
Transformation and Aggregation of Web Service Security Requirements

Robert Warschofsky, Michael Menzel, Christoph Meinel
Hasso-Plattner-Institute

Prof.-Dr.-Helmert Str. 2-3
14482 Potsdam, Germany

{robert.warschofsky, michael.menzel, meinel}@hpi.uni-potsdam.de

Abstract—Service-oriented Architectures support the pro-
vision, discovery, and usage of services in different appli-
cation contexts. The Web Service specifications provide a
technical foundation to implement this paradigm and provide
mechanisms to face the new security challenges raised by
SOA. To enable the seamless usage of services, security
requirements can be expressed as security policies (e.g. WS-
Policy and WS-SecurityPolicy) that enable the negotiation of
these requirements between clients and services. However, the
concept of policy negotiation has not been applicable in the
scope of service compositions so far. Since each orchestrated
Web Service in a service composition might demand the
provision of specific user information and requires a par-
ticular security mechanism, the security policy of a service
composition depends on the aggregated requirements of the
orchestrated services. Current Web Service frameworks are
not capable of resolving such policy dependencies.

In this paper we present our solution to enable an
automated creation of security policies from orchestrated
services. Therefore, we present a policy model that is capable
of capturing Web Service security requirements. Based on
this model, we introduce an algorithm that performs the ag-
gregation of security requirements stated by the orchestrated
services and mappings to transform WS-SecurityPolicy in-
stances and the security model instances into each other.

Keywords-Service-oriented Architectures; SOA Security;
Policy Generation; WS-SecurityPolicy

I. INTRODUCTION

Service-oriented Architectures (SOA) enables the pro-
vision of business logic as independent services. These
services are loosely coupled, reusable, and can be dis-
covered and bound on demand using appropriate service
descriptions, which enables the flexibility of SOA. The
Web Service specifications such as SOAP [1] and WSDL
[2] provide the technical foundation to implement these
concepts. In addition, specifications such as WS-Security
can be used to ensure the confidentiality, integrity and
authenticity of exchanged messages.

To sustain the flexibility and interoperability regarding
the integration of security mechanisms, security require-
ments of services (e.g. confidentiality) have to be exposed
as policies next to the services’ interface descriptions.
Clients can retrieve interface descriptions enhanced with
security policies from a service and use the required
security mechanisms to secure the service request. This
approach enables interoperability at run-time between ser-
vice consumer and service provider.

Next to simple service invocations, SOA fosters the
creation of complex service compositions. Such a compo-
sition is exposed as a service itself and leverages indepen-

dent services to provide its functionality. Kanneganti et al.
[3] differentiate between simple compositions that redirect
incoming requests by invoking the lower level services
and more sophisticated compositions that run complex
business processes. In any case, the orchestrated services
may have their own security requirements expressed as
security policies. These requirements have to be fulfilled
by the composed service or clients using the composed
service. In the second case security requirements (e.g. the
provision of security tokens) have to be fulfilled by a Web
Service client across a service composition.

This means that a client has to fulfill the security policy
of a service composition that depends on the security
requirements of the invoked services. Therefore, the se-
curity policy of the service composition must represent
an aggregation of the security requirements of the orches-
trated services, as shown in Figure 1. However current
frameworks and process engines that can be used to create
composed services do not provide support to generate the
security policy of a service composition automatically. The
security policy of a composed service needs to be defined
by a developer in a manual manner. In addition, there is
a lack of frameworks that can be used to generate and
handle WS-SecurityPolicy due to its complexity.

Aggregating
Service

Service
Composition

Client

Orchestrated
Service A

Orchestrated
Service B

B

A

A+B

A+B

Figure 1. Invocation of a service composition that requires multiple
security tokens for the different orchestrated services.

To simplify the creation of policies for composed ser-
vices, we present in this paper:

• A policy meta-model that serves as an abstraction
layer for Web Service security policies and simplifies
the generation of these security policies.

• An algorithm that uses our policy model to aggregate
and compose security requirements expressed by dif-
ferent security policies.

2010 IEEE European Conference on Web Services

© 2010 IEEE

• A mapping between WS-SecurityPolicy and our se-
curity policy model

This paper is structured as follows. Section 2 introduces
WS-Policy and WS-SecurityPolicy as the relevant stan-
dards to describe Web Service Security Policies. Our
platform-independent policy model that is used to provide
an abstraction layer for WS-Security is introduced in
Section 3. Section 4 describes the mapping between our
model and WS-SecurityPolicy. The aggregation of security
policies expressed in our model is introduced in Section
5. Section 6 describes related work, while Section 7
concludes this paper.

