web Services. The security patterns ’Direct
Authentication’ and “Issuer Authentication’ will gener-
ate security constraints for the participants in the trust
path to ensure that the STS authenticates the user and
that the service authenticates the credential issued by
the STS.

5 Applying Security Patterns

The application of security patterns is performed by
a pattern engine. This engine applies a security pattern
system to the security intentions modelled in the sys-
tem design model and returns a set of resolved security
constraints (see Section 2.2) that can be transformed to
a policy language. An important feature of a pattern
engine is the capability to interpret and enforce the op-
erations of the DSL that are specified in the previous
section.

As aforementioned, a security pattern operates on a
data model that is described by a system design model.
Therefore, the translation of the model to sets and rela-
tions is the first step as described in Section 4.1. These

information are stored in a data structure called eze-
cution context.

The pattern engine provides a method ’resolve in-
tentions’ that expects the execution context and a list
of security intentions as input parameters and returns
a set of security constraints. For each modelled secu-
rity intention, the pattern engine has to find security
patterns that refer to the required intention and whose
forces evaluate to true as illustrated in figure 6.

_Find

O—»\ Pattern for

< Check Forces >
“.intention

Apply solution
‘ false “

Figure 6. Pattern Application Process

The application of the solutions of the applied pat-
terns result in the instantiation of security constraints
that are created by the operations specified in Section
4.2. If a solution contains an ENFORCE-operation,
then a recursive execution of the process illustrated
in Figure 6 will be required. The security constraints
generated by the application of additional security pat-
terns are added to the set of new security constraints.

For each security intention, multiple patterns might
be applied. The sets of security constraints created by
the application of these solutions represent policy alter-
natives. For instance, the enforcement of the security
intention secrecy might result in the application of two
patterns and, therefore, the creation of two constraints:
one constraint that requires security at the transport
layer and one constraint that requires security at the
message layer.

(1) Pattern A (2) Pattern B
Security Security
Intention 2 Intention 3
T 4 |

(1.1) Pattern C = | (1.2) Pattern D (2.1) Pattern E

Figure 7. Pattern Application Tree

Moreover, since each solution might require other
security intentions, the enforcement of an security in-
tention can be visualised as a tree, as shown in Fig-
ure 7. Therefore, the generation of policy alternatives
works as follows: All constraints that are on the path
from the root element to a leaf in this tree are com-
bined in a policy alternative. The policy alternatives
are expressed in our model and can be transformed to
a concrete security policy language.

To proof the applicability of our approach, we im-
plemented a pattern engine based on groovy. For this
purpose, we used groovy’s capabilities to specify do-
main specific languages.

6. Related Work

Modelling security configurations in Service-
oriented Architectures is an emerging topic.

Rodriguez et al. [15] and Wolter [19] proposed en-
hancements for process models to express security re-
quirements. However, these diagrams do not provide
a suitable foundation to model communication-related
security requirements that can be transformed to exe-
cutable policies.

This has been addressed by Breu and Haffner [7]
who proposed a methodology for security engineer-
ing in service-oriented Architectures.In particular, they
outlined a transformation to authorisation constraints.
Although providing a generic framework, they do not
considers specific Web Service characteristics such as
claim-based identities and do not describe a mapping
to WS-SecurityPolicy.

Jensen and Feja described a model-driven genera-
tion of Web Service security policies based on the mod-
elling of security requirements in business process mod-
els [8]. In particular, their approach intends to gener-
ate policies that ensure a secure messaging in terms of
confidentiality and integrity.

SecureUML [2] introduced by Basin et al. is a se-
curity modelling language to describe role-based access
control and authorisation constraints. To integrate this
language in different types of system design languages,
they proposed an integration schema that is the foun-
dation of the modelling approach used in this paper.

Jirjens presented UMLSec [9] to express and
verify security relevant information within UML-
diagrams.Since all security aspects need to be described
at the modelling layer, this approach does not provide
a simple, high-level notion for security intentions.

Satoh and Yamaguchi introduce an intermediate
model to transform a WS-SecurityPolicy into platform-
specific configuration files for WS-Security [16]. This
model is defined to represent the WS-Security message
structure and the meanings of signatures and encryp-
tion specified in a WS-SecurityPolicy. However, our
policy meta-model provides more flexibility compared
to the intermediate model of this approach.

In the recent years, various security patterns have
been defined. A detailed discussion about related work
concerning security patterns in the scope of SOA se-
curity has been presented in Section 3. Using these
security patterns, Delessy described a pattern-driven

process for secure SOAs [5]. An automated translation
to security policies is not described.

7. Conclusion and Future Work

Specifications for security policies in SOA such as
WS-Policy and WS-SecurityPolicy provide a language
to enable a declarative configuration of security re-
quirements. Due to the complexity of these languages,
the creation of security policies is an error-prone task.

