Sebastian Roschke, Feng Cheng, Christoph Meinel: "BALG: Bypassing Application Layer Gateways Using Multi-Staged Encrypted Shellcodes”
in Proceedings of the 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011), IEEE Press, Dublin, Ireland, pp. 399-406, 5, 2011. ISBN: 978-1-4244-9219-0.

BALG: Bypassing Application Layer Gateways
Using Multi-Staged Encrypted Shellcodes

Sebastian Roschke
Hasso Plattner Institute (HPI)
University of Potsdam
14482, Potsdam, Germany

Feng Cheng
Hasso Plattner Institute (HPI)
University of Potsdam
14482, Potsdam, Germany

Christoph Meinel
Hasso Plattner Institute (HPI)
University of Potsdam
14482, Potsdam, Germany

Email: sebastian.roschke @hpi.uni-potsdam.de Email: feng.cheng@hpi.uni-potsdam.de Email: meinel @hpi.uni-potsdam.de

Abstract—Modern attacks are using sophisticated and inno-
vative techniques. The utilization of cryptography, self-modified
code, and integrated attack frameworks provide more possibili-
ties to circumvent most existing perimeter security approaches,
such as firewalls and IDS. Even Application Layer Gateways
(ALG) which enforce the most restrictive network access can be
exploited by using advanced attack techniques. In this paper,
we propose a new attack for circumventing ALGs. By using
polymorphic and encrypted shellcode, multiple shellcode stages,
protocol compliant and encrypted shell tunneling, and reverse
channel discovery techniques, we are able to effectively bypass
ALGs. The proposed attack consists of four phases with certain
requirements and results. We implemented the initial shellcode
as well as the different stages and conducted the practical attack
using an existing ALG. The possibility to prevent this attack with
existing approaches is discussed and further research in the area
of perimeter security and log management is motivated.

I. INTRODUCTION

In the past several years, attacks are becoming more and
more sophisticated and intelligent. Many newly emerged
attacks are implemented based on the rapidly developed
innovative IT techniques, such as advanced cryptography,
self-modified code, and integrated attack frameworks, etc.,
which provides more possibilities to circumvent most avail-
able perimeter security approaches. Cryptovirology [9] offers
a convenient way to encrypt malicious content or to put
backdoors in cryptographic functions. Polymorphic shellcode
provides a way for malicious code to modify itself. It is even
possible to create shellcode that appears as English written
text [13]. Sophisticated but easy-to-use frameworks and tools
are now available, which make it possible even for non-
professionals to conduct complex attacks, e.g., ettercap for
Man-In-The-Middle (MITM) attacks [1], etc. Furthermore,
many open source software platforms, e.g., metasploit [6], etc.,
have been developed and widely used in the community to help
people easily write their own exploits, customize the existing
exploits, as well as compose complex attacks.

On the other side, several perimeter security approaches are
developed and deployed in practice to secure hosts and net-
works, such as firewalls, Intrusion Detection Systems (IDS),
and Application Layer Gateways (ALG). Unfortunately, these
approaches are neither effective nor efficient for preventing
the above mentioned new attack techniques. Firewalls can be

easily penetrated by simple tunneling. IDS needs to handle
efficient evasion techniques. ALGs provide more restrictions
for network access by combining filtering on the application
layer and IDS techniques, such as deep packet inspection.
Most of ALG implementations provide filtering due to ap-
plication layer protocol compliance and even allow to block
certain commands within a specific protocol. Although ALGs
enforce a very restrictive access policy, it is still possible to
circumvent such devices by using modern attack techniques.

In this paper, we propose a sophisticated attack for circum-
venting the security measures introduced by ALGs by using
new attacking techniques, such as polymorphic and encrypted
shellcode, shellcode stages, protocol compliant and encrypted
shell tunneling, and reverse channel discovery techniques.
The proposed attack consists of: Attack Preparation, Attack
Execution, Shellcode Execution, and Post-attack Cleanup. As
the major phase of the entire attack process, the Shellcode
Execution performs complex tasks: Stage Loading, Channel
Discovery, Connect Back through Discovered Channel, and
Reverse Shell Tunneling. Requirements and results of each
phase are analyzed and described. We implemented the ini-
tial shellcode as well as the different stages and conducted
the practical attack using an existing ALG. The possibility
to prevent this attack with existing approaches is discussed
and some further research works, e.g., log management, are
proposed.