II. WEB SERVICE SECURITY POLICY STANDARDS

There are many standards and approaches to express
security policies for Web Services. In this paper we focus
on the most widely used standards for this purpose, namely
WS-Policy and WS-SecurityPolicy.

A. WS-Policy

WS-Policy [4] is an XML based framework, which
specifies a model to express general policy requirements
for Web Services. These policy requirements are expressed
using policy assertions that contain a policy expression
and optionally several assertion parameters. To comply
to a policy all policy assertions in a policy have to be
fulfilled. To express the requirement for more complex
policy requirements, policy assertions can be nested.

The WS-Policy framework further defines two policy
operators. The All operator specifies that all policy asser-
tions inside the operator have to be fulfilled to fulfil that
All operator. The ExactlyOne operator specifies that only
one of the policy assertions inside the operator has to be
fulfilled to fulfil the operator. Since these operators can
also be nested, it is possible to describe alternative sets of
policy assertions that have to be fulfilled to comply to a
policy. There are no policy assertions specified by the WS-
Policy standard, this has to be done by other standards.

WS-Policy also specifies a normalization algorithm to
transform a policy into an equivalent normalized policy.
Several WS-Policy specifications can be attached to a
WSDL to declare polices for the different parts of a service
definition. The rules for such an attachment are defined in
the WS-PolicyAttachment standard [5].

B. WS-SecurityPolicy

The WS-SecurityPolicy standard [6] is based on the
WS-Policy standard and specifies several policy assertions
to express security requirements for Web Services.

The standard specifies assertions for several security
requirements. Among them are assertions to express re-
quirements about which parts of a message has to be
encrypted or signed. There are also assertions to define
which key has to be used to encrypt or sign message parts.
Additionally, the standard specifies assertions to define
which SOAP header or other message parts are required
inside a message. Finally, there are assertions specified
to express which security tokens are required in a SOAP
message to comply to the policy.

The assertions are grouped into four categories, namely
Protection Assertions, Token Assertions, Security Binding
Assertions, and Supporting Tokens. Protection Assertions
are describing which parts of a secured message have to
be encrypted, signed, or simply present in the message.

The Token Assertions describe security tokens. A secu-
rity token can be requested to have a specific issuer and
a set of required claims.

The Security Binding Assertions are used to describe the
security mechanisms used to secure messages between a
sender and the receiver.

Supporting Tokens describe additional security tokens
that have to be attached to a secured message. These
tokens can be used to encrypt or sign parts of the message,
in addition to the encryption and signature created with the
security tokens in the binding.

III. A PLATFORM-INDEPENDENT MODEL FOR
SECURITY POLICIES

In the scope of WS-Security [7], it must be considered
that

1) WS-Policy and WS-SecurityPolicy provide a syntax,
but do not define a semantic. In fact, WS-Policy
enables the negotiation and intersection of require-
ments between client and service without the need
to know what is actually expressed by an policy
option. However, to enable a mapping from secu-
rity intentions to security policies, the meaning of
the different requirements, their relation to security
goals and their dependencies must be well known.

2) requirements that are semantically equal (for in-
stance the encryption of message parts using dif-
ferent keys) have to be expressed in different ways
in WS-SecurityPolicy.

Our policy meta-model supports the expression of secu-
rity requirements concerning communication related secu-
rity goals, serves as an abstraction layer for security policy
languages, simplifies the handling of security policies,
and enables the generation of security configurations in
different policy languages.

The meta-model consists of several components. The
Security Policy Base Meta Model describes the correlation
of the basic components of the model. The Digital Identity
Meta Model is used to express information about a subject
issued by a trusted party. Different Security Constraints
are used to describe the requirements to fulfil a Security
Goal.

A. Security Policy Base Meta Model and Digital Identity
Meta Model

A policy in our policy meta-model consists of several
Policy Alternatives (see Figure 2) and each alternative
contains a list of Security Constraints, ordered in corre-
spondence to the sequence in which they are added to the
alternative.

A Credential is the main element of the Digital Identity
Meta Model (see Figure 3) and is used to describe parts
of a digital identity. Therefore, a Credential contains a

Policy
Policy

Alternative

Security
Constraint

Information
Security

Mechanism

Data Transfer
Object

Policy
Subject

Security Goal

Security
Properties

Figure 2. Security Policy Base Meta Model

set of Claims. A Claim is “a statement made about a
client, service or other resource (e.g. name, identity, key,
group, privilege, capability, etc.).” [8] It is required that
for each Claim the corresponding information is added
to the Credential in the secured message. Additionally,
a Credential can contain Authentication Information that
can be used to verify the authenticity of the Credential.

