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Abstract. Rapid growth of E-Business and frequent changes in web-
sites contents as well as customers’ interest make it difficult to predict
workload surge. To maintain a good quality of service (QoS), system
administrators must provision enough resources to cope with workload
fluctuations considering that resources over-provisioning reduces business
profits while under-provisioning degrades performance. In this paper, we
present elastic system architecture for dynamic resources management
and applications optimization in virtualized environment. In our archi-
tecture, we have implemented three controllers for CPU, Memory, and
Application. These controllers run in parallel to guarantee efficient re-
sources allocation and optimize application performance on co-hosted
VMs dynamically. We evaluated our architecture with extensive experi-
ments and several setups; the results show that considering online opti-
mization of application, with dynamic CPU and Memory allocation, can
reduce service level objectives (SLOs) violation and maintain application
performance. . .

Keywords: virtualization, consolidation, elasticity, application perfor-
mance, automatic provisioning, optimization, cloud computing

1 Introduction

Later advance in virtualization technology software, e.g. Xen [2] and VMWare
[16], enabled cloud computing environment to deliver agile, scalable, elastic, and
low cost infrastructures, however, current implementation of elasticity in ”In-
frastructure as a Service” cloud model considers Virtual Machine (VM) as a
scalability unit. In this paper, we developed an automated dynamic resources
provisioning architecture to optimized resources provisioning in consolidated vir-
tualized environments (e.g., Cloud computing). Unlike current implementation
of elasticity in cloud infrastructure, we replaced the VM (as a coarse-grain scal-
ability unit) with fine-grain resources units (i.e. %CPU as a share, Memory as
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MB). Our Elastic VM is scaled dynamically in-place to cope with workload fluc-
tuations, furthermore, the hosted application is also tuned after each scaling to
maintain predetermined (SLOs). As a use case we implemented our approach
into Xen environment and used Apache web server as an application, our SLO
in this paper is to keep the response time of the web requests less than a specified
threshold. Nevertheless, our architecture could be extended for any application
that has tunable parameters such as Database applications. The key contri-
butions of this work are as follow: First, we have studied Apache application
performance under different configuration and different CPU and Memory al-
location values. Second, we have developed a dynamic application optimization
controller for Apache application to maintain the desired performance. Third, we
built CPU and Memory controllers based on [6]. Fourth, we built elastic system
architecture that join CPU, Memory, and application optimization controllers
for elastic consolidated virtualized environments. Finally, the elastic system ar-
chitecture has been evaluated with extensive experiments on several synthetic
workload and experimental setups, experiments also have included real workload
demand requests. Our results show that elastic system architecture can guaran-
tee the best performance for application in terms of throughput and response
time. The rest of the paper is organized as follow. Section 2 study the systems
and concepts that drive our research. In section 3 we describe our elastic system
architecture. Section 4 provides literature review for related work. In section 5,
we describe our experimental setup and analyze results.

2 Overview

In this section, we give an overview of systems and concepts that drive our
research; we will start with a detailed study of Apache server, then will discuss
the complexity of enforcing SLOs into consolidated environments (e.g. clouds),
and finally will explain concerns that accompany using feedback control systems
in computing systems.

2.1 Apache server

Apache [1], is structured as a pool of workers processes that handle HTTP
requests. Currently, Apache supports two kinds of modules, workers and prefork
modules. In our experiments we use Apache with prefork module to handle
dynamic requests (e.g., php pages). In prefork mode, requests enter the TCP
Accept Queue where they wait for a worker. A worker processes a single request
to completion before accepting a new request. Number of worker processes is
limited by MaxClients parameter.

Figure 1 displays the result of experiments in which Apache is configured
with different settings of Memory, traffic rate, and MaxClients. By monitor-
ing the throughput, we notice that, there is a value of MaxClients, (e.g. 75),
which gives the highest throughput (450 req/sec) for specific Memory settings
(512MB). Before this value there is no enough workers to handle requests, and
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Fig. 1: Throughput vs. MaxClients under different hardware settings

after this value, performance regrades because of one of the following problems:
CPU spend much time switching between many process or Memory is full so pag-
ing to harddisk consumes most of CPU time. Our heuristic Apache controller
job is to find this optimum value dynamically.

