
Automated Security Service Orchestration for the Identity Management
in Web Service based Systems

Robert Warschofsky, Michael Menzel, Christoph Meinel
Hasso-Plattner-Institute

Prof.-Dr.-Helmert Str. 2-3
14482 Potsdam, Germany

{robert.warschofsky, michael.menzel, meinel}@hpi.uni-potsdam.de

Abstract—Today, there is a huge amount of security services
that can be used to implement different security requirements
in Web Service based systems. For example, identity manage-
ment services are required for authentication and authorization
whereas message logging services are necessary to achieve non-
repudiation. However, the deployment and configuration of
these security services usually requires expert knowledge about
the systems and expert knowledge about security requirements
and implementations which a person can only learn by ex-
perience. Furthermore, today’s Web Service based systems
become increasingly complex. Thus, implementing security
requirements is a complex and error prone task, even for
experts. For this paper, we analysed several service-based
implementations for identity management and their differences
in the service orchestration. We present an approach to derive
the needed security services, their configuration, and their
connections to the functional services, based on defined security
requirements for a Web Service based system. Therefore, we
evaluate the UML use case model of the system and apply
service security pattern derived during the analysis of the
identity management implementations.

Keywords-Service-oriented Architectures; Web Services; Se-
curity Orchestration; Pattern-bases Security Engineering;
Identity Management

I. INTRODUCTION

Today, security in Service-oriented Architectures (SOA) is
a necessary but complicated field. In the scope Web Service
based SOA, several possibilities exists to secure the services,
the clients, and the messages exchanged between both.
Basic message security requirements, like confidentiality and
integrity, can be fulfilled using methods implemented at the
sender and the receiver of a message. For example, the
confidentiality of a message can be assured using XML
encryption and for the integrity of a message, XML signature
can be used. Other security requirements, like authentication
and authorisation, can be basically fulfilled using sender
and receiver based implementation, too. For example, the
usage of username/password tokens send within a mes-
sage provides sufficient information for both requirements.
However, in a SOA the usage of security services might
be a more adequate solution for such requirements. For
other security requirements, the usage of dedicated security
services is inevitable. For example, identity provisioning and

single sign-on can not be realized without a central service
responsible for the identity management.

For Web Services several security services are possible
and available. A Security Token Service (STS) issues iden-
tity information about its users. This information can be
used for the identification and authorization of a service
requester. Other security services may be used to store and
distribute public keys for the encryption of messages or for
the collection and safekeeping of messages to ensure the
non-repudiation of certain service requests.

There exist several possibilities to actually combine se-
curity methods and security services into a Web Service
based SOA. For example, an STS might be used to enable a
single sign-on to several services and the actual requests to
the services have to be secured using XML encryption and
XML signature. The selection of a reasonable combination
of security services and security methods for a certain
SOA based application can be complex and error prone. In
addition, even after the selection of the services and methods
to be used, the orchestration of the application services and
the security services has to be done in a correct manner.

To support the security design of Web Service based
systems, we propose to define patterns (in terms of Gamma
et al.[1]) for the orchestration of security services. Such
security service orchestration patterns have to provide sug-
gestions about the usage of distinguished security services
in a certain Web Service based application to solve a certain
security requirement.

We examined typical realizations of different Identity
Management Models and the orchestration of the used secu-
rity services. In this paper the discovered orchestration pat-
terns for the selection and implementation of these identity
management models are presented. We decided to formulate
the preconditions and postconditions of the patterns in a way
which allows an automated pattern selection and application.
This should enable a system designer to easily create a
security design model of a desired system. The preconditions
of the patterns are described using an extended UML use
case model. The pattern solutions describe the usage of
security services using a system design model. This system
design model is expressed in the Fundamental Modelling

2011 IEEE International Conference on Web Services

© 2011 IEEE

robert.warschofsky
Typewritten Text

robert.warschofsky
Typewritten Text

robert.warschofsky
Typewritten Text



Concepts (FMC [2]) language, enhanced with the security
configuration model SecureSOA [3].

The paper is structured as follows: Section II describes
the extended UML use case model as well as the FMC
based system design model with SecureSOA. In Section
III the examined Identity Management Models and their
relationship to each other are introduced. Section IV explains
the discovered patterns in detail and puts them in relation
to the Identity Management models. Finally, in Section V
relates work is described and in Section VI the contribution
of this paper is summarized and open research questions are
discussed.

