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Abstract— Cryptographically Generated Address (CGA) is one of 

the most novel security features introduced in IPv6 suite. CGA is 

designed to prevent addresses theft without relying on trust 

authority or additional security infrastructures. However, CGA 

is relatively computationally intensive, and bandwidth 

consuming. Besides, it has some security limitations. This paper 

defines a Compact and more Secure CGA (CS-CGA) version. We 

adopt Elliptic Curve Cryptograph (ECC) keys in CGA instead of 

standardized RSA keys in order to minimize the size of CGA 

parameters and reduce CGA generation time. To enhance the 

security of CGA against the global time-memory trade-off attack, 

the subnet prefix is included in Hash2 calculations of CGA 

generation algorithm. For the signature and the key calculations, 

SHA-256 is used instead of SHA-1, which is known to have 

security flaws.  
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I. INTRODUCTION  

Cryptographically Generated Address (CGA) [1] is a 
technique that offers authentication to IPv6 addresses without 
the need to a third party or additional security infrastructure. 
CGAs are IPv6 addresses, where the interface identifiers (IIDs) 
are generated by one-way hashing of the node’s public key and 
other auxiliary parameters. Thus, the IPv6 address of a node is 
bound to its public key. This binding can be verified by re-
computing the hash value and comparing it with the interface 
identifier of the sender IPv6 address.  

CGA is an essential part of SEcure Neighbor Discovery 
(SEND) [2]. SEND is designed to protect Neighbor Discovery 
(ND) [3], and StateLess Address Auto-Configuration (SLAAC) 
[4]. CGA is also proposed as one of the techniques to 
overcome the security threats in Binding Update in MIPv6 [5], 
because using other approaches, such as IPSec depends on 
existing security infrastructure, which is not easy to deploy. 

Although CGA is a promising security technique for IPv6, 
it has some limitations and disadvantages. The main 
disadvantage of using CGA is the computational cost. Besides, 
CGA is not a complete security solution; it still has some 
threats. As shown by Bos et al. [6], CGAs are exposed to 
global time-memory trade-off attacks. These limitations may 
prevent the use of CGAs, and leave IPv6 networks vulnerable 
to many attacks, such as spoofing and Denial of Service (DoS) 
attacks [9]. Therefore, it is important to mitigate these 

limitations by enhancing CGAs security and improve its 
performance before the wide deployment of IPv6. 

To enhance CGAs security against the global time-memory 
trade-off, a more secure version, called CGA++ [6] is 
proposed. Unfortunately, CGA++ comes with additional cost 
and it requires longer time than the generation of CGAs for the 
same security parameters. 

In [7], Cheneaua et al. propose an improved method for 
generating CGAs by using Elliptic Curve Cryptograph (ECC) 
keys instead of standardized RSA keys. ECC has a shorter key 
for the same security level as RSA, which leads to smaller 
packet sizes. Accordingly, the usage of ECC in CGAs can be 
more suitable especially in resource-limited devices. 

In this paper we present a modified CGA implementation 
that incorporates ECC and CGA++. While CGA++ enhances 
CGAs security, ECC reduces the size of CGA parameters 
considerably and accelerates the CGA++ address generation 
step. We call this modified CGA version as Compact and more 
Secure CGAs (CS-CGAs). CS-CGAs can be preferred over the 
standard CGAs in certain scenarios, because it is more secure 
and provide a privacy protection without scarifying of the 
performance. 

The rest of the paper is organized as follows. Section 2 
reviews CGAs, its advantages, limitations, and the possible 
approaches for improvements. Section 3 describes our adoption 
of ECC to CGA++ and its integration into SEND. The 
performance of CGA and CS-CGA implementations are 
studied in section 4. We conclude the work in section 5. 

II. CRYPTOGRAPHICALLY GENERATED ADDRESS (CGA)  

This section gives an overview about CGA parameters and 
algorithm and then discusses the strengths and the advantages 
of CGAs. The third part of this section introduces the 
limitations of CGAs and the possible approaches to enhance its 
security, improve its performance, and provide better privacy 
protection. 