2.2 SLOs enforcement complexity

Service-level agreement (or SLA) is a contract between a service provider and
its customers. SLA consists of one or more service-level objectives (SLOs). An
example of an SLO is: ”The homepage should be loaded completely in no longer
than 2 seconds”. As seen, SLO consists of three parts: QoS metric (e.g., response
time), the bound (e.g., 2 seconds), and a relational operator (e.g., no longer
than). The violation of these objectives usually associated with penalties to the
provider. The challenge is to map QoS metrics into low level resources (e.g. CPU
and memory) dynamically.

2.3 Feedback Control of Computing Systems

Controllers are designed mainly for three purposes [5]: First, output regulation
to be equal or near to the reference input; for example, maintaining Memory
utilization always around 90%. Second, disturbance rejection which means if
the CPU is regulated to be 70% utilized, then this must not affected by any
other running applications like backup or virus scanning. Third, optimization
which can be translated in our system as finding the best value of MaxClients
that optimize Apache server performance. In terms of the feedback controllers,
SLO enforcement often becomes a regulation problem where SLO metric is the
measured output, and SLO bound is the reference input. The choice of con-
trol objective typically depends on the application. Indeed, with multiuse target
systems, the same target system may have multiple controllers with different
SLOs, unfortunately, identifying Input-output models for computing systems is
not commonly used [19] because of the absence of the first-principle models. As a
replacement, many research [18], [13], [6] [17] considered the black-box approach
where the relation between the input and output is inferred by experiments.
According to [19], to build a feedback controller able to adjust input-output of
black-box’s model you have to deal with many challenges: First, The controller
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may not converge to equilibrium, if the system does not have a monotonic rela-
tionship between a single input and a single output. Second, without an estimate
of the sensitivity of the outputs with respect to the inputs, the controller may
become too aggressive (or even unstable) or too slow. Third, the controller can’t
adapt to different operating regions in the input-output relationship, for example
[19] shows that the mean response time is controllable using CPU allocation only
when the CPU consumption is close to the allocated capacity and uncontrollable
when the CPU allocation is more than enough. Here the notion of ”uncontrol-
lable” refers to the condition where the output is insensitive to changes in the
input.

3 Elastic VM architecture
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Fig. 2: Elastic VM architecture

Our architecture has main component ”QoS controller” which communicates
with many other modules implemented into the Virtual Machine Manager (VMM)
and VMs levels as the following:

– Resources monitor module dynamically measures the resources consump-
tion and updates the QoS controller with new measurements. The module
depends on xentop tool to get CPU consumption of each VM.

– CPU scheduler is implemented to dynamically change the CPU allocation
of the VMs according to determined values by QoS controller, this module
depends on Xen credit scheduler as an actuator for setting the CPU shares
for VMs. The credit scheduler has a non-work-conserving-mode which en-
ables determining a limited portion of the CPU capacity for each VM. The
credit scheduler prevents an overloaded VM from consuming the whole CPU
capacity of the VMM and degrading the other VMs performance.

– Memory manger is implemented with help of balloon driver in Xen. This
allows online changing of the VMs Memory. The driver doesn’t allow VM
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to exceed the determined variable maxmem at the domain creating time, so
to have a wide range of the Memory size, we gave the variable maxmem an
initial high value i.e. 500MB in all user domains configuration files then use
the mem-set command to change the Memory size into the value determined
by the controller.

– Performance monitor also keeps the controller up to date with performance
metrics, i.e. the average response time and the throughput. The performance
monitor is implemented on network device of the VMM, so it can monitor
both the incoming and outgoing traffic.

– Application manager (App manager) is implemented into VM level, its job
is to get new MaxClients value from the Application controller (App con-
troller), to update the Apache configuration file, and then to reload Apache
gracefully.

On the left side of figure 2 is the QoS controller; the controller has (SLOs) as
inputs and proposed CPU capacity, proposed Memory allocation, and proposed
MaxClients as outputs. In our approach the main SLO is to keep average re-
sponse time of Apache web server into specific value regardless of the workload
fluctuations, for this purpose we implemented three controllers to run in parallel,
these controllers are as the following:

CPU controller: Which is a nested loop controller developed in [20]. The
inner controller (CPU utilization controller) is an adaptive-gain integral (I) con-
troller was designed in [17]:

acpu(k + 1) = acpu(k) −K1(k)(urefcpu − ucpu(k)), (1)

Where

K1(k) = α.ccpu(k)/rrefcpu (2)