II. SECURITY ENHANCED DESIGN MODELS

For our approach on security orchestration patterns, we
are using two different model types. The first model type
is used for the description of a Web Service based system
on a conceptional use case level. The second model type
represents the system design after the application of the
orchestration patterns. As mentioned above, the models have
to allow an automated pattern selection and application.
Therefore, an automated interpretation of these models is
required, which would be impossible if the patterns would
only be described in natural language.

A. An extended UML use case model for preconditions

The model used to describe the preconditions of the
orchestrations patterns, is basically an UML use case
model [4], consisting of use cases, actors, and associations
between them. Use cases can also include other use cases
which is notated with the stereotype �include�. Although,
use case models provide additional concepts and stereotypes,
we are not using them in our approach.

An example for the extended UML use case model is
shown in Figure 1. In this example, an �End User� is
associated to a use case which includes another use case.
This second use case includes a third use case. In addition,
the second and the third use case are associated to different
�Provider�. Finally, a contract is defined between these
�Provider�.

Figure 1. Example for the extended UML use case model.

To adopt the use case models to our requirements, we
extend them with additional stereotypes. The stereotype
�Provider� refines an actor. A �Provider� is responsible
for the provisioning of a use case that represents a cer-
tain service. Another refinement of an actor is the �End
User� that represents an actual user of a use case. In

addition, we added the dependency �Contract� to the use
case model. This dependency has to be associated to two
�Provider� and represents a contract about the federation
of identity information between these two service providers.
Finally, a set of supplemental requirements can be stated
for and associated with a use case in our extended use case
model.

B. A security enhanced system design model

FMC Compositional Structure Diagrams (also known
as FMC Block Diagrams) depict the static structure of a
system and the relationships between system components.
This diagram type distinguishes between active and passive
components. Agents are active system components that
are capable to communicate via channels and to perform
activities in the system. Channels and storages are passive
components used to transmit or store information.

These FMC block diagrams are the foundation for our
security enhanced system design model. The elements in
these diagrams are annotated with security requirements
that are defined by our security modelling language Secure-
SOA. SecureSOA uses the integration schema defined by
SecureUML [5] to enable the enhancement of system design
models with security-related modelling elements.

One security requirement defined by SecureSOA is a
directed Trust relation between two actors. The meaning
of such a relation is that one actor can identify and has
confidence in the other actor. An extension of this is the Trust
domain which implies that there exists an Trust relation
between all actors in that Trust domain. Another security
requirement is a Contract between two actors. In this con-
text, a Contract is a bidirectional Trust relation.

III. IDENTITY MANAGEMENT

The identification and authentication of users are impor-
tant security requirements to ensure a trustworthy commu-
nication in decentralised systems and provide the founda-
tion to restrict the access to services. The identification,
authentication and authorisation of users is performed on
their representation in the digital world - a user’s digital
identity. A digital identity consist of a set of attributes and
is managed in an account.

The Identity Management describes the process of estab-
lishing, representing, maintaining and provisioning a per-
son’s identity as digital identities in IT systems as shown in
Figure 2.

Create Provision DestroyIdentify verify consume

Destroy

Figure 2. Life cycle of a digital identity



The first step in this process represents the registration
of users. In order to create a user’s digital identity, identity
information is stored in an account that is created for the
user. The usage of a digital identity at a service provider
is based on four steps. A user must be identified and
authenticated to verify that a specific digital identity belongs
to this user. Required identity information must be provided
to a service provider that results in the consumption of this
information. At the end of the life cycle, a digital identity
is destroyed by deleting the users account.

The life cycle of a digital identity management identi-
fies basic steps, but do not describes the architecture and
components to perform this process. These components and
the underlying concepts are described by the identity man-
agement models. We distinguish four models, while each
model implements a specific identity management approach.
As described in [6] and [7], an identity management model
can be based on an domain-based approach or on an open
environment approaches.