A. CGAs parameter and algorithm 

In IPv6, CGAs are known as self-certifying addresses. Any 
node can generate its own CGA locally and sign messages 
using its private key. The public key is attached to the signed 
messages. Thus, the address and the public key are needed for 
verifying the signature. Therefore, the receiver does not need to 
have further communication with the sender for completing the 
authentication verification process. 
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For using CGAs, the sender and the receiver share the CGA 
parameter data structure [1]. The “Modifier” field is a 128-bit 
integer, which is randomly generated to strengthen the 
robustness of hashed values and to enhance the privacy of the 
generated addresses. The “Subnet Prefix” field is a 64-bit 
subnet prefix of the IPv6 address. The “Collision Count” is an 
8-bit collision counter used for Duplicate Address Detection 
(DAD) to ensure the uniqueness of the generated address, 
initially set to zero. The “Public Key” and the “Extension” 
fields have variable length.  

CGAs require another parameter, which is called security 
Sec value. The Sec value lies between 0 and 7 and is designed 
to increase the CGAs security level against brute-force attacks. 
The Sec parameter is defined in hash extension technique [8], 
which increases the effective hash length beyond the 64-bit. It 
is encoded in the three leftmost bits of the interface identifier. 

Figure 1 is a schematic diagram showing a representation of 
CGA addresses generation processes. An address owner 
computes two hash values (Hash1 and Hash2) using the public 
key and other parameters. The CGA generation algorithm 
should fulfill two conditions [1]:  

1. The leftmost 64-bit of Hash1 equals the interface 
identifier. The Sec, “u” and “g” bits are ignored in the 
comparison. The 7th bit from the left in the 64 bit IID 
is the Universal/Local bit or “u” bit. It is set to “1” to 
mean that the IID is globally unique. The 8th bit from 
the left is the Individual/Group or “g” bit, which is set 
to “1” for multicast addresses. 

2. The 16× Sec leftmost bits of Hash2 are equal to zero. 
For example, if Sec = 1, the 16 leftmost of Hash2 are 
zeros. 

The verification of the address ownership procedure takes 
two inputs: CGA address and CGA parameters. The receiver 
validate the binding between a public key and CGA address by 
re-computing the Hash1 value based on the received CGA 
parameters, and comparing it with the IID of the sender. The 
receiver knows that the message was sent by the owner of the 
source address by verifying the signature using the sender 
public key.  

B. Strength and advantages of  CGAs 

Authentication by using CGAs can avoid many of the 
attacks in IPv6 networks. CGAs can prevent address theft of 
other nodes. When a node generates its address in a secure 
way, it is hard for a malicious node to claim the ownership of 
the new address. CGAs also can prevent DoS attacks, which 
are usually realized based on spoofing of others address, such 
as Duplicate Address Detection DoS Attack [9].  

To impersonate another node’s address, an attacker needs to 
find a public/private key pair, whose truncated Hash1 value 
matches IID of impersonate node. The number of operations 
required to impersonate a specific node by using brute-force 
attack cost, on average, 2

59+16×Sec
 hash function evaluations. 

The attacker needs to generate a valid modifier, whose cost 
2

16×Sec
 hash computation and needs to try 2

59
 different interface 

identifiers. On the other hand, the address owner is expected to 
try, on average, 2

16×Sec 
iterations to find the right Modifier value 

that satisfies Hash2 condition. Therefore, Sec value is a scale 
value parameter that governs the strength of CGAs.   

CGAs can obscure the node IID to protect the privacy and 
achieve anonymity. In a CGA algorithm, the Modifier value 
should be chosen randomly by using random number generator 
to avoid unpredictable or/and unlinkable values [1]. So, each 
time CGA is calculated, a new IID is obtained. Different 
Modifier values lead to different CGAs even for the same 
public key. To avoid unique and fixed address, the node is 
recommended to change its address over time. It is also 
recommended to generate a new public key for a new network 
address to avoid the possibility of identifying node by its public 
key. Even it is still not easy to track based on the known public 
key, because attacker usually tracks node based on its IP 
address by using tracking tools, such as ping or traceroute. 

RFC 4941 [10], Privacy Extensions for Stateless Address 
Autoconfiguration in IPv6, generates a random number for IID 
and changes it over the time to protect the privacy. However, it 
does not provide protection against IP address spoofing attacks. 
Therefore, CGAs are promising for preventing attacks and 
protecting the privacy. But using CGAs is trade-off between 
security and privacy protection in one side, and the 
performance on the other side.  