CredentialClaim

Authentication
Information

Information

Data Transfer
Object

Issuer

Credential Constraints

Credential Type

Subject

Figure 3. Digital Identity Meta Model

Each Credential also has a Credential Type that indi-
cates its type (e.g Username Token, SAML Assertions,
or X.509 Certificate). In addition, Credentials can have
optional Credential Constraints that are used to further
define the credential depending on its type. For example,
it can be defined that a Credential of the type Username
Token has to contain the users’ password in a hashed form
instead of plain text. Finally, each Credential has an issuer,
identified by a unique URI. Depending on that issuer a
receiver of the credential can decide whether the credential
is trustworthy. The Subject element represents the subject
of the Credential. For instance, the subject of a Credential
of the type Username Token would be the user identified
by the username.

B. Security Constraints Meta Model

In general, a Security Constraint describes a require-
ment to fulfil a Security Goal, such as confidentiality,
integrity, authentication, or authorization. Moreover, a
Security Constraint can contain information about what
has to be secured and which security mechanism has to
be used. To express which information has to be secured
a Data Transfer Object (DTO) is used. A DTO is any part
of information in a message, including the message body,
any message header, the message itself, or a Credential
as defined in the Digital Identity Meta Model. Finally, a

DTO can contain several information objects, which again
are DTOs.

The Security Policy Base Meta Model defines that a
Policy Alternative contains a set of Security Constraints.
There can be several Security Constraints in order to
request the different Security Goals to be fulfilled. These
Security Constraints are described in the following.

1) Data Security Constraint: Confidentiality and In-
tegrity are two Security Goals that can be fulfilled using
encryption and signatures. These cryptographic security
mechanisms can be described using similar properties.
Both Security Mechanisms are using a cryptographic algo-
rithm with a cryptographic key to secure transferred data.
The Data Security Constraint contains all information
required to express the fulfilment of both Security Goals.

As shown in Figure 4, a Data Security Constraint
contains Data Transfer Objects to identify the message or
parts of the message. These Data Transfer Objects have
to be secured using the requirements specified in the Data
Security Constraint. In addition, the constraint specifies
the Security Protocol (such as WS-Security or SSL), as
well as, the algorithm type that has to be used to secure
the data. The algorithm is determined using an algorithm
suite defined by the WS-SecurityPolicy specification.

Data Security
Constraint

Security
Protocol

Algorithm
Type

IssuerSecurity
Mechanism

Primary
Credential

Data Transfer
Objects

Claims

Subject

Security
Constraint

Issuer

Secondary
Credential

Claims

Subject

Credential Type Credential Type

(opt.)

Figure 4. Data Security Constraint Meta-Model.

The cryptographic key that has to be used to secure
the data is described as a Credential from the Digital
Identity Meta Model. In this case, the Credential should
be of a type that can be used to secure data, such as an
X.509 Certificate. To determine, whether a Data Security
Constraint describes a symmetric or an asymmetric al-
gorithm, an optional second credential can be given. If
a Data Security Constraint contains only one Credential
a symmetric algorithm is described. An asymmetric al-
gorithm is described with both Credentials set. The first
Credential then describes the key for the sender and the
second Credential describes the key for the receiver of a
message.

2) Client Authentication Constraint: The Authentica-
tion of the sender of a message can be confirmed based
on a set of statements about the identity of client that is
conveyed within the message. These statements that are
expressed as Claims have to be issued by a trustworthy
party and are represented as a Credential. In addition, a
Credential contains information about the issuer of the
information. Therefore, a Client Authentication Constraint

that is used to describe the requirements for the Authenti-
cation Security Goal contains a Credential (see Figure 5).

Client Authentication
Constraint

Credential
Claims

Issuer

Authentication
Information

Subject

Credential Constraints

Security
Constraint

Credential Type

Figure 5. Client Authentication Constraint Meta-Model.

A Client Authentication Constraint requires that the
sender of a message adds the identity information de-
scribed in the credential of this constraint to that message.
Therefore, the sender has to add a security token of that
type that is defined in the Credential to the message. The
token has to contain the information defined in the Claims
of the Credential and it has to be issued by the party
defined as Issuer in the Credential.

3) Required Information Constraint: A Data Security
Constraint does not require that the information defined by
the Data Transfer Object of the constraint has to be present
in a secured message, but only that if the information
defined by the Data Transfer Objects are present, the
information has to be secured in the corresponding way. To
define that a specific information is required in a message,
a Required Information Constraint can be used.

As shown in Figure 6, a Required Information Con-
straint only contains a Data Transfer Object that describes
the message part or information that has to be present in a
secured message. The Data Transfer Object can describe
the same information as the Data Transfer Object of a
Data Security Constraint. It can also describe any other
information or message parts, such as additional message
header or security tokens.

Required Information
Constraint

Data Transfer
Objects

Security
Constraint

Figure 6. Required Information Constraint Meta-Model.

