
Using Vulnerability Information and Attack Graphs
for Intrusion Detection

Sebastian Roschke, Feng Cheng, and Christoph Meinel
Hasso-Plattner-Institute (HPI), University of Potsdam

P.O.Box 900460, 14440, Potsdam, Germany
{sebastian.roschke, feng.cheng, meinel}@hpi.uni-potsdam.de

Abstract—Intrusion Detection Systems (IDS) have been used
widely to detect malicious behavior in network communication
and hosts. IDS management is an important capability for
distributed IDS solutions, which makes it possible to integrate
and handle different types of sensors or collect and synthesize
alerts generated from multiple hosts located in the distributed
environment. Sophisticated attacks are difficult to detect and
make it necessary to integrate multiple data sources for detection
and correlation. Attack graph (AG) is used as an effective method
to model, analyze, and evaluate the security of complicated com-
puter systems or networks. The attack graph workflow consists
of three parts: information gathering, attack graph construction,
and visualization. This paper proposes the integration of the AG
workflow with an IDS management system to improve alert and
correlation quality. The vulnerability and system information is
used to prioritize and tag the incoming IDS alerts. The AG is used
during the correlation process to filter and optimize correlation
results. A prototype is implemented using automatic vulnerability
extraction and AG creation based on unified data models.

I. INTRODUCTION

Intrusion Detection Systems (IDS) have been proposed for
years as an efficient security measure and is nowadays widely
deployed for securing critical IT infrastructures. Based on
the protected objective, IDS can be classified into host-based
intrusion detection systems (HIDS), network-based intrusion
detection systems (NIDS), or distributed intrusion detection
systems, which contain both types of sensors. Due to different
deployment mechanisms, IDS can be categorized as software-
based IDS, hardware-based IDS, and Virtual Machine (VM)
based IDS [1]. Nowadays, lots of commercial and open
source Intrusion detection systems (IDS) implementations
have emerged and been widely used in practice for identifying
malicious behaviors against protected hosts or network envi-
ronments. Some known examples of existing IDS solutions
are F-Secure Linux Security [2], Samhain [3], and Snort
[4]. To simultaneously provide multiple benefits from various
IDS sensors, an integrated IDS solution is required. For this
purpose, many distributed IDS (DIDS) technologies have been
developed [5]. The Intrusion Detection Message Exchange
Format (IDMEF) [6] has been proposed as a standard to enable
interoperability among different IDS approaches. Correlation
of IDS alerts has been proposed for addressing the problem
of false-positive alerts. However, detection of sophisticated at-
tacks is a difficult and challenging. In this paper, the utilization
of context data sources for IDS correlation is proposed. In this

paper we focused on the integration of the Attack Graph (AG)
workflow with an IDS management system.

Attack Graphs have been proposed for years as a formal
way to simplify the modeling of complex attacking scenarios.
Based on the interconnection of single attack steps, they de-
scribe multi-step attacks [25]. Attack Graphs not only describe
one possible attack, but many potential ways for an attacker to
reach a goal. In an attack graph, each node represents a single
attack step in a sequence of steps. Each step may require a
number of previous attack steps before it can be executed,
denoted by incoming edges, and on the other hand may lead
to several possible next steps, denoted by outgoing edges. With
the help of attack graphs most of possible ways for an attacker
to reach a goal can be computed. This takes the burden from
security experts to evaluate hundreds and thousands of possible
options. Thus, a program can identify weak spots much faster
than a human. At the same time, representing attack graphs
visually allows security personal a faster understanding of the
problematic pieces of a network [26], [27].

To improve the quality of correlation and detect sophisti-
cated attacks, the integration of the AG workflow and IDS
management is proposed. To perform high quality correlation,
the approach uses the information sources of the AG work-
flow: automatically extracted vulnerability information, system
information, and the calculated graph. The vulnerability and
system information is used to prioritize and tag the incoming
IDS alerts. The AG is used during the correlation process to
filter incorrect correlation results. The implemented prototype
consists of an Event Gatherer, a Correlation Module, an Attack
Graph Creation module, and a Frontend for the user. The
Correlation Engine works based on pluggable Correlation
Modules and uses the Alert Storage, the Vulnerability Infor-
mation and System Information as input. The Frontend works
on alert information which is tagged and filtered based on the
Vulnerability Information and System Information.