The controller is designed to predict the next CPU allocation acpu(k + 1) de-
pending on last CPU allocation acpu(k) and consumption ccpu(k), where the last
CPU utilization ucpu(k) = ccpu(k)/acpu(k). The parameter α is the constant gain
which determine the aggressiveness of the controller. In our experiments, we set
β=1.5 to allow the controller aggressively allocate more CPU when the system
is overloaded, and slowly decrease CPU allocation in the under loaded regions.
The disadvantage of this controller is that, it implies determining the reference
utilization urefcpu that will maintain the determined SLO (i.e. response time), who-
ever, this is not practical because, as seen in figure 3, the response time does
not only depend on CPU utilization, but also on the request rate, which changes
frequently. So, it is more realistic to have urefcpu value automatically driven by the
application’s QoS goals rather than being chosen manually for each application.
For this goal, another outer loop controller (RT controller) is designed [20] to
adjust the urefcpu value dynamically to ensure that the QoS metric, response time
(RT), is around the desired value, this outer loop controller can be interpreted
into the following equation:

urefcpu(i+ 1) = urefcpu(i) + β(RT ref
cpu −RTcpu(i))/RT ref

cpu (3)
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Fig. 3: Mean response time vs. CPU utilization under different request rates

Where urefcpu(i + 1) is the desired CPU utilization, RTcpu(i) is the measured

response time, and RT ref
cpu is the desired response time determined by SLO. The

outer controller (RT controller) ensures that the value fed to the CPU controller
is always within an acceptable CPU utilization interval [Umin, Umax].

In our experiments, we set β=1.5, the CPU allocation is limited to the interval
[10, 80], and the CPU utilization is also limited to the interval [10, 80]. The
desired response time (RT) in all our experiments is 20 milliseconds.

Memory controller: In our experiments we noticed that increasing the
number of Apache processes can increase the throughput, but at some level,
the performance is degraded drastically when the Apache processes consumed
the whole available Memory, at this point, system starts to swap the Memory
contents into the hard-disk, this behavior add more workload to the CPU which
typically already overloaded by the big number of the processes. To keep the
system away from bottlenecks, we implemented the Memory controller designed
in [6] to keep the CPU controller run in an operating region away from the CPU
contention:

amem(i+ 1) = amem(i) +K2(i)(urefmem − umem(i)) (4)

Where
K2(i) = λ.umem(i)/urefmem (5)

The controller aggressively allocates more Memory when the previously allocated
Memory is close to saturation (i.e. more than 90%), and slowly decreases Memory
allocation in the under-load region. Along our experiments, we set urefmem=90%,
λ=1, and the limits of the controller to be [64, 512], where the 64 is the minimum
allowed Memory allocated size, and the 512 is the maximum allowed allocated
Memory size.

Application controller: after extensive of experiments and monitoring
Apache behavior, we found that there was a specific value of MaxClients which
gives the best throughput and the minimum response time as seen in figure 1,
finding the optimum value of MaxClients was examined by former research e.g.
[8], unfortunately, these optimization methods are not applicable to our case for
many reasons: First, we have a dynamic resources, so it will be difficult to dy-
namically determine the new optimum MaxClients value for each new resources



7

allocation. Second, we don’t have the chance to run an active optimization using
our generated traffic, since it may influence the real service performance. Third,
the optimum value is affected by traffic type and CPU utilization.

In the light of the mentioned problems, we designed our heuristic Apache
controller to find the best MaxClients value passively (depending on the real
traffic). The Apache controller monitors four measured values to determine the
best MaxClients: response time, throughput, CPU utilization, and number of
running Apache processes. The controller saves the best record of these values.
The best record is calculated by finding the record which satisfies the QoS re-
sponse time metric and gives the highest throughput with less CPU utilization.
With each new measurement of monitored values, Apache compares the current
record with the best record, if it is better; the current record will be saved as the
best record. While it is running, if the Apache noticed a violation of QoS metrics
(response time in our case) it tries to predict the problem by the following rules:

Rule1: Apache processes starving problem: Apache processes starving prob-
lem occurs when Apache server runs big number of processes, as a result, CPU
spends most of the time switching between these processes while giving small slot
of the time to each process, such behavior causes requests to spend longer time
in application queue, which end up with high response time and many timed-out
requests. To eliminate this problem, the Apache controller reloads the Apache
server with the last best record, this reload is supposed to reduce the number
of running processes, reduce CPU utilization, and consequently reduce response
time.