Since a Client Authentication Constraint already re-
quires that the defined Credential has to be present in
a secured message as a security token, the Data Transfer
Object of an additional Required Information Constraint
describing the same Credential can be omitted.

IV. TRANSFORMATIONS OF THE POLICY META-MODEL

To make use of the advantages of the policy meta-model
for the aggregation of WS-SecurityPolicy instances, a
transformation between WS-SecurityPolicy and the policy
meta-model is necessary. In this Section we present such
transformations.

A. Transforming a WS-SecurityPolicy to the policy meta-
model

Both, the WS-SecurityPolicy standard and the policy
meta-model, provide the notion of a policy alternative
which allows a separated transformation of these al-
ternatives. The requirements of a policy alternative are
transformed into a set of Security Constraints using three
phases, as shown in Figure 7. The first phase covers the
WS-SecurityPolicy binding assertions, the second phase
covers the security expressions, and the third phase covers
the supporting tokens.

Policy AlternativePolicy AlternativePolicy Alternative

Transform
Supporting

Tokens

Transform
Binding

Transform
Protection
Assertions

Parse
WS-Policy

Figure 7. Transformation of a WS-SecurityPolicy to the model.

A WS-SecurityPoilcy Binding Assertion contains secu-
rity token descriptions defining how a SOAP message has
to be secured (e.g. signing and/or encrypting a part of a
message). If a security token has to be used to sign a part
of a SOAP message, an Integrity Constraint is created
and for an encrypting security token a Confidentiality
Constraint is created.

The security tokens stated in the binding can be used
and referenced in other expressions as well, such as
EncryptedElements assertions or SignedSupportingTokens
assertions. Therefore, the Confidentiality Constraint and
the Integrity Constraint created from these tokens have to
be used later and are referred to as Binding-Confidentiality
Constraint and Binding-Integrity Constraint in the scope
of this Section.

The description of the token type of each security token
is transformed into a Credential and this Credential is
referenced in the Security Constraints. Depending on the
type of the binding either one or two Credentials are
used to describe the security tokens of the binding. Both
Security Constraints resulting from a TransportBinding
reference the same Credential, since the TransportToken is
used to sign and encrypt the message. The constraints from
a Symmetric Binding also contain only one Credential.
Depending on the security token type, the Credential can
be the same in both constraints (ProtectionToken) or it
can be two different Credentials (EncryptionToken and
SignatureToken). An AsymmetricBinding describes secu-
rity tokens for the sender and the receiver of a message.
Therefore, the constraints also contain two Credentials,
the first for the sender and the second for the receiver.

The security tokens described in the binding are re-
quired to secure a message and the information to identify
these tokens have to be sent within the message. To
express this requirement in the model, the Credentials
of the binding constraints are attached to an additional
constraint. This additional constraint is either a Client
Authentication Constraint or a Required Information Con-

straint. A Required Information Constraint expresses the
requirement that the Data Transfer Object of the constraint
has to be present in a message. A Client Authentication
Constraint indicates that a Credential has to be used to
authenticate the consumer of a service. In addition, this
constraint indicates that the authenticating Credential has
to be attached to a secured message.

Figure 8 illustrates the transformation of a WS-
SecurityPolicy AsymmetricBinding into a set of Secu-
rity Constraints. The tokens in the InitiatorToken and
the RecipientToken of the AsymmetricBinding are trans-
formed into the Binding-Confidentiality Constraint and the
Binding-Integrity Constraint.

<sp:AsymmetricBinding xmlns:sp="http://docs.oasis
-open.org/ws-sx/ws-securitypolicy/200702">

<wsp:Policy>
<sp:InitiatorToken>
<sp:X509Token>
<sp:IssuerName>sts.verisign.com</

sp:IssuerName>
<wst:Claims Dialect="...">
...

</wst:Claims>
<wsp:Policy>
<sp:RequireIssuerSerialReference/>
<sp:WssX509V3Token11 />

</wsp:Policy>
</sp:X509Token>

</sp:InitiatorToken>
<sp:RecipientToken>
<sp:X509Token>
<sp:IssuerName>sts.verisign.com</

sp:IssuerName>
<wsp:Policy>
<sp:WssX509V3Token11 />

</wsp:Policy>
</sp:X509Token>

</sp:RecipientToken>
<sp:AlgorithmSuite>
<wsp:Policy>
<sp:Basic256 />

</wsp:Policy>
</sp:AlgorithmSuite>

</wsp:Policy>
</sp:AsymmetricBinding>

(Credential)

(Credential)

(Confidentiality
Constraint)

(Security Protocol)

WSS

(Algorithm Type)

Basic256

Primary
Credential

Secondary
Credential

(Integrity
Constraint)

(Security Protocol)

WSS

(Algorithm Type)

Basic256

Primary
Credential

Secondary
Credential

xh1

h1

h1

h1

h1

xh2

h2

xh3

h3
xh4 h4

h4

Figure 8. Asymmetric binding expressed as WS-SecurityPolicy XML
on the left and as model elements on the right.