This paper is organized as follows. Section II describes
alert correlation approaches and the attack graph workflow. In
Section III, the proposed architecture of the IDS management
system is described. Section IV presents the data models
for the existing data sources of the attack graph workflow.
The way and design to extract information from vulnera-
bility databases is described in Section V. The correlation
approaches of the management system using the AG data
sources are described in Section VI. Finally, we conclude the
paper in Section VII.

Sebastian Roschke, Feng Cheng, Christoph Meinel: "Using Vulnerability Information and Attack Graphs for Intrusion Detection" 
in Proceedings of the 6th International Conference on Information Assurance and Security (IAS 2010), IEEE Press, Atlanta, USA, pp. 104-109, 8, 2010. ISBN: 978-1-4244-7408-0. 



Fig. 1. An IDS Management Architecture integrating AG workflow

II. RELATED WORK

A. Alert Correlation

The alert correlation framework usually consists of sev-
eral components [9]: Normalization, Aggregation (Clustering),
Correlation, False Alert Reduction, Attack Strategy Analysis,
and Prioritization. Over the last years, alert correlation re-
search focused on new methods and technologies for these
components. IDMEF [6] and CVE [10] are important efforts
in the field of Normalization. Approaches of aggregation are
mostly based on similarity of alerts [12], [13] or general-
ization hierarchies [11]. The correlation algorithms [9] can
be classified as: Scenario-based correlation [14], Rule-based
correlation [15], Statistical correlation [16], and Temporal
correlation [17]. False alert reduction can be done by using
such techniques as data mining [18] or fuzzy techniques
[19]. Attack strategy analysis often depends on reasoning
and prediction of attacks missed by the IDS [20]. In terms
of Prioritization, the alerts are categorized based on their
severity, e.g., using attack ranks [21]. To solve problems of
alert correlation, a variety of disciplines are used, e.g., machine
learning, data mining [18], or fuzzy techniques [19]. The work
described in [22] considers the performance of alert correlation
by using memory-based table indexes for hyper alerts. A hyper
alert is a cluster of alerts with the same properties, e.g., the
same source address and target address. The approach using
index tables is introduced in [23].

B. The Attack Graph Workflow

The attack graph workflow consists of three independent
phases: Information Gathering, Attack Graph Construction,
as well as Visualization and Analysis. In the information
gathering phase, all necessary information to construct attack
graphs is collected and unified, such as information on network
structure, connected hosts, and running services. In the attack
graph construction phase, a graph is computed based on
the gathered system information and existing vulnerability
descriptions. Finally, the attack graph is processed in the
visualization and analysis phase. Attack graphs always require

a certain set of input information. For one, a database of
existing vulnerabilities has to be available, as without it, it
would not be possible to identify or evaluate the effects of
host-specific weaknesses. Also, the network structure must be
known beforehand. It is necessary to identify which hosts can
be reached by the attacker. Often, an host-based vulnerability
analysis is performed before the attack graph is constructed.

Vulnerability information is stored in so called vulnera-
bility databases (VDB), which collect known software vul-
nerabilities. Such databases comprehend large compilations
of software weaknesses in a non-uniform manner. Well
known databases are the VDB from SecurityFocus [33],
advisories from Secunia [32], and the Open Source Vul-
nerability Database (OSVDB) [29], operated by the Open
Security Foundation. Besides these known VDB from different
providers, there is another important effort called the Common
Vulnerabilities and Exposures list (CVE) [30], which is a
meta vulnerability database. Its goal is to provide a common
identifier for known weaknesses which can be used across
various VDBs. Before 1999, each vulnerability database has
its own name and it was difficult to detect when entries
referred to the same weakness. With the help of CVE entries,
vulnerabilities at least have a unique identifier.