Rule2: Resources competition problem: The competition on resources is pre-
dicted by Apache controller as response time increases, number of running apache
processes reaches MaxClients value, and at the same time CPU utilization de-
creases (i.e. less than 90%). The reason behind the low utilization in competition
case is that, CPU controller, according to the high response time, suggests allo-
cating more CPU, while the fair share which gives each co-located VM on the
same core the same capacity of the CPU (e.g., 50% in case of two VMs) prevents
the VM from exceeding this limit. As seen above, with both rules, the proposed
Apache controller will not only look for the optimum MaxClients value, but
also will eliminate performance bottlenecks by keeping a history of the last best
running configurations.

4 Related work

Dynamic provisioning of resources - allocation and de-allocation of the resources
to cope with workload - had much interest especially after the widely usage of
consolidation environments such as virtualized datacenters and cloud. Significant
prior research have been sought to map the (SLOs) such as QoS requirements
into low level resources requirements such as CPU, Memory, and I/O require-
ments. All the studied approaches considered the mean response time (MRT) as
their SLO and accordingly developed the suitable controllers for resources man-
agement e.g. [4], [17], [15] and [6]. To this end, previous related works can be
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divided into three main folds: dynamic resources provisioning using controllers,
resources management using migration of VM feature and multi-instances pro-
visioning, and application optimization.

Research in [4], [17] and [15] considered only CPU controllers to automate
the dynamic resources provisioning, while [6] designed parallel CPU and Memory
controllers to be sure that consolidated applications can have access to sufficient
CPU and Memory resources, with the help of Memory controller [6] keeps the
whole system away from the high levels of utilization that can drastically degrade
the performance [12]; nevertheless, applications optimization with dynamic re-
sources provisioning is the common missing issue. Unlike aforementioned works,
[15] has developed a multi-tier dynamic provisioning system; it presents novel
provisioning technique based on combination of predictive and reactive mecha-
nisms. The application behavior and workload characteristics are analyzed off-
line depending on history monitoring, but the provisioning is completely auto-
mated. The provisioning of the resources in web server tier is implemented by
running more VMs instances. In some productive environments such as Amazon
Elastic Load Balancing, the quality of service metrics (e.g., request count and
request latency) is watched by Amazon Cloudwatch. Amazon scalability mecha-
nism depends on initiating a VM instance as a load balancer routing the traffic
into many similar VMs instances, this approach have many limitations: First, it
is limited to specific application like web servers and not applicable to the other
applications like Databases. Second, it depends on a VM as a load balancer,
which can be a single point of failure. Third, it admits VM as a scaling unit.

Several researches have leveraged VMs migration mechanism for coping with
dynamic workload fluctuation as well as providing scalability and load balancing
models, for example, [7] and [18] propose migration to handle dynamic workload
changes and resource overloads in production systems to avoid application per-
formance degradation. But, migrating VM consumes I/O and CPU and network
resources which might contribute at performance degradation of other VMs, fur-
thermore, using migration with applications that have long-running in-memory
state or frequently updated data such as database and messaging applications
might take too long time causing service level violations during migration. Addi-
tionally, security restrictions might increase overhead during migration process
[11].

Towards application optimization, [8] have implemented three controllers to
optimize the configuration parameters of the Apache web server (i.e. MaxClients)
online, the Newton’s method optimizer which is inconsistent with the highly
variable data, the Fuzzy controller which is more robust but converges slowly,
and finally, the heuristic controller which works well under specific circumstances
and requires former knowledge of bottleneck resources. [3] developed an agent-
based solution to automate system tuning, the agents do both controller design
and feedback control, however, slow converges of the system (i.e., 10 minutes for
MaxClients), makes it unsuitable for sudden workload changes.
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5 Experimental Setup

Our experiment conducted on a testbed of two physical machines (Client and
Server) connected by 1 Gbps Ethernet. Server machine has Intel Quad Core i7
Processor, 2.8 GHz and 8GB of Memory, it runs Xen 3.3 with kernel 2.6.26-2-
xen-686 as hypervisor. On the hypervisor are hosted VMs with Linux Ubuntu
2.6.24-19. These VMs run Apache 2.0 as a web server in prefork mode. For work-
load generation, httperf tool [10] is installed on client machine. In the following
experiments we deal with three VMs setup: First, Static VM, which is a vir-
tual machine initialized with 512MB of RAM and limited to 50% of the CPU
capacity. Second, Elastic VM with CPU/Memory controllers, it is a VM con-
trolled with the CPU and Memory controllers seen in equations 1 to 5, the CPU
limits of this machine is 80% of CPU capacity, and the Memory is 512MB of
RAM. Third, Elastic VM with Apache, it has the same setup of first VM except
that it is equipped with our Apache controller in addition to CPU and Memory
controllers. In all our experiments, SLO is to keep response time threshold (RT
threshold) less than 20 milliseconds.