To simplify the management and creation of security
policies, we presented an model-driven process in this
paper that enables the generation of security config-
urations based on modelled security intentions. This
transformation process is driven by Web Service se-
curity configuration patterns that represent reusable
expert knowledge. Since security patterns are trad-
tionally stated in an informal way, we introduced a
formalised pattern structure in this paper to enable an
automated application of security patterns.

The foundation of our security configuration pattern
is our SOA meta-model [11] that describes entities and
their relations at the modelling layer. The forces of
our security configuration pattern state conditions on
the entities in this model that describe the applica-
bility of a pattern. A security configuration pattern
provides a solution that results in the creation of secu-
rity constraints. These constraints are described by our
policy meta-model that serves as an abstraction layer
to WS-SecurityPolicy and enables the transformation.
To enable the specification of the forces and solutions
in a simple and understandable way, we introduced a
domain-specific language that provides operations that
are specific for our approach.

In the next step, we will extend our policy genera-
tion approach to create aggregated security policies in
the scope of service compositions.

References

[1] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacob-
sen, I. Fiksdahl-King, and S. Angel. A Pattern Lan-
uage: Towns - Buildings - Construction. Oxford Uni-
versity Press, 1977.

[2] D. Basin, J. Doser, and T. Lodderstedt. Model driven
security: from uml models to access control infras-
tructures. ACM Transactions on Software Engineer-
ing and Methodology, 15(1):39-91, January 2006.

[3] K. Beck and W. Cunningham. Using pattern lan-
guages for Object-oriented programs. Technical Re-
port CR-87-43, AppleComputer, Tektronix, Septem-
ber 1987.

[4] N. Delessy, E. B. Fernandez, and M. M. Larrondo-
Petrie. A pattern language for identity management.

(5]

(6]

(7l

(8]

(9]

(10]

(11]
(12]
(13]

[14]

(15]

[16]

(17]

18]

(19]

[20]

21]

In ICCGI ’07: Proceedings of the International Multi-
Conference on Computing in the Global Information
Technology, page 31, Washington, DC, USA, 2007.
IEEE Computer Society.

N. A. Delessy. A Pattern-driven Process for secure
Service-oriented Applications. PhD thesis, Florida At-
lantic University, Boca Raton, Florida, May 2008.

N. E.B.Fernandez and M. Larrondo-Petrie. Patterns
for web services security. In OOPSLA : Workshop on
Service-Oriented Architecture and Web Services, 2006.
M. Hafner and R. Breu. Security Engineering for
Service-oriented Architectures. Springer, October
2008.

M. Jensen and S. Feja. A security modeling approach
for web-service-based business processes. Engineering
of Computer-Based Systems, IEEE International Con-
ference on the, 0:340-347, 2009.

J. Juerjens. UMLsec: Extending UML for Secure Sys-
tems Development. In UML ’02: Proceedings of the
5th International Conference on The Unified Model-
ing Language, pages 412-425, 2002.

T. Lodderstedt. Model driven security: from UML
models to access control architectures. PhD thesis,
Albert-Ludwig University of Freiberg, March 2004.
M. Menzel and C. Meinel. A security meta-model for
service-oriented architectures. In Proc. SCC, 2009.
G. Meszaros and J. Doble. A pattern language for
pattern writing, 1996.

I. OBEO. Atlas transformation language 3.0. Specifi-
cation, June 2009.

OMG. Meta object facility (mof) 2.0 query/view/
transformation specification. =~ OMG Specification,
April 2008.

A. Rodriguez, E. Ferndndez-Medina, and M. Piattini.
A bpmn extension for the modeling of security require-
ments in business processes. [FICE Transactions, 90-
D(4):745-752, 2007.

F. Satoh and Y. Yamaguchi. Generic security policy
transformation framework for ws-security. In IEEE In-
ternational Conference on Web Services (ICWS 2007),
pages 513-520, Los Alamitos, CA, USA, 2007. IEEE
Computer Society.

M. Schumacher. Security Engineering with Patterns
- Origins, Theoretical Model, and New Applications.
Number ISBN 3-540-40731-6. Springer, Berlin, 2003.
A. Stamos and S. Stender. Web Service Security. Mi-
crosoft Press, 2005.

C. Wolter and A. Schaad. Modeling of task-based au-
thorization constraints in bpmn. In BPM, pages 64—79,
2007.

J. Yoder and J. Barcalow. Architectural patterns for
enabling application security. In PLoP, 1997.

N. Yoshioka, H. Washizaki, and K. Maruyama. A
survey on security patterns. Progress in Informatics,
5:35-47, 2008.