C. Cost of CGA generation 

Unfortunately, CGAs are computationally heavy and are 
not a complete security approach. These limitations may 
prevent its usage in real scenarios. For example, mobile devices 
have several constraints and requirements that may not be 
benefit from CGAs security features for different reasons. First, 
mobile nodes are resource-limited (battery, memory, processor, 
and bandwidth). Second, mobile nodes need to change their 
subnet frequently. Consequently it needs to generate a new 
address, which means it needs a new CGA computation. Third, 
the time is critical to realize handover operations within a few 
hundreds of milliseconds to ensure adequate Quality of Service 
(QoS). 

There are several parameters and factors that impact CGAs 
generation time and security, such as Sec value, Modifier, hash 
function, and public key cryptosystem. These factors and their 
effects on security, delay, and packet size are studied, and then 
the possible improvements to a faster and more secure CGA 
implementation are discussed. 
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Figure 1.  Schematic of CGA address generation 



1) Sec value and Modifier 
The Sec value is the core factor that has great impact on 

both security level and CGA generation time. The increase in 
Sec value leads to significant delay in the CGA generation 
algorithm. Theoretically, the cost of generating a CGA 
increases by 2

16
 for each Sec value. 

RFC 3972 makes two recommendations to minimize the 
delay introduced by using Sec value. First, the heavy part of 
CGA generation algorithm (steps 1-3) [1] can be done in 
advance, offline, or delegated to more powerful machine. But 
in case of delegating the computation to powerful machine, the 
question is how to distribute the calculated parameters to other 
nodes in a secure way. Moreover, this approach returns back to 
centralized model, whereas CGAs were originally proposed to 
avoid relying on a third party. Furthermore, once this powerful 
machine is compromised, all the other nodes will be 
compromised as well. 

The second approach is to use small Sec value. The node 
should use the Sec based on its computational capacity. Sec 
values higher than “1” are not recommended as they require a 
lot of processing power and too much time. The use of small 
Sec, “0” or “1”, is more suitable at this time. Cheneau et al. 
carried out an experiment on Nokia N800 and they conclude 
that only Sec = 0 is feasible for mobile devices when using 
1024-bit RSA keys [7]. However, the CGA verification does 
not depend on Sec value and it is relatively fast. Only two hash 
calculations are required. 

Another interesting idea to avoid long CGA computational 
time is to use a stopping time condition for the brute-force 
search address generation [11]. For Sec value greater than “0”, 
there is no guarantee to terminate after certain number of 
iterations. Large Sec value may cause unacceptable delays in 
CGA generation. Therefore, time threshold can be used as an 
input in the CGA generation. If the threshold has been 
exceeded, the CGA generation algorithm terminates.  Then, the 
most secure hash value can be determined by selecting the hash 
value that has the greatest number of zero bits in Hash2 
rounded down to the nearest integer multiple of Sec. 

2) Public key Cryptosystem 
The selection of the public key cryptosystem is vital. It 

determines the processing delays, computational costs and size 
of NDP message associated with the cryptosystems. The key 
pair generation time is substantially prolonged by increasing 
key size. Therefore, the total CGA generation time is highly 
influenced by the size of the key. Moreover, due to the SHA-1 
intervals, the hashing time increases when the input length 
exceeds a multiple of 512 bits. Hence, smaller public key 
reduces the length of Hash1 and Hash2 input. Because, CGA 
generation algorithm calculates many SHA-1operations to find 
the valid modifier, it greatly benefits from shorter keys to 
reduce the size of CGA parameter. 

The Elliptic Curve Cryptograph (ECC) public key 
cryptosystem is proposed to be used in CGA instead of a 
standardized RSA key [7]. ECC has a shorter key for the same 
security level as RSA, which leads to smaller packet sizes 
compared to using of RSA. Also, the signing with the Elliptic 
Curve Digital Signature Algorithm Cryptograph (ECDSA) is 
faster than using the RSA equivalent. However, ECDSA needs 

longer time for the signature verifications. To support 
alternative public key cryptosystems, two internet drafts are 
published. The first [12] describes how to use ECC with CGA 
in SEND. The second [13] describes a mechanism to enable 
SEND to select between different signature algorithms to use 
with CGAs. 