WS-SecurityPolicy Protection Assertions (e.g. en-
crypted and signed Parts) specify the parts of a message
that have to be encrypted or signed using the binding
security tokens. In the policy meta-model these require-
ments are described using Data Transfer Objects attached
to the Data Security Constraints for the binding security
tokens. The encrypted and signed Parts that can be in-
cluded in a WS-SecurityPolicy alternative, describe the
parts of a message that have to be secured using the
security token described in the binding. In the policy
meta-model this is described by Data Transfer Objects in
the Binding-Confidentiality Constraint and the Binding-
Integrity Constraint that refer to the signed and encrypted
parts. As aforementioned, there are Data Transfer Objects
to describe the message, the message body, a specific
message header, and message attachments. To transform
the requirements about the parts of a message that have
be secured into the model, a corresponding Data Transfer
Object has to be added to the list of Data Transfer Objects
of the Binding-Confidentiality Constraint respectively the
Binding-Integrity Constraint for each part that has to be
encrypted or signed.

Supporting Tokens represent requirements for security
tokens that can be used to encrypt and sign parts of
a message in addition to the security tokens described
in the binding. Therefore, these security tokens are also
transformed into Credentials. A Credential created from

a signed supporting token is added to the Data Trans-
fer Object list of the Binding-Integrity Constraint and a
Credential created from an encrypted supporting token is
added to the list of the Binding-Confidentiality Constraint.
For an endorsing supporting token Integrity Constrains
are created whose Data Transfer Object list references the
signature created with the binding credentials.

Figure 9 shows the transformation of a Supporting-
Token into the model. The SupportingToken assertion
contains only one Security Token Assertion, namely a
SamlToken assertion. This assertion states that the re-

<sp:SupportingTokens>
<wsp:Policy>

<sp:SamlToken>
<sp:IssuerName>

sts.trusted-bank.com
</sp:IssuerName>
<wst:Claims Dialect="...">

<ic:ClaimType>sts.trusted-bank.com/
claims/creditCardNumber</
ic:ClaimType>

<ic:ClaimType>sts.trusted-bank.com/
claims/creditCardOwner</
ic:ClaimType>

<ic:ClaimType>sts.trusted-bank.com/
claims/creditCardExpireDate</
ic:ClaimType>

</wst:Claims>
</sp:SamlToken>

</wsp:Policy>
</sp:SupportingTokens>

(Credential)

(Issuer)

sts.trusted-bank.com

(Credential Type)

 SAML

(Client Authentication
Constraint)

(Claims)
(Claim)

sts.trusted-bank.com/claims/
creditCardNumber

(Claim)
sts.trusted-bank.com/claims/

creditCardOwner

(Claim)
sts.trusted-bank.com/claims/

creditCardExpireDate

xh1 h1xh2
h2

h2

xh3

h3
xh4

h4

Figure 9. Transformation of a SupportingToken into the model.

quired SamlToken has to be issued by the STS named
sts.trusted-bank.com and that it contains the credit
card information of the user. The Security Token As-
sertion is transformed into Credentials containing the
corresponding information of the token and this Credential
is attached to a Client Authentication Constraint. Since
the SupportingToken is neither encrypted nor signed, the
created Client Authentication Constraint can be simply
added to the Policy Alternatives list of Security Constraints
and no further steps are required.

B. Transforming a Policy Meta-Model Instance to a WS-
SecurityPolicy

The transformation of a policy meta-model instance into
a WS-SecurityPolicy can be performed for each Policy
Alternative independently and can be divided into three
phases, as shown in Figure 10. In the first phase, a Binding
is created, in the second phase the Protection Assertions
are created, and in the third phase the Supporting Tokens
are created.

Serialize
WS-Policy

Policy AlternativePolicy AlternativePolicy Alternative

Create
Supporting

Tokens

Create
Binding

Create
Protection
Assertions

Figure 10. Transformation of the model into a WS-SecurityPolicy.

The first Confidentiality Constraint and the first In-
tegrity Constraint of a Policy Alternative are evaluated to
create either a Transport Binding assertion or a Symmetric
Binding assertion or Asymmetric Binding assertion. If the
Security Protocol indicates the use of SSL a Transport

Binding assertion is created, otherwise an Asymmetric
Binding assertion or a Symmetric Binding assertion is
created, depending on whether the constraints contain a
secondary Credential, or not.