The rest of the paper is organized as follows. A short
overview about the Application Layer Gateway (ALG) is
given in Section II. In Section III, we describe the general
concept of attacking ALGs. Section IV describes the actual
implementation of the attack using generated shellcodes and
existing tools. In Section V, a practical attack scenario is
described based on the conceptual idea. After the attack and its
implications is discussed in Section VI, the paper is concluded
in Section VIIL.

II. OVERVIEW OF APPLICATION LAYER GATEWAY

Application Layer Gateway (ALG), also simply called
application layer proxy, is similar to circuit level gateway
except that it is application aware. It can filter packets at the
application layer of TCP/IP, as shown in Figure 1. This means
it is able to analyze the application data itself and can identify

Sebastian Roschke, Feng Cheng, Christoph Meinel: "BALG: Bypassing Application Layer Gateways Using Multi-Staged Encrypted Shellcodes”
in Proceedings of the 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011), IEEE Press, Dublin, Ireland, pp. 399-406, 5, 2011. ISBN: 978-1-4244-9219-0.

Pl Application

Traffic is filtered based on
specified application rules.

@ / A Transport
Irgemet Protodal '. o
dissallowed allowed
Data Link
Physical
— ﬁ

Incomming Traffic

Figure 1.

malformed application layer data or suspect application com-
mands. Furthermore, ALG can identify if a certain packet is
part of the application protocol that should be used through this
proxy. ALGs prevent the connection-based tunneling of non
desired application protocols, because the proxy will identify
that this is not the intended protocol that is allowed to pass
through. In plain terms, an ALG that is configured to be a web
proxy will not allow any ftp, gopher, telnet or other traffic
through, unless it is disguised as such traffic. Because they
examine packets at application layer, they can filter application
specific commands. This can not be accomplished with either
packet filtering or circuit level firewalls, which both do not
know anything about the application layer information. Service
specific packets, incoming or outgoing, can not pass unless
there is a related proxy. ALGs can also be used to log user
activities, such as logins. They offer a high level of security,
but have a significant impact on connectivity and performance.
This is because of context switches that slow down network
access dramatically. They are not transparent to end users and
require additional configuration of each client computer. Some
known ALG implementation includes Microsoft Forefront
United Access Gateway (UAG) [21], Siemens Lock-Keeper
[16], or Balabit Zorp GPL [19], etc.

Since some malicious data can only be recognized when
they are in the form of application layer data, e.g., web
page script, file, E-Mail, etc., the Application Layer Gateway
technology, which is capable of understanding the protocol
used by the specific applications that it supports, significantly
improves the security of the protected targets by preventing
the attacks hiding in the application layer. Furthermore, Anti-
Virus Software, which usually works on the application layer,
is feasible and in practice frequently integrated as an important
component of the ALG.

Many known attacks towards the ALG solutions take advan-
tage of the vulnerabilities of the ALG software itself, either the
technical failures during the design, implementation and de-
ployment or the human factors due to abuse, misconfiguration,
and bad policy. Most of successful application layer attacks
penetrate the ALG by exploiting these vulnerabilities and then
disabling the security functions. The normal services offered
by a compromised ALG will be therefore denied. In this paper,

Allowed Outgoing Traffic

Principle: Application Layer Gateway

we propose a new attack which targets at the basic principle
of the ALG. It can be assumed that the ALG, which we will
discuss in the following, is perfectly designed, implemented
and deployed.

III. A GENERIC ATTACK FOR BYPASSING ALGS

A practical attack ofen has a set of preconditions, e.g.,
knowledge on the target environment, an existing vulnerability,
and a way to store shellcode stages. Although we realized the
attack mostly relies on specific vulnerabilities in an existing
environment, the attack can be generalized to a certain extend,
as it is possible to use different vulnerable programs for the
initial exploit and various communication channels that may
exist. Besides the general attack we describe in this paper,
there are multiple techniques to improve the attack by hiding
the established communication channels or deceiving security
measurements, such as Intrusion Detection Systems (IDS).
Figure 2 shows a basic standard scenario for such kinds of
attack. The attacker is located in the external network, which
is separated from the internal network by an Application
Layer Gateway (ALG). The users in the internal and external
network are working with specific software and have access
to servers providing specific application, e.g., file transfer
or mail transfer. The ALG supports only a limited set of
application layer protocols and blocks all protocols it is not
aware of. In this case, all communication between the internal
and external network needs to follow certain rules and to be
standard compliant, i.e., generic TCP/UDP communication is
not supported.