3) Hash function 
Another factor that has impact on CGAs performance in 

more than one way is the hash function. Standard CGAs use 
SHA-1 (160 bit hash). But SHA-1 is vulnerable to collision-
free attacks [18]. Therefore, RFC 4982 [14] analyzes the 
implications of attacks against the hash function, and they 
update the CGAs specifications to support multiple hash 
algorithms. However, RFC 4982 makes no recommendation 
for hash function. RFC 6273 [15] analyzes possible threats to 
the hash algorithms which are used in SEND. The authors 
conclude that the attacks on the hash functions do not constitute 
any practical threat to both RSA Signature Option and the 
X.509 certificates, but the attacks against the hash algorithms 
on CGAs compromise security in SEND. To reduce the time of 
CGAs generation, Lee and Mun in [16] use MD5 hash instead 
of SHA-1 in their modified CGA implementation. Since MD5 
is simpler and has a shorter processing time. However, MD5 
should not be used in CGAs, because it vulnerable to collision 
free attacks [17].   

D. CGA limitations and vulnerabilities 

Bos et al. [6] have investigated the attack model of CGA, 
and they found that CGAs can be vulnerable to global time-
memory trade-off and garbage attacks. Accordingly, they 
propose more secure version of CGAs called CGA++. In this 
version, the “Subnet Prefix” is included in the calculation of 
Hash2, and all the “Modifier”, “Collision Count” and “Subnet 
Prefix” values are signed by the private-key corresponding to 
the public key used. Therefore, CGA++ ensures the ownership 
of the corresponding private key even without using SEND 
RSA signature option. The time-memory trade-off attack 
cannot be applied globally, because the node generates new 
address when it is moved to a new network and signing ND 
messages provide a protection against garbage attacks [6] when 
CGAs are deployed alone and not in SEND.  

However, CGA++ needs more computations than CGAs for 
the same Sec value. This complexity is due to two reasons. 
First, the subnet prefix is included in Hash2 calculations. 
Second, the digital signature is included in Hash1 calculation. 
In case of using CGA++ within SEND, signing CGA 
parameters twice is redundant and lead to the high cost. 
Therefore, signing the message once is sufficient.   

Still, there are some other limitations in CGAs. CGAs 
mechanism can prevent the theft of another node’s address, but 
CGAs cannot provide assurance about the identity of the real 
node and it is not sufficient to guarantee that the CGA address 
is used by the appropriate node. Since CGAs are not certified, 
an attacker can create a new valid address from its own public 
key and start a communication. For more security requirement, 
a certificate authority is required to validate the keys. However, 
the address owner can use the corresponding private key to 
assert its ownership and to sign SEND messages sent from the 



address. An attacker can impersonate other node address from 
a valid public key, but cannot sign messages.  So, the effect of 
the attack is limited. Moreover, CGAs do not provide any sort 
of protection against address scanning or any information about 
the node’s privileges on the network. Also, the CGAs are 
dynamically-generated, so it cannot be used for securing static 
IPv6 addresses.  

III.  COMPACT AND MORE SECURE CGA (CS-CGA)  

As seen in the previous section, some work has been done 
to optimize CGAs. Most studies focus on improvement CGAs 
generation time. The work in [6] focuses on enhancing CGAs 
security with penalty on the performance. In this paper, we take 
into account the security, performance and the privacy to obtain 
an enhanced version of CGAs. 

A. CS-CGA Design  

Our Compact and More Secure CGA (CS-CGA) 
implementation comes with some modifications to the standard 
CGA implementation. First, the subnet prefix is included in 
Hash2 calculation. Second, ECC is used instead of RSA 
cryptosystem. Third, CGA parameter is signed and the 
signature is included in Hash1 calculation. Also, a new flag, 
CS-CGA flag, is defined to allow the use of mixed CGA and 
CS-CGA. Figure 2 shows the schematic diagram of CS-CGA 
generation process.    

1) Including the subnet prefix in Hash2 calcalation    
The prefix is included in Hash2 calculations, as done in 

CGA++. Including the subnet prefix in Hash2 calculation has 
the following advantages. First, it enhances the security of 
CGAs against time-memory trade-off attack. The attacker 
needs to generate separated database for each subnet. Second, 
the mobile node privacy is protected, because it has to generate 
new CS-CGA address for each different subnet. 