(Credential)

(Credential)

(Confidentiality
Constraint)

(Security Protocol)

...

Primary
Credential

Secondary
Credential

(Integrity
Constraint)

(Security Protocol)

...

Primary
Credential

Secondary
Credential

<sp:TransportBinding> <sp:SymmetricBinding> <sp:AsymmetricBinding>

Security Protocol = SSL
Only Primary Credential

Security Protocol = WSS
Only Primary Credential

Security Protocol = WSS
Primary + Secondary Credential

Figure 11. Creation of the binding depending on the properties of the
Binding-Confidentiality Constraint and the Binding-Integrity Constraint.

The first Confidentiality Constraint and the first In-
tegrity Constraint have to be used in the other transforma-
tion phases and are referred to as Binding-Confidentiality
Constraint and Binding-Integrity Constraint. The Cre-
dentials in the constraints are transformed into Security
Token Assertions corresponding to the Credential Type.
The Security Token Assertions for the binding assertion
of the WS-SecurityPolicy are created depending on the
equality of the primary and the secondary Credentials of
the binding constraints (see Table I).

Table I
Security Token Assertion USAGE DEPENDING ON THE TYPE OF THE

Binding AND THE Credentials OF THE BINDING CONSTRAINTS.

Same Different
Primary Credential Primary Credential

Asymmetric InitiatorToken InitiatorEncryptionToken
Binding InitiatorSignatureToken

Symmetric ProtectionToken EncryptionToken
Binding SignatureToken

Transport TransportToken —
Binding

Same Different
Secondary Credential Secondary Credential

Asymmetric RecipientToken RecipientEncryptionToken
Binding RecipientSignatureToken

Symmetric — —
Binding

Transport — —
Binding

Based on the Data Transfer Objects of the Binding-
Integrity Constraint and the Binding-Confidentiality Con-
straint the Protection Assertions (e.g. encrypted Parts,
signed Elements) are created.

Supporting Tokens are created from Credentials that
are required to be present in a message. Therefore, all
Required Information Constraints and User Authentication
Constraints containing a Credential as Data Transfer
Object are evaluated. If these Credentials are not used as
primary or secondary Credential of the Binding-Integrity
Constraint or the Binding-Confidentiality Constraint a
new Security Token Assertion is create and added to a
Supporting Token Assertion. In addition, if the Credential
is also present in the Data Transfer Object list of a bind-

ing Security Constraint it is marked as signed (Integrity
Constraint) or as encrypted (Confidentiality Constraint).

An example for the creation of a Supporting Token
is shown in Figure 12. The example contains a Confi-
dentiality Constraint, which is a binding constraint. The
primary Credential of that constraint is also attached to
a Client Authentication Constraint, as usual. A second
Client Authentication Constraint contains the Credential
that is transformed into a Supporting Token. The resulting
Supporting Token also has to be encrypted, since this
second Credential is attached to the list of Data Transfer
Objects of the Binding-Confidentiality Constraint, too.
Therefore, the X509Token assertion created from the sec-
ond Credential is added to the created policy alternative
inside an EncryptedSupportingToken assertion, as shown
on the right of Figure 12.

(Credential)

(Client Authentication
Constraint)

(Credential)

(Client Authentication
Constraint)

(Confidentiality
Constraint)

Primary
Credential

(Data Transfer Objects)

(Credential Type)

SAML

(Issuer)

sts.trusted-bank.com

<sp:EncryptedSupportingTokens>
<wsp:Policy>
<sp:SamlToken>
<sp:IssuerName>
sts.trusted-bank.com

</sp:IssuerName>
<wsp:Policy>
...

</wsp:Policy>
</sp:SamlToken>

</wsp:Policy>
</sp:EncryptedSupportingTokens>

wg1

g1

g1 wg2

g2
g2

wg3

g3
Figure 12. Example for the creation of an EncryptedSupportingTokens
assertion.

V. POLICY META-MODEL AGGREGATION

One main benefit of the policy meta-model is the
possibility to easily aggregate multiple policy models into
one policy model. The algorithm to enable this posibil-
ity is described in this section. The policy meta-model
uses Security Constraints to express security requirements
that correspond to the Security Goals. These Security
Constraints are attached to the Policy Alternatives of a
policy model Security Policy. To express additional secu-
rity requirements in an alternative, only the corresponding
Security Constraints have to be added to that alternative.
This advantage can be utilised in the process of the
aggregation of two Security Policies.

For the creation of an aggregated security policy of
a service composition the initial security policy of the
service composition is extended with the security re-
quirements stated in the security policies of the invoked
services. Thereby, the service composition policy can be
extended stepwise with the policy of one orchestrated
service at a time.