Similarly, to successfully attack the ALG, there should be
several preconditions fulfilled. The first precondition is knowl-
edge on the environment that should be attacked. Although
some necessary information can be guessed or gathered, it
is helpful to know about the infrastructure that is attacked,
e.g. existing firewalls, gateways, etc. Necessary information
includes running software on the infrastructure that is vulner-
able and exploitable. This information depends on the attacked
environment and can be guessed with a certain accuracy, e.g.,
many clients in companies use Microsoft Windows and related
software. Sometimes there are even only a few solutions
available to solve a certain task, e.g., there is a limited

Sebastian Roschke, Feng Cheng, Christoph Meinel: "BALG: Bypassing Application Layer Gateways Using Multi-Staged Encrypted Shellcodes”
in Proceedings of the 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011), IEEE Press, Dublin, Ireland, pp. 399-406, 5, 2011. ISBN: 978-1-4244-9219-0.

e ——— — —————————————

7 - T ~

[B 2l Netw \

\ |

\ |

\ |

\ |

\ |

‘ l Application

‘ | Layer Gateway

\ |

\ N

\ [

\ Internet S

\ |

\ |

\ |

\ |

[I

N\ /
ey U -

Figure 2. Scenario: Attacking Application Layer Gateway

number of anti-virus solutions for mail gateways available and
they can be easily guessed. There needs to be a vulnerable
software running within the environment that is supposed to be
attacked. Furthermore, this software needs to be exploitable to
guarantee a successful attack. These two preconditions might
be present in most existing IT environments world wide, which
is shown by regular security incidents. The final requirement
to perform this attack is a way to store different stages of
the shellcode. As this attack requires sophisticated shellcode
to be executed, it needs a way to store these shellcodes and
execute them afterwards. The sophisticated shellcodes perform
complex tasks and are therefore larger than a simple bind
shell code block. The shellcode that is injected during the
exploit is just a simple loader that calls the different stages
sequentially. All the different requirements can be fulfilled
in many different ways and are needed for this attack to be
successfully executed.
The concrete attack procedure can be shown in the follow-
ing:
1) Attack Preparation
2) Attack Execution
3) Shellcode Execution
a) Initial Stage Loading
b) Channel Discovery
c) Connect Back through Discovered Channel
d) Reverse Shell Tunneling

4) Post-Attack / Cleanup

The Attack Preparation ensures that all preconditions of
the attack are fulfilled. During this phase, a lot of information
is gathered on the infrastructure and running software of the
target network. It is necessary to find possible attack vectors
that can be used to exploit the target network. In this step
it is even possible to find a set of attack vectors and to
enable the attack to exploit multiple different vulnerabilities
which might exist in the target network. Furthermore, the files
or data streams to perform the attack are prepared and the

stage loading shellcode is stored within. The shellcodes for
the different stages are also packed into the attacking files or
data streams.

During the Attack Execution, the prepared attack files or
data streams are sent by the attacker to the target network.
This phase provides the attacker with initial control over the
system. The stage loading shellcode is executed by modifying
the control flow of a target application which is vulnerable
to remote code execution, e.g., through a stack or heap based
buffer overflow, or a format string handling error in the code.
Besides server applications e.g., daemons, the exploitation of
client application is likely to be successful, e.g., exploitation
of media players or virus scanners through malformed file
formats.

The Shellcode Execution is used to find and establish a
logical communication channel to the internal secured net-
work. It performs many complex tasks, as shown in Figure 3,
including: Stage Loading, Channel Discovery, Connect Back
through Discovered Channel, and Reverse Shell Tunneling.
The Stage Loading is the initial code execution and is therefore
small to fit into an attacked target buffer which might have
space restrictions. This shellcode is responsible for loading the
other stages and shellcodes from the storage location, e.g., an
encrypted file transmitted as a part of the attack. The Channel
Discovery code is responsible to find a usable channel that can
be used to establish a logical connection through the ALG.
This can be done by analyzing local network traffic and con-
figurations, and by trying different ways to establish a logical
communication channel through the ALG or other gateways
connected to the external network. After the discovery of a
channel, the Connect Back shellcode is executed to establish
a logical connection during the Connect Back phase. This
channel can be established by using file-based communication,
mail communication, or any other application layer protocol
supported by the ALG. Generic TCP-based connections do not
work, as the ALG will prevent the direct connections between

Sebastian Roschke, Feng Cheng, Christoph Meinel: "BALG: Bypassing Application Layer Gateways Using Multi-Staged Encrypted Shellcodes”
in Proceedings of the 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011), IEEE Press, Dublin, Ireland, pp. 399-406, 5, 2011. ISBN: 978-1-4244-9219-0.