For attack graph construction, up-to-date vulnerability in-
formation is crucial to provide high quality results. Automatic
extraction of up-to-date vulnerability descriptions provide ca-
pabilities to build high quality attack graphs. As vulnerability
descriptions are stored in semi-structured textual descriptions,
automatic extraction is possible with 70-90 percent of cor-
rectness in extraction from textual descriptions [7]. The data
model described in [7] is used to store vulnerability and system
information for IDS correlation. The third party tool MulVAL
[28] is integrated and the created AG is used during the
correlation process.

III. IDS MANAGEMENT ARCHITECTURE INTEGRATING
AG WORKFLOW

The proposed architecture of the IDS management system
is shown in Figure 1. It includes several IDS VMs and a

Sebastian Roschke, Feng Cheng, Christoph Meinel: "Using Vulnerability Information and Attack Graphs for Intrusion Detection" 
in Proceedings of the 6th International Conference on Information Assurance and Security (IAS 2010), IEEE Press, Atlanta, USA, pp. 104-109, 8, 2010. ISBN: 978-1-4244-7408-0. 



IDS VM Management Unit. The IDS VM Management Unit
consists of four active components: Event Gatherer, Event
Database, Analysis Component, and IDS Remote Controller.
The Event Database is a passive storage that holds information
on all received events. It can be accessed through the Analysis
Component. User controls the IDS management through direct
interaction and configuration of the core components. The IDS
Sensors on the VMs are responsible for detecting and reporting
malicious behavior. Each sensor is connected to the Event
Gatherer component to transmit triggered events. A sensor,
which could be a running IDS sensor with all its signatures
and configurations, can be configured through the IDS Remote
Controller.

The IDS sensor identifies malicious behavior and generates
alerts through a reporting component, which will be processed
by the Event Gatherer. The sensor is an independent process,
which can be any NIDS or HIDS, e.g., Snort or Samhain.
The Event Gatherer is responsible for collecting all events
from IDS Sensors. As shown in Figure 1, the Event Gatherer
component is introduced on the IDS Sensor side as well.
This gatherer is used to standardize the outputs from different
sensors as well as realize the logical communication, such
as file-based or network-based, between the sensor and the
management unit. The gatherer consists of several Plugins:
Senders, Receivers, and Handlers. Receivers are used to read
alerts and convert them to IDMEF. Senders are used to write
alerts to a destination, e.g., a network, a database, or a folder.
Handlers can be used to modify alerts in processing, e.g.,
to log each alert from a specific sensor. Each event is made
persistent in the Event Database storage. The gatherer can
be configured by the user and is connected to each sensor it
receives events from. A gatherer can be the running instance
of an IDS management component that accepts connections
and writes events to the database.

The Analysis Component consists of the Correlation Module
and the Attack Graph Module. The Correlation Module is
responsible for running different correlation algorithms on
the Event Database using the available data sources: the
Vulnerability Information and the System Information. The
Attack Graph Module is responsible for connecting the attack
graph workflow to the Correlation Module. It handles the
integration of the two main data sources and the Attack Graph
Construction component. In this way, it is possible to integrate
the data sources as well as the created attack graph itself by
triggering the component.

IV. SYSTEM INFORMATION AND VULNERABILITY
INFORMATION

A. A Data Model for System Descriptions

Figure 2 shows the so-called System properties used to
describe systems and networks.

System properties are characteristics and resources of a
computer system. Each system property describes one specific
attribute of such a system, whereas properties are related to
one another as depict in Figure 2. For example, the installed
version of an application can be a system property. An
application’s version is meaningless if it cannot be linked

to a certain application. Properties and their relations may
change over time due to modifications, such that an application
may be upgraded to a newer version. System properties can
be found in two layers, the network layer and the software
layer. The network layer describes properties of interconnected
computers, such as network addresses and port numbers. The
software layer describes properties of software systems, such
as programs, data, and account information.

A network is a group of directly connected network ad-
dresses. A network address is an identifier of a host in a
network. Directly connected means it is possible to reach
from one host of network another host of the same network.
Network addresses may have a number of open ports per
address which are used by programs to communicate with
other programs.

Also covered are host as well as port connectivity, both
are essential to capture which hosts and programs can be
reached. Host connectivity is a boolean value to describe
whether one host can be reached from another host. This may
be influenced by the network the corresponding hosts are in
or by firewall rules, preventing certain hosts to connect to
others.Port connectivity is a boolean value to describe whether
one port of a network address can be accessed from another
port of a network address. Similar to host connectivity, this
can be influenced by firewall rules or comparable system
configuration tools.