5.1 Experimental Setup 1

In this experiment, we would like to study our Elastic VM ability to cope with
traffic change to maintain the specified SLO. To express the improvements, we
ran the same experiment onto a Static VM with similar but static resources.
As a basis of our experiments; we used dynamic web pages requests, in each
request, the web server executes a public key encryption operation to consume a
certain amount of CPU time. The step traffic initiated with the help of autobensh
tool [14], it started with 20 sessions, each session contains 10 connections. The
number of sessions increases by 10 with each load step. The total number of
connections for each step is 5000, and the timeout for the request is 5 seconds.
Throughput result from the generated web traffic is seen in figure 4(b).

Each step of the graphs in figure 4(b) represents the throughput of a specific
traffic rate, for example, in period between 0 to 210 seconds; both VMs respond
to 200 req/sec successfully without any requests loss or time-out, in this period
of time, both VMs were able to consume the required CPU capacity that copes
with coming requests. In first period, we notice in figure 4(a) how the Elastic VM
started a slow release of over-allocation CPU from the highest starting allocation
(i.e. 80%) to the predicted suitable value. This behavior of Elastic VM, allocating
resources aggressively then converging slowly to the optimum allocation, enabled
it to respond to the whole traffic rates successfully. In the other hand, the static
allocation of CPU, enabled the Static VM to respond successfully until second
780, afterwards, the Static VM’s CPU is saturated, which caused requests to wait
longer in the TCP accept queue, and consequently increased response time, this
results in a continues period of SLO violation as seen in figure 4(c). Furthermore,
some of the queued requests timed out before being served, the percentage of
timed-out requests with the corresponding traffic rate is illustrated in table 1.
The table started at 900 req/sec because there was no significant timed-out
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Fig. 4: Static VM vs. Elastic VM response to step traffic

Table 1: The timeout started after the Static VM received 900 req/sec.

Requests rate(req/sec) Static VM (timeout %)

900 7.232
1000 15.328
1100 18.258
1200 27.772

traffic before this rate. If compared to the Elastic VM for the same high traffic
rate (i.e. 800 to 1200 req/sec), figures 4(a) to 4(c) show how the Elastic VM was
able to borrow more resources dynamically, serve more requests, maintain a low
response time, and prevent SLO violation.

5.2 Experimental Setup 2

In the previous experiment, we studied the ideal case where the host was able
to satisfy the Elastic VM’s need for more resources to cope with the increase of
incoming requests. In this experiment, we study the competition on the CPU
between two Elastic VMs. Unlike experiments that have been done by [6], where
each VM’s virtual CPU has been pinned into a different physical core, we pinned
the virtual CPUs of two Elastic VMs into same physical core to raise the compe-
tition level. For the following experiment, the step-traffic has been run two times
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simultaneously onto both Elastic VMs, one time without Apache controller and
another time with Apache controller, to clarify the benefits of Apache controller
usage. The first part of the experiment, illustrated in figures 5(a) to 5(c). Fig-
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Fig. 5: Two Elastic VMs (without) Apache controller responding to step traffic

ure 5(b), shows that Elastic VMs were not able to cope with the traffic rate
higher than 800 req/sec while the host committed only 50% of the CPU power
for each VM starting from second #660 as seen in figure 5(a). The reason be-
hind this fair sharing is Xen credit scheduler, during this experiment, we setup
the scheduler with the same share for running VMs. According to competition
on CPU, many requests are queued for a long time causing high response time
and continues violation of SLO, as seen in figure 5(c), moreover, many other
requests are timed-out before being served as seen in second and third columns
of table 2. From the above experiments, we can conclude that Elastic VM can
improve the performance if the host has more resource to redistribute, but in
case of competition on resources, under the fair scheduling, Elastic VM (with-
out) Apache controller merely behaves as a Static VM. The previous experiment
is repeated on two Elastic VMs (with) Apache controller, figure 6(a) shows that
in spite of the limited CPU capacity (50%) available to each VM, starting from
second #660, the Apache controller do two improvements, first, the moment of
the Apache reload is a good chance for the other Apache server to have more
processing power and serve more requests as seen in figure 6(a), second, after
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Fig. 6: Two Elastic VMs (with) Apache controller responding to step web traffic

the reload, the Apache servers are tuned with a new MaxClients value, if this
value achieved better performance, the Apache controller will keep it, otherwise
it will continue looking for more optimum value.