T 9

e

Loader
Shellcode

Initial Stage

Execute Channel
Discovery Stage

Initialization

Q

é Check
Permissions

Execute Connect

Tlovate Back Stage
Find Initial Stage Priviledges with é
Unpack Stage local Exploit
Find Stages Execute Reverse
Decrypt Stage Shell Stage
Unpack Stages
Load Initial Stage|
Decrypt Stages

Execute Cleanup

S

Figure 3.

arbitrary communication partners. When the logical channel
is established, the reverse shell can be tunneled using the
application layer protocol during the Reverse Shell Tunneling
phase. In this phase, the amount of transferred messages can
be decreased by caching or buffering commands by the shell
daemon, sending multiple commands at once, and receiving
multiple responses of commands at once. The communication
needs to protocol compliant, i.e., the messages exchanged need
to look as original messages of the application layer protocol.
Using a mail channel requires the shellcode to create real
emails that cover the shell communication as payload.

In the Artack Cleanup phase, the attacker tries to remove
evidence for the successful attack by restarting crashed soft-
ware, cleaning logs, etc., which makes the victim not be aware
of having been attacked.

The described attack shows a basic concept of attacking
ALGs that can be improved by several techniques to deceive
security measures, such as IDS. The communication used to
establish the reverse shell can be encrypted which makes IDS
impossible to detect usual shell commands, such as id, Is,
or others. Another possibility is the usage of polymorphic
shellcode that decrypts itself prior execution. This makes it
impossible to find often used binary patterns for fork(), dup(),
or connect() used in shellcodes to establish reverse shell
connections. Besides the usage of application layer payload
(e.g., the mail body in the mail protocol), it might be possible
to use other application specific fields in the protocol that are
transfered through ALG. One example might be the Reply-To
field of an email which might be used to hold any kind of
data as long as it is compliant to a standard format. A shell
command could be encoded in Base64 and then concatenated
by a standard email suffix, such as “@example.com”.

IV. IMPLEMENTATIONS OF SHELLCODE STAGES

The core of the implementation is the loader shellcode to
find, unpack, decrypt, and load the Initial Stage. To implement
this shellcode, we used simple x86 template shellcodes [6]
that execute a set of commands, as shown in Figure 4. The
functionality for finding, unpacking, decrypting, and loading

Y, Stage

Loader Shellcode and Stages

of the Initial Stage is realized using simple commands of
the OS. The decryption key is a simple password which is
encoded in the shellcode. In this way, the loader is very
small in comparison to the functionality it implements, i.e.,
the loader has a size of 263 Bytes for a Linux based OS.
The drawback of this solution is the requirement that specific
tools are available on the OS, e.g., find, openssl, and gzip on
Linux based OS. Figure 3 shows the execution of the different
phases. First, the Loader shellcode is executed during the
exploitation of a vulnerability. The Loader finds the Initial
Stage code on the system and unpacks it. After the decryption
of the Initial Stage, it is loaded and executed. The Initial
Stage is implemented in C using standard system libraries,
e.g., libc on a Linux based OS. It finds the different stages for
unpacking, decryption, and execution. Multiple calls to exec()
and system() are performed and again system tools are used for
searching, unpacking, and decryption. The keys for decryption
of the stages are encoded in the binary. Furthermore, the
Initial Stage checks for available permissions and executes
local exploits to elevate permissions if necessary. Currently, we
support several local vulnerabilities to be exploited, e.g., CVE-
2009-2698, CVE-2009-3002, CVE-2009-3001 [4], and several
other Linux Kernel vulnerabilities. The stages, i.e., Channel
Discovery Stage, Connect Back Stage, Reverse Shell Stage, and
Cleanup Stage, are implemented in C using standard libraries
and system tools. The final shellcode is shown in Figure 5.