B. Using available Vulnerability Databases

Vulnerability information is available from basically two
types of sources. On the one hand, commercial or non-profit
organizations act as vulnerability providers, such as Secunia
security advisories [32] or the Open Source Vulnerability
Database [29]. On the other hand, vulnerability information
is described with standardization efforts, for example the
Common Vulnerabilities and Exposures list (CVE) [30]. Based
on the analysis in [7], we focused on extraction of vulnerability
information from the National Vulnerability Database (NVD)
[34]. It provides most of the useful vulnerability information.
It also has the advantage of making this data available in
a well-defined XML format, which alleviates the amount of
work to implement a parser. Except for the OSVDB, all other
vulnerability databases will require a web scraping approach to
retrieve data. Another benefit of the NVD is the explicit inclu-
sion of extensive CVSS information. This means no additional
source must be parsed to extract this data. Additionally, the
NVD refers to Open Vulnerability and Assessment Language
(OVAL) descriptions, that is detailed characterizations of the
software configuration which is vulnerable.

In [7], existing vulnerability databases are analyzed con-
cerning their usability in attack graph construction. The 10
most popular VDB providers were selected as the base for
this evaluation. Most valuable attributes of vulnerability entries
in this process include CVE identifiers, the impact of a vul-
nerability, the range from which an attack can be conducted,
and the required or affected programs. The Open Vulnerability
and Assessment Language (OVAL) [31] provides a framework
to describe exploitable software configurations affected by a

Sebastian Roschke, Feng Cheng, Christoph Meinel: "Using Vulnerability Information and Attack Graphs for Intrusion Detection" 
in Proceedings of the 6th International Conference on Information Assurance and Security (IAS 2010), IEEE Press, Atlanta, USA, pp. 104-109, 8, 2010. ISBN: 978-1-4244-7408-0. 



Fig. 2. System Properties

vulnerability. Similar to the Common Vulnerability Scoring
System (CVSS) [35], OVAL is standardized and used by
several organizations. In [7], only vulnerability definitions
are considered. Based on XML, such definitions consist of
meta-data and criteria elements, whereas criteria elements are
recursive and therefore allow configuration specifications at
an arbitrary level of detail. Because important attributes, such
as the attack range and the impact, are often described with
a selection of English words, the interpretation of textual de-
scriptions cannot be neglected. Not all information is available
in CVSS format and OVAL definitions also rely on the use of
English phrases. Nevertheless, it has been demonstrated that
verbalization is often semi-formal and therefore easy to parse.
The approach is analyzed in term of correctness using the
attributes of range from which an attack can take place as well
as which of the three security goals confidentiality, integrity,
and availability can be violated by exploiting a vulnerability.
The range information can be identified correctly in more than
90 percent of the cases, confidentiality violations in almost
82 percent of the cases, integrity violations in more than 85
percent, and availability violations in almost 75 percent of the
analyzed descriptions.

C. A Data Model for Vulnerability Descriptions

To use vulnerability descriptions from different databases
in attack graph construction, these descriptions need to be
unified. We used a flexible and extensible data model to unify
vulnerability descriptions of multiple vulnerability databases.
As described in [8], the data model is capable to express
vulnerability descriptions provided by vulnerability databases.
The logical data model describes system, influence, and range
properties. System properties describe states a system can
be in, e.g., running programs, existing accounts, and exist-
ing databases. Influence properties describe the influence an
attacker has on system properties by successful exploitation.
Range properties describe the location from which an attacker
can perform successful exploitation, e.g., local or remote.
A vulnerability requires a precondition and a postcondition,
which can be represented by system properties. Two basic

types are used for descriptions: properties and sets. Properties
represent predicates and sets allow a grouping of properties
based on boolean logic. Both types facilitate a simple eval-
uation based on matching of True or False values. Finally,
descriptions link different system states together, one as the
requirement and the other as the result of an attack. Based
on this properties and sets, we can flexibly describe many
different system states.