2) Using ECC Cryptosystem 
Because CGAs require to include the public key and other 

parameters with the message and to affix its signature with 
every signaling packet that it generates, which means that more 
than 1K bytes is added to each packet. CGA Option carries 
CGA parameters to enable the receiver to validate the proper 
binding between the public key and the CGA address. 
Therefore, minimizing the size CGA parameters in NDP 
messages is important to reduce the bandwidth consumption. 

CS-CGA uses ECC cryptosystem for generating the keys 
and signing the messages. Using ECC improves CGA 
generation time and reduces the size of the packet. The CS-
CGA uses ECDSA to sign NDP messages. SEND’s RSA 
Signature Option carries ECDSA signature when CS-CGA in 
used. 

3) Using SHA-256  
Standard CGA uses SHA-1, which is known to have 

security flaws [18]. ECDSA signature is based on P-256 curve 
and SHA-256. Therefore, we decided to use SHA-256 in CS-
CGA implementation.  

4) Set “Reserved field to “1” 

In CGA specifications, the “u” and “g” bits are set to “1” to 
indicate that node uses CGA address. To distinguish between 
CGAs and CS-CGAs, the “Reserved” field in CGA Option [2] 
is used. We set the “Reserved” value to “1” to label CS-CGA. 
Currently, this field is reserved for future use, and using this 
field makes no change to the standard CGAs. 

B. CS-CGA Implementation 

As a proof of concept, we chose to modify the existing 
implementation of CGA and SEND, NDprotector0.5 [19], 
because it already supports ECC. NDprotector is a user-space 
Linux platform implementation that has no direct access to 
kernel space. Figure 3 shows the principle functionality of 
NDprotector. It is divided into initialization and runtime stages. 
During the initialization, the CGAs addresses are set up and the 
firewall rules are defined in ip6tables. These rules route all 
NDP messages to specific netfilter queues. NDprotector’s 
runtime component takes the NDP messages out of those 
queues and secures the outgoing NDP messages, or verifies 
incoming ones. Afterwards, the NDP messages are either 
forwarded or dropped, if CGA addresses verification failed.   

In NDprotector, the CGA Option is added in the address 
constructor method, Address.py, in the initialization phase of 
NDprotector (see Figure 3). The “CS-CGA flag” set to “1” if 
the calling Address.py instance represents an CS-CGA. 
Figure 4 shows a capture of CS-CGA NS message.   

To implement CS-CGA address generation and 
verification, we added optional parameters to CGA address 
generation and verification functions in scapy6send package. 
If the “CS-CGA flag” is set in the incoming NDP messages, the 
CGA address verification function is called from 
NFQueues.py with the appropriate parameters. The CGA 

generation function is called from Address.py, depending on 

whether the Address.py instance is representing an CS-CGA 
address or not. 

NDprotector already supports ECC for CGA and no 
modifications for CS-CGA are necessary. We just made the 
ECC support more convenient, by adding the possibility to 
generate an ECC public/private key pair during the 
instantiation of an CS-CGA Address.py object. From a 
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Figure 2.  Schematic of CS-CGA address generation 



security point of view, it is not recommended to have the keys 
stored somewhere before the application starts. 

IV. PERFORMANCE EVALUATION 

This section gives a performance comparison between the 
standard CGAs and CS-CGAs. The performance analysis is 
done based on two factors. The first one is the size of NDP 
messages. Second, the address verification and generation 
times are compared, when using different cryptosystems 
algorithms. 

The implementation is conducted in a virtual environment, 
which consists of two Ubuntu 10.10 virtual machines which 
run the modified NDprotector version. One machine runs the 
Wireshark to capture the NDP traffic and to determine the size 
of Neighbor Advertisement (NA) and Neighbor Solicitation 
(NS) messages.  

A. NA and NS Message Size Lengths 

NA and NS message sizes highly depend on cryptosystem. 
We compare the NS and NA message sizes by using different 
cryptosystems. The comparison is done between CGA with 
RSA key (3072-bit) and the CS-CGA (P-256 curve), because 
both have an equivalent security level [7]. Table 1 shows the 
results. One observation is that the CGA option and the RSA 
Signature option constitute the major part of the ICMPv6 
messages. Furthermore, ECC greatly reduces the key length. 
As a result, the use of ECC is advancement in terms of the 
message sizes for CGAs. 