The Channel Discovery Stage is responsible for finding
available communication channels that can be used to pass
the ALG. To achieve this, a rootkit [8] is installed on the
system to analyze network traffic and local system calls. In
this way, it is possible to recognize credentials that may be
useful for using a communication channel. Furthermore, the
host is scanned for available tools, e.g., tftp, scp, mutt, that
can be used to establish a communication channel. To find
available channels, the local tool configuration and history is
analyzed which may reveal existing channels. After identifying
possible tools and channels, the gathered credentials are used
with all available channels to discover a suitable one. The

Sebastian Roschke, Feng Cheng, Christoph Meinel: "BALG: Bypassing Application Layer Gateways Using Multi-Staged Encrypted Shellcodes”
in Proceedings of the 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011), IEEE Press, Dublin, Ireland, pp. 399-406, 5, 2011. ISBN: 978-1-4244-9219-0.

¥ BExploits (L Auxiiaries @ Payloads @l Console r Sessions 4 Options

& About

Linux Execute Ci

Linux Execute Command

Execute an arbitrary command

117

X86

Linux
OPTIONS
Required
d*;find ./

Size:
Architecture:
Operating system:

CMD

The command string to execute (type: string)

Max Size:

Restricted Characters (format: 0x00 0x01): 0x00

Selected Encoder: Default

Format: €
Generate

ommand (2)

This module (v6479) was provided by viad902, under the Metasploit Framework License (BSD).

* iname 'stages’

Linux Execute Command &
Execute an arbitrary command

Figure 4. Metasploit Shellcode Creation

most reliable channel we recognized is email, as the usage
of this channel does not require many knowledge beforehand,
i.e., only credentials, account, and mail server are necessary
for using this channel. All this information can be gathered
easily with the developed Channel Discovery Stage.

After a first channel is established, the Connect Back
Stage is trying to find the optimal channel for establishing a
permanent reverse shell to the target host. The channel should
be reliable, should provide a certain throughput, and should
yield less evidence that can be used to find this channel. A
reliable channel can be established using file transfer via FTP
[2] or SCP [3] protocols. Files provide an easy way to store
large information and can be deleted after the information has
been used. The permanent reverse shell is established during
the Reverse Shell Stage using the best available channel. The
provides the attacker with direct control over the attacked
host using the discovered channel. Furthermore, the attacker
can get all information gathered by the installed rootkit. To
prevent detection of clear text commands, the communication
of the Reverse Shell Stage is completely encrypted using the
AES block cipher [7]. The Cleanup Stage tries to remove all
evidence of the attack by cleaning log files and restarting
crashed services. This stage can be finalized manually by
the attacker. The described stages are using C implemented
tools for information gathering, channel discovery, reverse
shell establishment. We are using publicly available rootkits
for gathering of credentials and analysis of network traffic.

The package for the stages has a size of less than 100 KB.
Each stage is encrypted and compressed on its own, and an
overall package is created including the Channel Discovery
Stage, Connect Back Stage, Reverse Shell Stage, and Cleanup
Stage. The Initial Stage is packaged as the loading shellcode
needs to find and extract it easily. The exact size of the
shellcode highly depends on the amount of logic that is

implemented in the stages. To keep the experiment simple, we
just implemented the basic parts that are needed to conduct
our experiment successfully. The overall payload size for the
concrete implementation used in the experiments is 78.9 KB.

V. A PRACTICAL ATTACK SCENARIO

As a proof of our concept, we conducted a practical attack
on a scenario network secured with an ALG, i.e., Zorp GPL.
As shown in Figure 6, the internal network consists of several
clients and one FTP server. The FTP Server enables public
read and write access to specific folders and is configured to
scan all its content by an anti-virus software regularly, i.e.,
clamav. The clients have privileged access to the server using
SSH [3] and can read and write files in directories that are
restricted for the public. Unfortunately, the anti-virus software
on the FTP server is vulnerable to a buffer overflow described
in CVE-2007-6335 [4]. The ALG is configured to only allow
traffic that is compliant to the FTP protocol. So the usual
shellcode doing a TCP connect back or opening a shell on
a specific port can not be used in this scenario. Furthermore,
the ALG is configured to detect shell commands in the FTP
protocol and block all designated traffic. All clear text shell
communication will also be blocked by the ALG. The FTP
server is furthermore vulnerable to a local privilege escalation
vulnerability described in CVE-2009-2698 [4]. The FTP server
is a standard Linux host running Debian Lenny Linux and has
multiple common tools installed, e.g., tftp, scp, mutt, find, gzip,
openssl, and others. The clients are using Windows XP and
have putty as SSH client installed. The attacker is located in
the external network and has access to the public FTP folder.