System properties are characteristics and resources of a com-
puter system which are considered relevant vulnerability infor-
mation. Each system property describes one specific attribute
of such a system, whereas properties are related to one another.
For example, the installed version of an application can be a
system property. An application’s version is meaningless if it
cannot be linked to a certain application. Properties and their
relations may change over time due to modifications, such that
an application may be upgraded to a newer version. System
properties can be found in two layers, the network layer and
the software layer. The network layer describes properties of
interconnected computers, such as network addresses and port
numbers. The software layer describes properties of software
systems, such as programs, data, and account information. We
defined several different system properties which are useful
to create attack graphs, such as network properties, host
connectivity, programs, protocols, data, accounts, and others.
To describe actions performed on systems, influence properties
will be used. Influence properties describe the relationship
between a potential attacker and system properties which
represent computer resources.

V. EXTRACTION OF VULNERABILITY INFORMATION

A prototype for automatic extraction of vulnerability de-
scriptions from vulnerability databases is used as described in
[7]. The prototype will use a designed data structure as an
exchange format between components which extract informa-
tion from various VDBs as well as components which output
information for attack graph tools and related applications.
The prototype is based on plugins: so called readers and
writers. In the following, the extracting components will be

Sebastian Roschke, Feng Cheng, Christoph Meinel: "Using Vulnerability Information and Attack Graphs for Intrusion Detection" 
in Proceedings of the 6th International Conference on Information Assurance and Security (IAS 2010), IEEE Press, Atlanta, USA, pp. 104-109, 8, 2010. ISBN: 978-1-4244-7408-0. 



referred to as readers, because they read information from
a vulnerability database or some other source. Every reader
is able to extract information from a specific data source.
For example, an NVD reader is able to filter relevant attack
information from the National Vulnerability Database (NVD)
[34]. The counterpart of readers are writers, which output
vulnerability information in different formats. Gathered data
can be read by various source, e.g., attack graph tools or
vulnerability analysis programs. Thus, it is reasonable to
provide a writer for each target application.

Readers such as the NVD Reader or the OVAL Reader
transform information from one XML representation into
another XML representation, but the transformed information
remains the same. The major benefit of this type of readers
is the increased amount of available vulnerability information
provided by a common vulnerability database which is based
on the data structure used in the implementation. The CVE
Reader on the other hand extracts information from textual
descriptions of vulnerabilities. To be able to evaluate how
much of the encoded information can be retrieved, it is useful
to have a closer look at the extracted information. For this,
the retrieved data will be compared to the data which is
available in the form of CVSS entries. Those CVSS entries
provide range and impact information of vulnerabilities in a
standardized format. The NVD contains both, textual descrip-
tions as well as CVSS values for all entries. Both information
sets should contain the same data, therefore the comparison
is based on these two sets. Note that this evaluation aims
not at the evaluation of vulnerabilities itself, but rather at an
analysis of how much of the information encoded in textual
descriptions can be extracted correctly.

VI. USING THE AG WORKFLOW FOR CORRELATION

The AG workflow involves three data sources that can
be utilized for IDS correlation: the system information, the
vulnerability information, and the generated attack graph.

There are several useful parts of the system information
that can be used in the correlation process. First, we are using
host connectivity information to find attacks that are based on
spoofed packets. If an alert shows a SrcIP-DstIP pair and the
hosts have no connectivity, the alert is caused by a spoofed
packet. That prevents the suspicion of the wrong person or
host. Information on running OS and programs of a target
host are used to filter out alerts for less dangerous attacks and
to set high priority for very dangerous attacks. This can be
useful in case of many alerts for an attack to a Linux OS
based host when we know that a Windows OS is running on
that host, i.e., the attack is less dangerous as it is unlikely that
it leads to critical damage. Contrary, an alert for an attack on a
Windows host that runs Windows OS is critical. Account data
is used to identify accounts and persons for target and source
hosts of an attack. The target account is identified to inform
the responsible persons that their system is under attack. The
source account is identified to either track the attacker or
inform the responsible persons of the attacking host that their
system is used to attack hosts in the network and might have
been compromised in the past.