The aggregation of two security policies equals the
aggregation of each alternative from the first policy with
each alternative from the second policy. This covers all
possible combinations of alternatives of the two policies
that might be chosen by a service consumer. An algorithm

for this aggregation procedure is shown in Listing 1. The
resulting alternatives of the aggregation are attached to a
new policy that represents the aggregated policy.

r e s u l t = new P o l i c y

f o r p o l i c y 1 . a l l A l t e r n a t i v e s () as
a l t e r n a t i v e 1 {

f o r p o l i c y 2 . a l l A l t e r n a t i v e s () as
a l t e r n a t i v e 2 {
m e r g e d A l t e r n a t i v e =

m e r g e A l t e r n a t i v e s (
a l t e r n a t i v e 1 , a l t e r n a t i v e 2)

r e s u l t . add (m e r g e d A l t e r n a t i v e)
}

}
Listing 1. Aggregation algorithm for two Security Policies of the policy
model

The aggregation of two alternatives is a new alternative
that contains all Security Constraints of these two alter-
natives. Therefore, the Security Constraints of the first
alternative and subsequently the Security Constraints of
the second alternative are added to the new alternative.

Figure 13 illustrates an example of the aggregation of
two security policies. The first of the two policy contains
only one alternative, while the second policy contains two
alternatives. Therefore, the alternative of the first policy
is combined with each alternative of the second policy.
As a result, the aggregated policy has two alternatives.
Thereby, the first resulting alternative contains the Security
Constraints of the alternative of the first policy and the
Security Constraints of the first alternative of the second
policy. The second resulting alternative contains the Secu-
rity Constraints of the alternative of the first policy and
the Security Constraints of the second alternative of the
second policy.

VI. RELATED WORK

Modelling security requirements in Service-oriented Ar-
chitectures is an emerging topic.

Satoh and Tokuda [9] present a mechanism of creating a
security policy of a composite service automatically based
on predicate logic. Their mechanism “makes it possible
to validate the consistency of policies by inference.” The
work of Satoh and Tokuda goes in the same direction as
this paper. However, using the model defined in the scope
of this paper to represent the semantics of security policies
allows more possibilities, such as semantic validation
of security policies and automated creation of security
policies.

Satoh and Yamaguchi [10] introduce an interme-
diate model to transform WS-SecurityPolicy instances
into platform-specific configuration files for WS-Security
based Model Driven Security (MDS). This model is de-
fined to represent the WS-Security message structure and
the meanings of signatures and encryption specified in a
WS-SecurityPolicy instance. Although this basic idea is

(Credential)

(Policy)

(Policy
Alternative)

(Client Authentication
Constraint)

(Confidentiality
Constraint) Primary

Credential

(Credential)

(Policy)

(Policy
Alternative)

(Client Authentication
Constraint)

(Integrity
Constraint) Primary

Credential

(Credential)

(Policy
Alternative)

(Client Authentication
Constraint)

(Credential)

(Policy)

(Policy
Alternative)

(Client Authentication
Constraint)

(Confidentiality
Constraint) Primary

Credential

(Credential)
(Client Authentication

Constraint)

(Integrity
Constraint) Primary

Credential

(Credential)

(Policy
Alternative)

(Client Authentication
Constraint)

(Credential)
(Client Authentication

Constraint)

(Confidentiality
Constraint) Primary

Credential

Figure 13. Example for the aggregation of two security policies
expressed as policy meta-model.

similar to the approach taken in the scope of this paper,
their target is a different one.

Phan et al. are comparing several policy frameworks
in their “survey of policy-based management approaches
for Service Oriented Systems” [11]. They summarize WS-
policy as “being widely accepted and supported by major
SOA vendors” and ”a good choice for low-level policy
representation for Web Services-based implementations of
SOA.” Further they state that it “would be useful if a policy
refinement mechanism can be developed for the translation
of high-level business oriented policies [. . .] into low-level
WS-Policy statements for runtime execution.” Using our
policy meta-model this objective can be achieved.

Chang et al. present “a solution for managing security
policies in a collaborative Web Services environment.”
[12] This solution allows to establish security policies dy-
namically for individual interoperation based on a global
policy registry. It also “addresses the software, message,
and policy versioning and interoperability issues.”

Bartoletti et al. describe networks using a λ-calculus
and present a static approach “that determines how to
compose services while guaranteeing that their execution
is always secure, without resorting to any dynamic check.”
[13] Therefore, a framework is provided to enable a client
to secure its sensitive information in a way that prevents
a service of unintentional access.