The attack is conducted by uploading to the public FTP 1)
the stage package and 2) a modified Windows executable to
trigger the vulnerability. Once the FTP server uses clamav to
scan the files, the loading shellcode is executed and starting

Sebastian Roschke, Feng Cheng, Christoph Meinel: "BALG: Bypassing Application Layer Gateways Using Multi-Staged Encrypted Shellcodes”
in Proceedings of the 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011), IEEE Press, Dublin, Ireland, pp. 399-406, 5, 2011. ISBN: 978-1-4244-9219-0.

* linux/xB6/exec - 263 bytes
* http://www.metasplolif. com

- Encoder: xB86/shikata _ga nai
© AppendExit=false, PrependChrootBreak=false, CMD=gzip -df
- “find ./ -iname 'stages.enc.gz' ;openssl enc -d ...;

- “find ./ -iname 'stages'’, PrependSetresuid=false,

* PrependSetuid=false, PrependSetreuid=false

o/

¥ O K ¥ ¥ ¥ ¥ ¥ %

Figure 5.

to search for the stages. The stages are packaged into a
compressed file and encrypted which makes it impossible for
the virus scanner to recognize the malicious files. Even if the
anti-virus software is executed on the unwrapped stage codes,
the only known malicious code in this attack is the rootkit,
i.e., the Mood-Nt Linux kernel rootkit is slightly modified
to fit our purpose. This rootkit exists only in binary format
shortly before installation, as it is removed afterwards. The
installation of this rootkit is not permanent, which means that
it will only reside in kernel memory, so it is difficult to detect
by host-based IDS. The installed rootkit will collect all login
information of the clients connecting to the compromised FTP
server via SSH. The channel is established by simple file based
communication using the FTP server’s public folder. Each
command the attacker wants to be executed is wrapped and
encrypted in a file, and uploaded to the FTP server. The hidden
rootkit is reading files uploaded to the FTP and searches for
commands given by the attacker. The commands are executed
and the results are wrapped and encrypted again in a file,
which the attacker can later download from the FTP server.
In this way, the attacker established a logical reverse shell by
using FTP compliant functionalities that can not be blocked
by the ALG.

VI. DISCUSSION

The basic techniques, such as buffer overflows, format
string vulnerabilities, integer overflows, etc., are still used

Final Shellcode

to exploit hosts and are combined with cryptology and new
techniques for self-modifying code [5]. In [10], cryptovirology
is introduced as the offensive application of cryptography
in several attacks. A lot of specific attacks are proposed
and described by scientific research, e.g., [12] and [11]. The
introduction of polymorphic shellcodes [5] provides further
improvement of basic attack techniques by evasion methods
to circumvent detection of the malicious code. The recently
introduced English Shellcode [13] provides a way to hide
executable shellcode inside English ASCII text, which makes
it difficult to detect, even with statistical measures. Advanced
and convenient tools are available to support even unexpe-
rienced attackers to conduct attacks, e.g., metasploit [6]. The
combination of these techniques and tools to a powerful attack
is described in this paper.

To secure networks several perimeter security solutions have
been developed, e.g., firewalls, IDS, and ALGs. The basic
concept of firewalls [14] provides a way to filter network
traffic based on rules describing allowed traffic, by specifying
packet parameters, such as destination address, source address,
destination port, source port, and others. In addition to the
firewall concept, ALGs introduce filtering on application layer
and the compliance to certain application layer protocols.
Furthermore, it is possible for ALGs to allow only certain
commands of a specific application layer protocol (e.g., FTP).
Currently, there are several ALG implementations available,

Sebastian Roschke, Feng Cheng, Christoph Meinel: "BALG: Bypassing Application Layer Gateways Using Multi-Staged Encrypted Shellcodes”
in Proceedings of the 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011), IEEE Press, Dublin, Ireland, pp. 399-406, 5, 2011. ISBN: 978-1-4244-9219-0.