Up-to-date vulnerability information can be very for tagging
IDS alerts and modifying their priority. CVSS information can
be used to define the priority of an IDS alert which is created
for an attack exploiting the specific vulnerability. We are using
the Base Score of CVSS and tag each alert that can be assigned
to a CVE with the specific value. During the correlation, the
system can be configured to ignore scores below 5.0. On the
frontend the system can do ranking and filtering according to
CVSS scores to help the user with manual analysis. Addi-
tionally, the system shows possible vulnerability information
for generic alerts. If an alert announces shellcode detection in
a communication between host A and host B on port 445 or
139, the system lists vulnerabilities for all SMB vulnerabilities
(matching the host OS and running programs if required). The
system can also order alerts due to the publication date of
the related vulnerability, e.g., showing alerts for more recent
vulnerabilities first before others.

The utilization of attack graph involves another type of
graph related to IDS: the Scenario Graph ([15], [37]). A
scenario graph represents a way of a recognized attack path
through the network. The system uses the attack graph to
match the scenario graph and identify subpaths in the attack
graph. By specifying important hosts, the system can generate
new correlation alerts if the attacker covered 70 − 80% of a
known attack path. It is also possible that the scenario graph
reveals a new way an attacker walked through the network. In
this case the AG is updated. If a host is part of the scenario
graph, an actual attack is going on. IDS alerts that have such
a host as source IP are ranked with highest priority. In this
way, the network administrator can observe ongoing attacks
and take precautions using the attack graph showing possible
next steps of the attacker.

Apart from the introduced interactions between the AG
workflow and the IDS correlation and management, there
might be lots of other possibilities for interaction. The in-
troduced methods are implemented in our Advanced IDS
Management Architecture [24]. The system uses a plugin
concept for many parts and is implemented in Java. It provides
connectors for popular IDS sensors (e.g., Snort [4], Samhain
[3]) and for other IDS management systems (e.g., Prelude [5]).
The system uses multiple different alert storages (In-Memory
DBS, column-based and row-based DBS) and has a plugin
engine for correlation modules. The frontend is implemented
using Java servlets.

VII. CONCLUSION

A promising future task is to find and connect more appli-
cable data sources to the system, e.g., historic user and system
data can be used for forensics and correlation of IDS alerts
over a long period of time. The system needs extensive perfor-
mance tests and scalability tests, as the current testing is using
a dataset of 1.3 million alerts generated from one Snort sensor.
The attack graph is created on a relatively small network of
10 hosts. The system shows sufficient performance with this
network configuration, but it needs to be evaluated based on
large networks. Usability test of the network administrators
using this platform need to be conducted in the future to proof

Sebastian Roschke, Feng Cheng, Christoph Meinel: "Using Vulnerability Information and Attack Graphs for Intrusion Detection" 
in Proceedings of the 6th International Conference on Information Assurance and Security (IAS 2010), IEEE Press, Atlanta, USA, pp. 104-109, 8, 2010. ISBN: 978-1-4244-7408-0. 



that the system and its algorithms improve their workflow.
The extraction of information from exploit databases is also
considered as interesting research topic and valuable source of
information for the IDS and correlation process.

In this paper, we propose the integration of the AG work-
flow with an IDS management system to improve alert and
correlation quality. The approach uses the information sources
of the AG workflow: automatically extracted vulnerability
information, system information, and the calculated graph.
The vulnerability and system information is used to prioritize
and tag the incoming IDS alerts. The AG is used during the
correlation process to filter incorrect correlation results. An
architecture is described consisting of an Event Gatherer, a
Correlation Module, an Attack Graph Creation module, and
a Frontend for the user. The Correlation Engine works based
on pluggable Correlation Modules and uses the Alert Storage,
the Vulnerability Information and System Information as input.
The Frontend works on alert information which is tagged and
filtered based on the Vulnerability Information and System
Information. A prototype is implemented using unified data
models for system information and vulnerability information.
Automatic extraction of vulnerabilities is applied to utilize
most recent vulnerability descriptions.

REFERENCES

[1] Laureano, M., Maziero, C., Jamhour, E.: Protecting host-based intrusion
detectors through virtual machines. Computer Networks 51(5), pp. 1275-
1283 (2007).