Domain-based approaches represent traditional approach
that bind a digital identity to a specific security domain (e.g.
a company). An identity information can be consumed in this
domain solely. Identity management models implementing a
domain-based approach are illustrated in Figure 3

Trust Domain

Service 

Consumer

Service 

Provider/ 

Identity Provider

R

(a) Isolated Identity Management

Trust Domain

Service 

Consumer

Service 

Provider

R

Identity Provider
R R

(b) Centralised Identity Management

Figure 3. Domain-based Identity Management Models

The isolated identity management model (shown in Fig-
ure 3(a)) implements a service specific management of
digital identities. A service is attached to a user directory
that provides the identity information for this service and
enables the authentication of users. Each service that is based
on this model has full control over the users. However, the
users have to be registered at each service independently.
Since the identification and representation of users is service-
specific, the usage of this model prevents the orchestration
and composition of independent services.

To enable a single-sign-on across multiple services in a
domain, the centralised identity management model can be
used as illustrated in Figure 3(b). The services are con-

nected to a single identity provider to organise the identity
management in a centralised way. The identity provider is
responsible to manage the digital identities of users and to
perform their authentication. Authentication decisions can
be brokered to services that rely on this information. In
addition, identity information required by the services can
be provided as well. The usage of an identity provider
requires trust relationships between the relying services and
this identity provider. Since the identity provider is used in
a single trust domain, these relationships are established by
default.

Although domain-based identity management approaches
enable service providers and organisations to control the
identity information of their users, these approaches prevent
the usage of identities across domain boundaries. Users
have to be registered in each domain and this results in
an increasing number of digital identities and accounts. For
each account, users have to manage credentials that facilitate
their authentication.

For example, consider the usage of web applications in
the internet. Users have to manage a multitude of user name
and password combinations and tend to select the same
password for each account. Therefore, the application of
domain-based identity management approach results in an
increasing number of security risks. Furthermore, users have
to keep their account consistent and identity information
have to be updated in multiple accounts.

Identity management models based on Open environment
models address these issues by enabling the usage of digital
identities across trust domains. This approach is based on
a set of identity providers that share and broker identity
information. Since identity provider can be implemented
on the basis of different technologies and protocols, an
abstraction layer is required to enable the interoperable
exchange of identity information.

Security Domain

Identity Metasystem

IDM System

Security Domain

IDM System

Security Domain

IDM System

Figure 4. Identity Metasystem

The identity metasystem provides such an abstraction layer
as illustrated in Figure 4. Standards such as WS-Trust and
SAML provide interfaces and token formats and enable the
usage. The identity metasystem enables the integrations of
any identity management solutions to avoid the replacement
of existing solutions.



The identity management models based on the open
environment approach are shown in Figure 5. Both models
are based on the identity metasystem to integrate multiple
identity providers. Service providers and identity providers
rely on identity information and authentication decisions that
is brokered by other identity providers. The brokering of
this information across trust domains enables a single-sign-
on across organisational borders. The brokerage of identity
information is based on established trust relations. Both
models differ from each other in the establishment of these
trust relations.

Trust DomainTrust Domain

Service 

Consumer

Service 

Provider

R

Identity Provider

R

Identity Provider

R

(a) User-Centric Identity Management

Circle of Trust

Trust DomainTrust Domain

Service 

Consumer

Service 

Provider

R

Identity Provider

R

Identity Provider

R

(b) Federated Identity Management

Figure 5. Identity Management Models

The Federated Identity Management model illustrated in
Figure 5(b) is based on a circle of trust that is shared by
multiple organisations. Identity providers rely on assertions
issued by other identity providers in the federation. Contracts
are concluded between the participating organisations to
establish a federation.

Whereas, the User-centric Identity Management model
is not based on predefined trust relations. The user is in
the centre of the interactions between identity and service
provider. The user can select an identity provider that asserts
the authentication and required identity information. The
identity provider issues a security token that can be used to
access a service. The service provider has to decide, whether
a token can be accepted from this source.

IV. SECURITY ORCHESTRATION PATTERN

The decision which Identity Management Model should
be used in a SOA-based application can be made on the basis

of the properties of these models. It certainly does make
sense, to use the model that fits best to the application and its
environment. Finding the best fitting Identity Management
Model can be supported using orchestration patterns that
describe how to orchestrate security services in a SOA for
a certain security goal. The patterns presented here are the
results of the analysis of typical Identity Management Model
implementations and represent best practises.

These patterns can be applied to an extended Use Case
model (see Section II-A) of the desired SOA-based appli-
cation and will produce a security enhanced system design
model expressed in FMC and SecureSOA (see Section II-B).
This system design model can further be transformed into
concrete service implementations and security configura-
tions, as described in [8].