Charfi and Mezini present an aspect-oriented program-
ming (AOP) extension to BPEL. This extension is used in
a framework to secure Web Services and service composi-
tions. They also “introduce the notion of policy-based pro-
cess deployment to check the compatibility of the security
policies of the composition and its partners at deployment
time.” [14] However, they provide no automated process

for the aggregation of security policies and the policy of
the composed service has to be defined manually.

VII. CONCLUSION AND FUTURE WORK

Specifications for security policies in SOA such as WS-
Policy and WS-SecurityPolicy provide a language to en-
able a declarative configuration of security requirements.
These languages enable interoperability at run-time, since
service consumers can secure service calls in accordance
to a service’s policy. In the scope of service composi-
tion, security policies might depend on the policies of
orchestrated services. So far, there is no tool support
available that supports the generation of security policies
for composed Web Services.

In this paper, we presented an approach to generate
Web Service security policies using an abstraction layer.
Our policy model is designed to simplify the handling and
generation of Web Service security policies. A mapping to
WS-SecurityPolicy is presented to import and export Web
Service security policies. However, our model enables the
generation or conversion of other Web Service Security
languages (e.g. Axis 2 security configuration language) as
well. Finally, we presented an algorithm that is capable
to merge security policies expressed in our model. Due to
the design of our model this algorithm can be hold very
simple.

To extend our work, we will provide a validation of ag-
gregated policies in the next step. For example, aggregated
policies may contain security requirements that contradict
each other. Therefore, it is necessary to develop strategies
to deal with such situations.

REFERENCES

[1] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau,
H. F. Nielsen, A. Karmarkar, and Y. Lafon, “SOAP
Version 1.2 Part 1: Messaging Framework (Second
Edition),” Specification, April 2007. [Online]. Available:
http://www.w3.org/TR/soap12-part1/

[2] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana,
“Web Services Description Language (WSDL) Version
2.0,” Specification, June 2007. [Online]. Available: http:
//www.w3.org/TR/wsdl20/

[3] R. Kanneganti and P. Chodavarapu, Soa Security in Action.
Greenwich, CT, USA: Manning Publications Co., 2007.

[4] Web Services Policy 1.5 - Framework, W3C Std., 4 th
Sep. 2007. [Online]. Available: http://www.w3.org/TR/
2007/REC-ws-policy-20070904

[5] Web Services Policy 1.5 - Attachment, W3C Std., 4 th
Sep. 2007. [Online]. Available: http://www.w3.org/TR/
2007/REC-ws-policy-attach-20070904

[6] WS-SecurityPolicy 1.3, OASIS Std.,
29 th Nov. 2008. [Online]. Available:
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.
3/cd/ws-securitypolicy-1.3-spec-cs-01.html

[7] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker,
“Web Services Security: SOAP Message Security 1.1,” OA-
SIS Standard Specification, February 2006. [Online]. Avail-
able: ”http://www.oasis-open.org/committees/download.
php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf”

[8] WS-Trust 1.3, OASIS Std., 19 th Mar. 2007. [Online].
Available: http://docs.oasis-open.org/ws-sx/ws-trust/v1.3/
ws-trust.pdf

[9] F. Satoh and T. Tokuda, “Security Policy Composition for
Composite Services,” in ICWE 2008 International Confer-
ence on Web Engineering. Los Alamitos, CA, USA: IEEE
Computer Society, 2008, pp. 86–97.

[10] F. Satoh and Y. Yamaguchi, “Generic Security Policy
Transformation Framework for WS-Security,” in IEEE In-
ternational Conference on Web Services (ICWS 2007). Los
Alamitos, CA, USA: IEEE Computer Society, 2007, pp.
513–520.

[11] T. Phan, J. Han, J.-G. Schneider, T. Ebringer, and T. Rogers,
“A survey of policy-based management approaches for
Service Oriented Systems,” in Proceedings of the 19th
Australian Conference on Software Engineering (ASWEC
’08), 2008, pp. 392–401.

[12] S. Chang, Q. Chen, and M. Hsu, “Managing Security Policy
in a Large Distributed Web Services Environment,” in
COMPSAC ’03: Proceedings of the 27th Annual Interna-
tional Conference on Computer Software and Applications.
Washington, DC, USA: IEEE Computer Society, 2003, p.
610.

[13] M. Bartoletti, P. Degano, and G. L. Ferrari, “Security Issues
in Service Composition,” in In Proceedings of FMOODS
2006, 8th IFIP Internat. Conf. on Formal Methods for Open
Object-Based Distributed Systems, volume 4037 of LNCS.
Springer, 2006, pp. 1–16.

[14] A. Charfi and M. Mezini, “Using Aspects for Security
Engineering of Web Service Compositions,” in ICWS ’05:
Proceedings of the IEEE International Conference on Web
Services. Washington, DC, USA: IEEE Computer Society,
2005, pp. 59–66.