[2] F-Secure Linux Security: http://www.f-secure.com/linux-weblog/ (ac-
cessed Mar 2010), F-Secure Corporation (2006-2009).

[3] Samhain IDS: WEBSITE: http://www.la-samhna.de/samhain/ (accessed
Mar 2010).

[4] Snort IDS: WEBSITE: http://www.snort.org/ (accessed Mar 2010).
[5] Prelude IDS: WEBSITE: http://www.prelude-ids.com/ (accessed Mar

2010), PreludeIDS Technologies (2005-2009).
[6] Debar, H., Curry, D., Feinstein, B.: The Intrusion Detection Message

Exchange Format, Internet Draft, Technical Report, IETF Intrusion
Detection Exchange Format Working Group (July 2004).

[7] Roschke, S., Cheng, F., Schuppenies, R., and Meinel, Ch.: “Towards
Unifying Vulnerability Information for Attack Graph Construction”, In:
Proceedings of 12th Information Security Conference (ISC’09), Springer
LNCS, vol. 5735, pp. 218-233, Pisa, Italy (Sep 2009).

[8] Cheng, F., Roschke, S., Schuppenies, R., and Meinel, Ch.: “Remodeling
Vulnerability Information”, In: Proceedings of 5th Inscrypt Conference
(Inscrypt’09), Springer LNCS, Beijing, China, December 2009 (to
appear).

[9] R. Sadoddin, A. Ghorbani: Alert Correlation Survey: Framework and
Techniques, In: Proceedings of the International Conference on Privacy,
Security and Trust (PST’06), ACM Press, Markham, Ontario, Canada,
pp. 1-10 (2006).

[10] Mitre Corporation: Common vulnerabilities and exposures, CVE
Website: http://cve.mitre.org/ (accessed Mar 2010).

[11] K. Julisch: Clustering intrusion detection alarms to support root cause
analysis, In: ACM Transactions on Information and System Security,
vol. 6, Issue 4, pp. 443-471 (2003).

[12] F. Cuppens: Managing alerts in a multi-intrusion detection environment,
In: Proceedings of the 17th Annual Computer Security Applications
Conference (ACSAC’01), IEEE Press, New-Orleans, USA, pp. 0-22
(Dec 2001).

[13] A. Valdes and K. Skinner: Probabilistic alert correlation, In: Pro-
ceedings of the 4th International Symposium on Recent Advances in
Intrusion Detection (RAID’00), London, UK, Springer LNCS 2212,
pp.54-68 (2001).

[14] H. Debar and A. Wespi: Aggregation and correlation of intrusion-
detection alerts, In: Proceedings of the 4th International Symposium
on Recent Advances in Intrusion Detection (RAID’01), London, UK,
Springer LNCS 2212, pp. 85-103 (2001).

[15] P. Ning, Y. Cui, and D. Reeves: Constructing attack scenarios through
correlation of intrusion alerts, In: Proceedings of the 9th ACM
Conference on Computer and Communications Security (CCS’02) ACM
Press, Washington, DC, USA, pp. 245-254 (2002).

[16] X. Qin: A Probabilistic-Based Framework for INFOSEC Alert Corre-
lation, PhD thesis, Georgia Institute of Technology (2005).

[17] W. L. Xinzhou Qin: Statistical causality analysis of infosec alert data,
In: Proceedings of the 6th International Symposium on Recent Advances
in Intrusion Detection (RAID’03), London, UK, Springer LNCS 2820,
pp. 73-93 (2003).

[18] S. Manganaris, M. Christensen, D. Zerkle, and K. Hermiz: A data mining
analysis of rtid alarms, In: Computer Networks, vol. 34, Issue 4, pp.
571-577 (2000).

[19] A. Siraj and R. B. Vaughn: A cognitive model for alert correlation
in a distributed environment, In: Proceedings of IEEE International
Conference on Intelligence and Security Informatics (ISI’05), IEEE
Press, Atlanta, GA, USA, pp. 218-230 (2005).