In this section the patterns are described in detail. First,
the general structure of the patterns is explained (Section
IV-A). In the Sections IV-B to IV-E, the patterns are
explained in relation to the Identity Management Models
presented in Section III. Finally, Section IV-F illustrates the
exemplary application of multiple patterns.

A. General structure of a pattern
As described in [9], the mandatory elements of a pattern

in general are Name, Context, Forces, Problem, and Solution.
These elements are shortly explained in Table I. Since
the Security Orchestration Patterns described in this paper
are applied to extended Use Case models, the Context of
these patterns is always a Use Case model. In addition,
all presented patterns cover the selection of an appropriate
Identity Management model and therefore, the Problem of
these patterns is always Identity Management.

Name is a label that identifies the pattern and reflects the intention
of the pattern.

Context describes the environment before the application of this
pattern.

Forces are conditions that exists within the context. They affect the
problem and might represent trade-offs or preconditions.

Problem describes a problem that occurs within the context.
Solution is a proven solution for the problem within the context.

Table I
MANDATORY ELEMENTS OF PATTERNS (TAKEN FROM [9]).

For the application of all pattern presented in this paper,
the use case model of the desired system is analysed and an
corresponding system design model is created. Therefore,
for each use case a service is created and for each �in-
clude� dependency a service call is realized. In addition,
for each �Provider� a trust domain is created that contains
all services created from the use cases associated with this
�Provider�.

B. Isolated Identity Management
The context of the Isolated Identity Management pattern

(IIM) consists of only two actors and two use cases. The



forces for this pattern define that one of the actors is an
�End User� and the use case associated with this �End
User� includes the other use case (Figure 6(a)). Since the
user only requests one service of one provider, the service
itself can be enabled to authenticate all its users.

(a) Use case model (UML) (b) System design model (FMC)

Figure 6. Isolated Identity Management pattern (IIM).

The solution is that for the action associated to the �End
User� a consumer application is created in the system
design model and for the included action an corresponding
service is created which the consumer has to request. Since
the service is responsible for the identity management of
all its requesters, an identify relation is added between the
service and the application user (Figure 6(b)). For example,
the requester can use a username/password combination to
identify itself.

C. Centralized Identity Management

A system design model with a Centralized Identity Man-
agement is created by the Service Refinement pattern (SR).
This pattern describes the usage of composed services where
all services are offered by the same provider. The context of
this pattern contains at least three use cases and one actor.
The forces define, that one of these use cases includes the
two other use cases and all three use cases are associated
to the same actor. This actor has to be a �Provider� which
represents a company and not an �End User� (Figure 7(a)).

(a) Use Case model (b) System design model

Figure 7. Service Refinement pattern (SR).

The solution is that for each of these use cases a corre-
sponding service is created in the system design model. The
service created for the including use case has to request the
other two service. Since all use cases are associated to the
same provider, all created services are contained in the same
trust domain. The identity management for all services is

handled by an Identity Provider residing in this trust domain
to avoid duplicate user data in each service.

D. User-centric Identity Management

For the User-centric Identity Management Model we
present two patterns. The Inter-Domain Service Call pattern
(IDS) defines a User-centric Identity Management solution.
This pattern describes the usage of composed services where
the services are offered by different providers. The context
consists of at least two use cases and two actors. The
forces define, that both use cases are associated to different
actors and one use case includes the other use case. In
addition, the including use case is associated to at least one
�Provider� (Figure 8(a)), which differences the forces of
this pattern and the forces of the of the Isolated Identity
Management pattern.

(a) Use Case model (b) System design model

Figure 8. Inter-Domain Service Call pattern (IDS).

The solution of this pattern describes the creation of
two services corresponding to the two use cases. Since
both use cases are associated to different �Provider�, the
created services are in different trust domains. The identity
management is handled by an identity provider in the trust
domain of the requesting service. The identity provider is
created due to the fact, that the actor associated to the
including use case represents a company which should use
some kind of central identity management. As mentioned
in the description of the User-centric Identity Management
Model, the requester can select its identity provider and
the requested service has to decide whether to accept the
information from this provider.