B. CGAs/CS-CGAs Address Generation and Verification 

Times 

We compare the generation and verification time of CGAs 
with CS-CGAs when using different cryptosystems. The key 
pair generation time is not included in the comparison, because 
the node can generate the key pairs in advance to avoid 
additional delay.  

To take the time measurements, a Python script is created. 

The times are determined with Python’s timeit module 3, 
which switches the garbage collection off during the 
benchmarks. Furthermore, a fine adjustment is done to the ECC 
public/private key pair class, to avoid generating BER 
encoding on the fly, during the Hash1 and Hash2 calculation.  

CGA/CS-CGA addresses generations times are accelerated 
significantly through ECC. Table 2 shows CGA/CS-CGA 
addresses generation and verification times in case of using 
different cryptosystems. The comparison is made between RSA 
key with size 3072 bit s and ECC with P-256 curve by using 
two hash functions, SHA-1 and SHA-256. The generation 
times for CS-CGA addresses are shorter, because ECC has 
shorter key size that accelerates the hash calculations. The 
verification times of CS-CGA addresses are slower than 
verification times of CGA because CS-CGA include the subnet 
prefix in the Hash2 calculation, and  verifying ECDSA is 
longer than verifying RSA.  

TABLE 1 NS/NA MESSAGES SIZE FOR CGA /CS-CGA 

Security level ( Sec = 1) 

 CGA CS-CGA 

Cryptosystems RSA (3072) ECC (P-256) 

ND message type NS NA NS NA 

ICMPv6 message length 
(bytes) 

928 936 288 280 

CGA option length (bytes) 456 120 

RSA signature option 
length ( bytes)  

408 96 
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Figure 4.  CS-CGA flag 



 

TABLE 2 CGA/CS-CGA ADDRESSES GENERATION AND VERIFICATION 

TIMES 

Security level (Sec = 1) 

Number of samples (1000 sample) 

Algorithm cryptosystems 
Hash 

Function 

Address  
generation 
time (sec) 

Address  
verification 
time (msec) 

CGA RSA ( 3072) 

SHA-1 

2.183 0.695 

CS-CGA ECC (P-256) 1.960 0.723 

CGA RSA ( 3072) 

SHA-256 

2.637 0.702 

CS-CGA ECC (P-256) 2.046 0.735 

 

C. CGAs/CS-CGAs security analysis 

Including the routing prefix in Hash1 and Hash2 calculation 
increases the cost of pre-computation attacks by making some 
brute-force attacks against global scope addresses more 
expensive. The attacker needs to do an exhaustive search for 
hash collision or creation of large pre-computed databases of 
interface identifiers from an attacker’s own public key(s) used 
to find matches for many addresses. The attacker should do this 
brute-force search for each address prefix separately. However, 
it is not easy to impersonate a random node in a network 
because it requires a large storage to carry out this attack.  If an 
attacker wants to impersonate an address of a random node in a 
network of size 2

16
, this requires 2

33−16 
= 2

17 
gigabytes = 128 

terabyte of storage.  

V. CONCLUSION AND FUTURE WORK  

The proposed, CS-CGA, is an enhanced version of CGA 
that has more resistance against the time-memory trade-off 
attack, besides preventing address theft and DoS attacks. 
Moreover, it assures the anonymity and protects the privacy, 
because the node needs to generate new CGA once it moves to 
a new subnet. 

Even with using ECC, CGA is still computationally heavy 
and need to be improved. To avoid unexpectable delay in CGA 
generation, using a time termination condition can be a 
practical approach to make CGA feasible. More investigation 
about the recommend time threshold based on different device 
specification is needed. For example, based on the CPU speed, 
the algorithm recommends a proper value for Sec, or set time 
termination condition. Definitely, the termination condition 
also depends on the application requirement, e.g. MIPv6 needs 
to finish the address generation within hundreds of 
milliseconds. A possible way to speed up the CGA generation 
can be achieved by using Optimistic DAD [20] with CGA. 
Optimistic DAD approach is a method to minimize address 
configuration delays that make an address available for use 
before completing DAD. The DAD in CGA generation 
algorithm can be one reason for delay, while the probability of 
collision is too low. Another way to improve the CGA 
performance could be by optimizing the parameter 

transmission in each message, for example, to avoid the 
retransmission of parameters that already known by the 
receiver. Finally, reducing and eliminating the threats and the 
attacks against IPv6 network by enhancing the CGA security 
and make it simple, lightweight, and deployable authentication 
mechanism is very important. Otherwise, IPv6 network will be 
left vulnerable to IP spoofing related attacks. 