/ External Network

Attacker

Q Q Q

Client

// Internal Network N\

Client Client

Q Q

Internet

— e —— —— — — — ———— — — —

%} Zorp ALG
FTP

Network Infrastructure

&

FTP Server T
ClamAV FTP
Daemon

Q0

Public Directory

.

|
|
|
Ret
|
|
|
|
|
|
|
|
\

Figure 6. Experiment Scenario

such as Microsoft Forefront United Access Gateway (UAG)
[21], Siemens Lock-Keeper [16], or Balabit Zorp GPL [19].
Although these ALGs enforce restrictive access to resources,
it is shown that it is possible to circumvent these restrictions
with increased effort and advanced shellcodes. Even for IDS
sensors which are supposed to be capable of doing deep packet
inspection (DPI) [15] it is difficult to detect the attack proposed
in the paper, as it uses encoded shellcode for exploitation
and encrypted shellcode stages for further attacks. Although
the problem of polymorphic shellcode is addressed in (e.g.,
[23], [24], [22]), encryption provides an almost unpreventable
barrier for IDS. Nevertheless, this attack leaves traces in the
network that can be analyzed for finding such an attack.
Network connections can be logged using netflow data as
well as DNS queries. Access to servers (FTP, HTTP, SMTP,
etc) can be logged and analyzed. User logins, file access,
and program executions can be logged on each workstation
in the local network. Although logging can not prevent this
kind of attacks in the first place, it provides possibilities for
recognizing unusual behavior and network traffic as well as
analyzing conducted attacks in detail. Most server and OS
implementations provide several logging mechanisms, even
mechanisms for remote logging, i.e., storing logs remotely in
an automated fashion to circumvent log manipulation by an
attacker. Efficient log management is necessary for processing
and analyzing huge amounts of logs in realtime. Furthermore,
correlation mechanisms can be applied for filtering out security
relevant subsets of events. Multiple tools and implementations
are available for filtering and analyzing logs, e.g., Sagan as log
filtering and correlation tool [20]. IDS correlation techniques
and platforms could be directly applied to log analysis. For
instance, the steps for IDS correlation described in [18] can
be applied to log management in the same way as they are
applied to IDS alert management. The platform described in

[17] might be used for log correlation and analysis in realtime.

The motivation of this work is to prompt further research on
security measures and log management considering advanced
attack techniques. The innovation on attack methods and
the usage of cryptographic measures for conducting attacks
enable the evasion of most recent security measures available.
To achieve higher levels of security, it might be necessary
to restrict the possibilities for access even further, e.g., by
filtering all content that seems to be encrypted or encoded. But
as proved with the work on English shellcode, this method also
has vulnerabilities as it is undecidable, whether certain data
is encrypted, encoded, in plain text, or executable malicious
code. Extensive logging might help to detect and analyze these
kinds of attacks.

VII. CONCLUSION

In this paper, we proposed a sophisticated attack method
to bypass the security measures introduced by ALGs. Some
new techniques, such as polymorphic and encrypted shell-
code, shellcode stages, protocol compliant and encrypted shell
tunneling, and reverse channel discovery techniques, are ap-
plied. The detailed attacking procedure, which includes Attack
Preparation, Attack Execution, Shellcode Execution, and Post-
attack Cleanup, are described. Requirements and results of
each attacking phase are analyzed and discussed. An initial
shellcode as well as the code for performing the following
stages are implemented. A practical scenario is carried out
using a real ALG product, the Zorp GPL ALG. To our
knowledge, it is nearly impossible to prevent the proposed
attack by using the existing security approaches. It is expected
that further research in the area of perimeter security can be
encouraged.

The proposed attack has a set of requirements, such as the
existence of standard libraries and tools on the target host, to
keep the shellcode as small and efficient as possible. We see

Sebastian Roschke, Feng Cheng, Christoph Meinel: "BALG: Bypassing Application Layer Gateways Using Multi-Staged Encrypted Shellcodes”
in Proceedings of the 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011), IEEE Press, Dublin, Ireland, pp. 399-406, 5, 2011. ISBN: 978-1-4244-9219-0.

the possibility to remove these requirements by implementing
further functionality in the initial shellcode as well as in
the different stages. The stage implementations can also be
compiled and linked statically, to make it independent from a
specific library. However, this approach would require more
existing storage space, as the shellcode and stage implemen-
tation will become larger.

[1]
[2]

[3]
[4]
[5]
[6]
[7]

[8]
[9

—

[10]

[11]

[12]

REFERENCES

Ettercap: Website: http://ettercap.sf.net/ (accessed Mar 2010).

File Transfer Protocol: FTP Request For Comments - RFC 959, Website:
http:/fwww.rfc-editor.org/rfc/rfc959.txt (accessed Mar 2010).