The Identified Inter-Domain Service Call pattern (IDS2)
is similar to the Inter-Domain Service Call pattern. The
forces of this pattern define an additional requirement for the
included use case. This use case, when included, requires the
provision of identity information originated from the domain
of the use case (Figure 9(a)). This requirement is satisfied
with a solution as shown in Figure 9(b). For the use cases
corresponding services in different trust domains are created
and in the domain of the called service an identity provider
is created. This identity provider is requested by the calling
service to obtain a valid identification in the domain of the
called service. The identification is then used to call the
service.



(a) Use Case model (b) System design model

Figure 9. Identified Inter-Domain Service Call pattern (IDS2).

E. Federated Identity Management

A system design model with a Federated Identity Manage-
ment solution is created using the Federated Inter-Domain
Service Call pattern (FIDS). This pattern describes the fed-
erated usage of identity information and service provisioning
between two companies. The context contains at least two
use cases and two actors. The forces describe that the two
use cases are associated with different �Provider� and that
between these two �Provider� a �Contract� is defined
(Figure 10(a)).

(a) Use Case model (b) System design model

Figure 10. Federated Inter-Domain Service Call pattern (FIDS).

The solution describes that two services are created corre-
sponding to the two use cases. These services are contained
in different trust domains and in each trust domain, there
is an responsible identity provider. In addition, there is
a contract defined between both identity providers. The
services communicate only with the identity provider in their
own trust domain and with each other. To transform the
identity of the calling service from the first domain to the
identity in the second domain, the service of the second
domain has to request its identity provider.

The Identified Federated Inter-Domain Service Call pat-
tern (FIDS2) is comparable to the The Federated Inter-
Domain Service Call pattern. Similar to the Identified Inter-
Domain Service Call pattern, the forces of this pattern define
the additional requirement for the included use case that
identity information originating from the domain of the
use case provider are needed (Figure 11(a)). The solution
shown in Figure 11(b) demonstrates the fulfilment of this
additional requirement. Corresponding to the two use cases,
two services are created that are contained in different trust
domains and in each trust domain, there is an responsible
identity provider. In addition, there is a contract defined

(a) Use Case model (b) System design model

Figure 11. Identified Federated Inter-Domain Service Call pattern (FIDS2).

between both identity providers. In contrast to the FIDS
pattern, the requesting service communicates with both
identity providers to first receives the identity information
from its own identity provider and then translates the identity
information for the requested service using the other identity
provider.

F. Composed Example

As we have shown, for some Identity Management Mod-
els there exist multiple security orchestration patterns. The
usage of additional requirements for one use case can
result in the selection of a different pattern with a different
solution. Nevertheless, this selection can be done in an
automated way, even for complex use case models.

As an example for the application of multiple patterns, a
travel agency scenario is illustrated in Figure 12. In this
scenario, an �End User� is associated to the use case
Booking Travel. This use case includes the use case Select
Travel associated with the Travel Agency and the use case
Pay Travel associated with the Bank. The use case Select
Travel includes the use cases Select Flight associated to a
Flight Agency, Select Hotel associated to a Hotel Agency,
and Select Car associated to a Car Agency. In addition, the
use cases Pay Travel and Select Flight have the requirement
to be provided with identity information originated from
their own domains to be included successfully. Finally, there
are contracts defined between the Travel Agency and the
Flight Agency, the Hotel Agency, and the Car Agency.

The general structure of this use case model can be
used to create a general system design model, as shown
in Figure 13. For each use case a corresponding service is
created and for the �include� relations between the uses
cases corresponding service calls are added. Finally, the
security domains of the �Provider� actors are added and
the corresponding services are attached to these domains.
Using the use case model and the created system design
model, the security orchestration patterns, presented in this
paper, can be applied.

The application of the orchestration patterns adds the iden-
tity management components to the system design model.
For example, the application of the Federated Inter-Domain
Service Call pattern creates the Identity Provider in the
domain of the Travel Agency, the Flight Agency, the Hotel



Figure 12. Travel agency use case model.

Agency, and the Car Agency. This pattern also creates the
Contract relations between these Identity Providers and the
requests between the services and the Identity Provider
in one trust domain. The Identified Inter-Domain Service
Call pattern creates the Identity Pattern in the domain of
the Bank and adds the service calls between the Booking
Travel Application, the Pay Travel Service, and the Identity
Provider in the Bank domain.