REFERENCES 

[1] T. Aura, “Cryptographically Generated Addresses (CGA),” RFC 3972, 
Internet Engineering Task Force, Mar. 2005, updated by RFCs 4581, 
4982.  

[2] J. Arkko, J. Kempf, B. Zill, and P. Nikander, “SEecure Neighbor 
Discovery (SEND),” RFC 3971, Internet Engineering Task Force, Mar. 
2005. 

[3] T. Narten, E. Nordmark, W. Simpson, and H. Soliman,”Neighbor 
Discovery for IP version 6 (IPv6)”, RFC 4861, September 2007. 

[4] S. Thomson, T. Narten, and T. Jinmei, “IPv6 Stateless Address 
Autoconfiguration”, RFC 4862, September 2007. 

[5] T. Aura, M. Roe, “Designing the Mobile IPv6 Security Protocol”, 
Annals of telecommunications, special issue on Network and 
information systems security, volume 61 number 3-4, March-April 2006. 

[6] J. W. Bos, O. Özen, and J.-P. Hubaux, “Analysis and optimization of 
cryptographically generated addresses,” in Proceedings of the 12th 
International Conference on Information Security, ser. ISC ’09. Berlin, 
Heidelberg: Springer-Verlag, pp. 17–32,2009. 

[7] T. Cheneau, A. Boudguiga and M. Laurent, “Significantly Improved 
Performances of the Cryptographically Generated Addresses Thanks to 
ECC and GPGPU”. Computers & Security 29, pp.419-431. 2010. 

[8] T. Aura,  "Cryptographically Generated Addresses (CGA)", 6th 
Information Security Conference (ISC'03), Bristol, UK, October 2003. 

[9] P. Nikander, J. Kempf, and E. Nordmark, “IPv6 Neighbor Discovery 
(ND) Trust Models and Threats,” RFC 3756 (Informational), Internet 
Engineering Task Force, May 2004.  

[10] T. Narten, R. Draves and S. Krishnan, "Privacy Extensions for Stateless 
Address Autoconfiguration in IPv6", RFC 4941, September 2007. 

[11] T. Aura and M. Roe. Strengthening Short Hash Values. 
http://research.microsoft.com/en-us/um/people/tuomaura/misc/aura-roe-
submission.pdf. 

[12] T. Cheneau, M. Laurent, S. Shen, and M. Vanderveen, “ECC public key 
and signature support in Cryptographically Generated Addresses (CGA) 
and in the Secure Neighbor Discovery (SEND),” November 2009, http: 
//tools.ietf.org/html/draft-cheneau-csi-ecc-sig-agility-02. 

[13] T. Cheneau, M. Laurent, S. Shen and M. Vanderveen, “Signature 
Algorithm Agility in the Secure Neighbor Discovery (SEND) Protocol. 
June 16, 2010. http://tools.ietf.org/html/draft-cheneau-csi-send-sig-
agility-02. 

[14] M. Bagnulo and J. Arkko, “Support for Multiple Hash Algorithms in 
Cryptographically Generated Addresses (CGA)”, RFC 4982, July 2007. 

[15] A. Kukec, S.Krishnan, and S. Jiang, “SEND Hash Threat Analysis”,  
RFC 6273, June 2011.  

[16] M. Bagnulo and J. Arkko, “Support for Multiple Hash Algorithms in 
Cryptographically Generated Addresses (CGA)”, RFC 4982, July 2007. 

[17] M. Stevens, Fast Collision Attack on MD5, Cryptology ePrint Archive, 
Report 2006/104, eprint.iacr.org/ 2006/104. 

[18] X. Wang , L. Yin,  and H. Yu, "Finding Collisions in the Full SHA-1. 
CRYPTO 2005: 17-36", 2005. 

[19] NDprotector: an implementation of CGA & SEND for GNU/Linux 
based on Scapy6, 30.06.2010, http://amnesiak.org/NDprotector/ 

[20] N. Moore, “Optimistic Duplicate Address Detection (DAD) for IPv6”, 
RFC 4429, April 2006. http://tools.ietf.org/html/rfc4429 