Secure Shell Protocol: SSH Request For Comments - RFC 4253,
Website: http://www.ietf.org/rfc/rfc4253.txt (accessed Mar 2010).
Mitre Corporation: “Common vulnerabilities and exposures”,
Website: http://cve.mitre.org/ (Accessed March 2009).

J. Koziol, D. Litchfield, D. Aitel, C. Anley, S. Eren, N. Mehta, R.
Hassell: “Shellcoders Handbook®, Wiley Publishing, Inc. (2004).

The Metasploit Project, Website: http://www.metasploit.org/ (accessed

CVE

Mar 2010).

NIST AES: ”Specification of the Advanced Encryption
Standard (AES)”, Federal Information Processing Stan-
dards Publication 197, November 26, 2001, Website:
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf (accessed

Mar 2010).

G. Hoglund and J. Butler: “Rootkits: Subverting the Windows Kernel”,
Addison-Wesley Professional (2005).

A. Young, M. Yung: “Malicious Cryptography: Exposing Cryptovirol-
ogy”, John Wiley & Sons (2004).

A. Young, M. Yung: “Cryptovirology: Extortion-Based Security Threats
and Countermeasures”, In: Proceedings of the IEEE Symposium on
Security and Privacy (S&P’96), Oakland, CA, USA, IEEE Press, pp.
129-141 (1996).

A. Young, M. Yung: “Malicious Cryptography: Kleptographic Aspects”,
In: Proceedings of the RSA Conference (RSA’05), Springer LNCS, vol.
3376, pp. 7-18 (2005).

A. Young, M. Yung: “Deniable Password Snatching: On the Possibility
of Evasive Electronic Espionage”, In: Proceedings of the IEEE Sym-
posium on Security and Privacy (S&P’97), Oakland, CA, USA, IEEE
Press, pp. 224-235 (1997).

[13]

[14]
[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

J. Mason, S. Small, F. Monrose, G.G. MacManus: “English shellcode”
In: Proceedings of the 16th ACM Conference on Computer and Commu-
nications Security (ACM CCS’09), Chicago, Illinois, USA, ACM Press,
pp. 524-533 (2009).

W. Noonan, I. Dubrawsky:
(2006).

S. Northcutt: Network Intrusion Detection - An Analyst’s Handbook,
New Riders (1999).

F. Cheng, Ch. Meinel: “Research on the Lock-Keeper technology:
Architectures, applications and advancements”, In: International Journal
of Computer & Information Science (IJCIS), Plenum Press, New York,
NY, USA, vol. 5(3), pp. 236-245 (2004).

S. Roschke, F. Cheng, Ch. Meinel: “A Flexible and Efficient Alert
Correlation Platform for Distributed IDS”, 1In: Proceedings of 4th
International Conference on Network and System Security (NSS’10),
IEEE Press, Melbourne, Australia, pp. 24-31 (September 2010).

R. Sadoddin, A. Ghorbani: Alert Correlation Survey: Framework and
Techniques, In: Proceedings of the International Conference on Privacy,
Security and Trust (PST’06), ACM Press, Markham, Ontario, Canada,
pp. 1-10 (2006).

Balabit IT-Security: “Zorp GPL”,
http://www.balabit.com/network-security/zorp-gateway/gpl/
Mar 2010).

Softwink, Inc: “Sagan”, Website: http://sagan.softwink.com/ (accessed

“Firewall Fundamentals”, Cisco Press

Website:
(accessed

Dec 2010).
Mircosoft, Inc.: “Microsoft Forefront United Access Gateway
(UAG)”, Website: http://www.microsoft.com/forefront/unified-access-

gateway/en/us/default.aspx (accessed Mar 2010).

M. Talbil, M. Mejri, A. Bouhoula: “Specification and evaluation of
polymorphic shellcode properties using a new temporal logic”, In:
Journal in Computer Virology, Springer, Paris, vol 5(3), pp. 171-186
(2009).

D. Kim, I. Kim, J. Oh, J. Jang: “Tracing Stored Program Counter to
Detect Polymorphic Shellcode”, In: Journal IEICE Transactions 2008,
Oxford University Press, vol. 91-D(8), pp. 2192-2195 (2008).

Y. Song, M. E. Locasto, A. Stavrou, A. D. Keromytis, S. J. Stolfo: “On
the infeasibility of modeling polymorphic shellcode”, In: Proceedings of
the ACM Conference on Computer and Communications Security (ACM
CCS’07), Alexandria, Virginia, USA, ACM Press, pp. 541-551 (2007).