5.3 Experimental Setup 3

In the following experiment, we test our system against more real world demand
traces traffic. For this purpose, we generate the same traffic described in [8].
The parameters of the generated workload are described in table 3 according to
”WAGON” [9] benchmark, however, the session rate is selected to have uniform
distribution, this enabled us to run the same traffic one time (without) Apache
controller, and another time (with) Apache controller, to investigate Apache
controller behavior under real workload. For both parts of the experiment, we
used the same Elastic VMs described in section 3. First part of this experiment
has been started by directing simultaneous instances of the generated traffic to
the co-located Elastic VMs. Both Elastic VMs in this part of the experiment are
running (without) Apache controller for 15 minutes. As seen in figure 7(a), there
is a competition on the CPU power from the first run of the experiment until
the 60th second, as a result, the percentage of timed-out requests for VM1 and
VM2 were 12.7% and 15.5%, while the percentage of SLO violations are 18.6%
and 17.5% as seen in first and second columns of table 3. Along the remaining
run of the experiment, there was no competition on the CPU, and Elastic VM1
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Table 2: Two Elastic VMs (without) Apache controller vs. two Elastic VMs
(with) Apache controller responding to step traffic

VM1 VM2 VM1 VM2

(req/sec) Timeout requests(without) Timeout requests(with)

800 4.0% 0% 0% 0.2%
900 13.3% 23.8% 8.8% 8.2%
1000 20.5% 23.2% 16.52% 17.0%
1100 25.0% 35.0% 21.0% 22.0%
1200 31.0% 37.0% 26.2% 27.8%

SLO violation(without) SLO violation(with)

23.9% 26.4% 14.7% 16.8%

Table 3: Workload parameters

Parameter name Distribution Parameters

SessionLength LogNormal Mean=8, sigma =3
BurstLength Gaussian Mean=7, sigma=3
ThinkTime LogNormal Mean=30, sigma=30
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Fig. 7: Two Elastic VMs (without) Apache controller responding to more realistic
traffic

was able to consume more than 50% of the CPU power in periods from 120 to
180, and from 300 to 360 to keep the response time within the determined value.
In the second part of this experiment, Apache controller has been run in parallel
to CPU and Memory controllers. As seen in figure 8(a), the competition on
CPU at the beginning of the experiment triggered Apache server tuning in both
machines, as a result, Apache server at VM1 is reloaded one time at second #5
with MaxClients=160, and another time at second #30 with MaxClients=170,
while Apache server at VM2 is reloaded at second #30 with MaxClients=160.
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Fig. 8: Two Elastic VMs (with) Apache controller responding to more realistic
traffic

The benefit of application tuning is illustrated in figure 8(b), instead of con-
tinues violation of SLO seen in figure 7(b) starting from the beginning of the
experiment until second #60, SLO violation is limited to second #30 with the
help of Apache controller. The timeout traffic and SLO violation of the com-
plete run of the second part of the experiment is illustrated in third and fourth
columns of table 4. First and second columns of table 4 show a small reduc-

Table 4: Two Elastic VMs (without) Apache controller vs. two Elastic VMs
(with) Apache controller responding to more realistic generated traffic

VM1 VM2 VM1 VM2

Timeout requests(without) Timeout requests(with)

12.7% 15.5% 11.5% 13.8%

SLO violations(without) SLO violations(with)

18.6% 17.5% 13.3% 13.1%

tion in the percentage of the timed-out requests, but a significant reduction in
percentage of SLO violation in case of Apache controller usage.

The above results prove that running our Apache controller, in parallel to
CPU/Memory controllers, reduces SLO violation and improves application per-
formance for both synthesized and more real generated traffic.

6 Conclusions & Future work

In this paper, we have presented an implementation for elastic system architec-
ture for optimizing resources consumption in consolidated environments. Our
system includes three controllers CPU, Memory, and Application running in
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parallel to preserve the intended SLO. We have evaluated our system in a real
Xen based virtualized environment; the experiments show that using Applica-
tion controller maintains the performance and mitigates SLO violation and the
timeout requests.

Our immediate future work will include analyzing more applications such
as database and their optimization feasibility in such dynamic resources alloca-
tion environment. The analysis will consider analytical models such as queuing
analysis. We will also extend our work to be integrated with other resource man-
agement schemes like ”VM migration” and ”running multiple instances” while
considering both performance and security as priorities.
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