V. RELATED WORKS

There already exist some approaches concerning Identity
Management and service security pattern.

S. Rieger [6] provides approaches for the realization of
user-centric and federated Identity Management. However,
an automated selection of the best fitting Identity Manage-
ment Model for an application is not defined.

A. Jøsang et al.[7] defines different Identity Management
Models and additional trust requirements for each of these
models. The support for an automation of the model selec-
tion is also not provided.

N. Delessy et al.[10] proposed a pattern language for
identity management. These patterns are designed to be used
in the software development cycle. However, they define the
patterns using natural language which makes it impossible
to use these patterns in an automated way.

VI. CONCLUSION

In this paper, we presented a approach to describe security
orchestration patterns for Identity Management Models in a
way that they can be selected and applied automatically.
The forces of these patterns are described using extended
UML use case models. Using these models, it is possible to
describe the functional purpose of a desired service based
system. The application of the the orchestration pattern
creates a system design model that contains the required
functional services as well as all necessary security services
used to ensure certain identity management requirements.

The created system design models are expressed using
the modelling language FMC and the security modelling
extension SecureSOA. One advantage of SecureSOA is the
capability of an automated generation of security configura-
tions for all services in the system design mode [8].

To be able to create a completely secured system design
model, further service security orchestration patterns have
to be defined for different security topics. One such security
topic is the provisioning and distribution of public keys for
the encryption of messages between services. A security
service implementing the Needham-Schroeder public-key
protocol [11] would be an appropriate candidate to realize a
solution for this topic. Another security topic concerns the
realization of non-repudiation. For this subject, pattern could
be useful which foster the application of a message logging
service provided by a trusted third party. To summarize, the
application of service security patterns simplifies the design
of secure service-based system by providing service security
solutions.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, De-
sign patterns: elements of reusable object-oriented software.
Addison-Wesley Longman Publishing Co., Inc., 1995.

[2] A. Knöpfel, B. Gröne, and P. Tabeling, Fundamental Model-
ing Concepts. John Wiley & Sons, Mar. 2006.

[3] M. Menzel and C. Meinel, “SecureSOA - Modelling Security
Requirements for Service-oriented Architectures,” in IEEE
International Conference on Services Computing (SCC 2010),
Jul. 2010, pp. 146–153.

[4] OMG, “The UML 2.0 Superstructure Specification,” Object
Management Group, Specification Version 2, 2004. [Online].
Available: http://www.omg.org/docs/formal/07-11-04.pdf

[5] D. Basin, J. Doser, and T. Lodderstedt, “Model Driven Secu-
rity: from UML Models to Access Control Infrastructures,”
ACM Transactions on Software Engineering and Methodol-
ogy, vol. 15, no. 1, pp. 39–91, January 2006.



Figure 13. Travel agency system design model using FMC and SecureSOA.

[6] S. Rieger, “User-Centric Identity Management in Heteroge-
neous Federations,” in ICIW’09: International Conference on
Internet and Web Applications and Services. IEEE Computer
Society, 2009, pp. 527–532.

[7] A. Jøsang, J. Fabre, B. Hay, J. Dalziel, and S. Pope, “Trust
Requirements in Identity Management,” in ACSW Frontiers
05: Proceedings of the 2005 Australasian workshop on Grid
computing and e-research. Australian Computer Society,
Inc., 2005, pp. 99–108.

[8] M. Menzel, R. Warschofsky, and C. Meinel, “A Pattern-
driven Generation of Security Policies for Service-oriented
Architectures,” in ICWS ’10: IEEE International Conference
on Web Services. IEEE Computer Society, Jul. 2010, pp.
243–250.

[9] G. Meszaros and J. Doble, A pattern language for pattern
writing. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1997, pp. 529–574.

[10] N. A. Delessy, E. B. Fernandez, and M. M. Larrondo-Petrie,
“A Pattern Language for Identity Management,” in ICCGI
’07: Proceedings of the International Multi-Conference on
Computing in the Global Information Technology. Washing-
ton, DC, USA: IEEE Computer Society, 2007, p. 31.

[11] R. M. Needham and M. D. Schroeder, “Using encryption for
authentication in large networks of computers,” Communica-
tions of the ACM, vol. 21, pp. 993–999, December 1978.