[20] P. Ning, D. Xu, C. G. Healey, and R. S. Amant: Building attack scenarios
through integration of complementary alert correlation method, In: Pro-
ceedings of the Network and Distributed System Security Symposium
(NDSS’04), The Internet Society, San Diego, California, USA (2004).

[21] P. A. Porras, M. W. Fong, and A. Valdes: A mission-impact-based
approach to infosec alarm correlation, In: Proceedings of the 5th
International Symposium on Recent Advances in Intrusion Detection
(RAID’02), London, UK, Springer LNCS, pp. 95-114 (2002).

[22] Tedesco, G. and Aickelin, U.: Real-Time Alert Correlation with Type
Graphs, In: Proceedings of the 4th international Conference on Infor-
mation Systems Security (ISS’09), Springer LNCS 5352, Hyderabad,
India, pp. 173-187 (2008).

[23] Ning, P. and Xu, D.: Adapting Query Optimization Techniques for
Efficient Intrusion Alert Correlation, Technical Report, North Carolina
State University at Raleigh (2002).

[24] Roschke, S., Cheng, F., and Meinel, Ch.: “An Advanced IDS Manage-
ment Architecture”, In: Journal of Information Assurance and Security,
Dynamic Publishers Inc., vol. 51, Atlanta, GA 30362, USA, ISSN 1554-
1010, pp. 246-255 (Jan 2010).

[25] Schneier, B.: Attack Trees: Modeling Security Threats.
In Journal Dr. Dobb’s Journal, online available from
http://www.ddj.com/architect/184411129 (Dec 1999)

[26] Sheyner, O., Haines, J., Jha, S., Lippmann, R., and Wing, J. M.:
Automated Generation and Analysis of Attack Graphs. In Proceedings of
the 2002 IEEE Symposium on Security and Privacy (S&P’2002), IEEE
Press, Washington DC, USA, pp. 273-284 (May 2002)

[27] Steven Noel and Sushil Jajodia Managing attack graph complexity
through visual hierarchical aggregation In Proceedings of Workshop on
Visualization and Data Mining for Computer Security (VizSEC/DMSEC
2004), ACM, Washington DC, USA, pp. 109-118 (Oct 2004)

[28] X. Ou, S. Govindavajhala, and A. Appel MulVAL: A Logic-based
Network Security Analyzer, In: Proceedings of 14th USENIX Security
Symposium, USENIX Association, Baltimore, MD, pp. 8-8 (Aug 2005).

[29] OSV Database: “Open source vulnerability database”, Website:
http://osvdb.org/ (accessed Mar 2010).

[30] Mitre Corporation: “Common vulnerabilities and exposures”, Website:
http://cve.mitre.org/ (accessed Mar 2010).

[31] Mitre Corporation, “Open Vulnerability and Assessment Language”,
OVAL Website: http://oval.mitre.org/ (accessed Mar 2010).

[32] Secunia Advisories, Website: http://secunia.com/advisories/ (accessed
Mar 2010).

[33] SecurityFocus, “Security Focus Bugtraq”, Website:
http://www.securityfocus.com/ (accessed Mar 2010).

[34] NIST, “National Vulnerability Database”, NVD Website:
http://nvd.nist.gov/ (accessed Mar 2010).

[35] P. Mell, K. Scarfone, and S. Romanosky: “A complete guide to
the common vulnerability scoring system version 2.0”, Website:
http://www.first.org/cvss/ (accessed Mar 2010).

[36] V. N. L. Franqueira and M. van Keulen: “Analysis of the NIST
database towards the composition of vulnerabilities in attack scenarios”,
Technical Report, TR-CTIT-08-08, University of Twente, Enschede,
February 2008.

[37] T. Hughes, O. Sheyner: “Attack scenario graphs for computer network
threat analysis and prediction”, In: Journal of Complexity, Wiley
Periodicals, Inc., vol. 9(2), pp. 15-18 (2004).

Sebastian Roschke, Feng Cheng, Christoph Meinel: "Using Vulnerability Information and Attack Graphs for Intrusion Detection" 
in Proceedings of the 6th International Conference on Information Assurance and Security (IAS 2010), IEEE Press, Atlanta, USA, pp. 104-109, 8, 2010. ISBN: 978-1-4244-7408-0. 




