
Stopping Time Condition for Practical IPv6

Cryptographically Generated Addresses

Ahmad AlSa’deh, Hosnieh Rafiee, Christoph Meinel

Hasso-Plattner-Institut, University of Potsdam

P.O. Box 900460, 14440 Potsdam, Germany

{Ahmad.Alsadeh, Hosnieh.Rafiee, Christoph.Meinel}@hpi.uni-potsdam.de

Abstract— Cryptographically Generated Addresses (CGA) are

employed as an authentication mechanism in IPv6 network to

realize the proof of address ownership without relying on any

trust authority. The security parameter (Sec) indicates the

security level of the CGA address. For Sec value greater than

zero, there is no guarantee to stop the brute-force search after

certain time. The address generator tries different values of

Modifier until (16×Sec)-leftmost-bit of the second hash (Hash2)

computes to zero. This paper proposes some modifications to the

standard CGA “RFC 3972” in order to limit the time that CGA

generation may takes. The modified CGA generation algorithm

takes the upper bound of CGA running time as an input and the

Sec value is determined as an output of the brute-force

computations. The modified CGA keeps track of the best

founded Hash2 value during the running time. The paper also

proposes to reduce the granularity of the security level from “16”

to “8”, to increase the chance to have better Sec value within the

time limit. We called the modified CGA as Time-Based CGA

(TB-CGA). The implementation and evaluation of TB-CGA are

done in this paper.

Keywords-IPv6 security; SEcure Neighbor Discovery; CGA

performance

I. INTRODUCTION

Cryptographically Generated Addresses (CGA) [1] are
designed to offer the authentication to IPv6 addresses and
prevent malicious nodes from claiming the ownership of the
others’ addresses. CGA is an IPv6 address where the interface
identifier part is generated from a cryptographic hash of the
address owner’s public key and other parameters. Thus, IPv6
address of the node is bound to its public key. In this manner,
CGA is self-certifying since it does not rely on Public-Key
Infrastructure (PKI) or other authority. Therefore, any IPv6
node can generate its CGA address locally.

CGA authenticates the identity of the sender based on
public key cryptography. The recipient is able to determine that
the message comes from a real sender. The message which is
sent from CGA address is signed with the address owner
private key and the public key is attached to the signed
message. Since the message contains everything the recipient
needs to authenticate, the receiver does not need to have further
communications with the sender for completing the
authentication process. The receiver authenticates the message
by verifying that the hash of the public key matches the
sender’s address and the signature is valid.

For using CGA, the sender node needs to select the CGA
Security Parameter (Sec). Sec value indicates the security level
of the CGA against the brute-force attacks. Sec is an unsigned
3-bit integer having a value between “0” and “7”. It increases
the computational cost for both the attacker and the address
generator. The address generator needs, on average, 2

16×Sec

brute-force search to satisfy Hash2 condition [2], i.e.,
(16×Sec)-leftmost-bit of Hash2 equal to zero. Large Sec value
may leads to significant and undesirable address generation
delay. For Sec value “2”, the CGA address computation takes
several hours on a computer with 2.67 GHz CPU speed.
Currently, it is impractical to use CGA with large Sec value
especially in recourse-constrained networks, such as in mobile
telephones, wireless sensors, and ad-hoc networks where nodes
have limited resources (battery, memory, processor, and
bandwidth). The CGA computation will take too long time and
consumes the computing device energy. Therefore, the high
computation cost of CGA may prevent its usage and leave IPv6
networks vulnerable to several attacks which are related to
address stealing.

Normally, the address owner sets Sec value. But it is hard
for the user to select the suitable Sec value. Small Sec value
leaves a small margin of safety and large Sec value may causes
unacceptable address generation delay. Even though in case the
user knows the details of CGA algorithm, it is hard to predict
the CGA generation time because the computation of Hash2 is
completely random, and it is not easy to predict the required
CGA generation time for Sec value greater than “0”. Moreover,
CGA generation time depends on computing device CPU
speed. Consequently, it is better to select Sec value in more
practical way base on tangible factor that the user can
determine it, such as time.

We propose a modified CGA with termination time to force
CGA generation to stop after certain time specified by the user
or the address generator. Our purpose is to gain an optimal
advantage from CGA security without waiting long time for
CGA generation. The modified CGA generation algorithm
takes the termination time as an input and then determines Sec
value as an output of CGA computation. In this paper, we
propose the following modifications to the standard CGA [1]:

 Select time parameter as an input instead of Sec value.
The time parameter is set to ensure that CGA will stop
after certain time. The Sec value is determined by

Published as: Ahmad AlSa'deh, Hosnieh Rafiee and Christoph Meinel, “Stopping Time Condition for Practical IPv6 Cryptographically
Generated Addresses”, 26th IEEE International Conference on Information Networking (ICOIN), Bali, Indonesia, February 1 - 3, 2012.

rounding down the number of zeros in the best founded
Hash2 value to the nearest multiple factor “8”.

 Replace the standard granularity factor “16” with “8”
in Hash2 condition to get an optimal security level
within the stopping time and reduce the number of
wasted iterations to find better Sec value. It is obvious
that the chance to have hash function output with “8”
successive zero is higher than it with “16”.

The paper is structured as follows. Section II reviews CGA
generation algorithm. Section III discuses the CGA
modifications decision to reach the final time-based CGA (TB-
CGA) generation algorithm. Section IV describes the testing
environment and the TB-CGA implementation. Section V
shows some measurements for standard CGA and the modified
version (TB-CGA). Section VI concludes the paper.

II. CRYPTOGRAPHICALLY GENERATED ADDRESSES (CGA)

CGA firstly proposed as a mechanism for authenticating
location updates in Mobile IPv6 [3]. Later, CGAs were
standardized in the context of the SEcure Neighbor Discovery
(SEND) [4] to protect Neighbor Discovery (ND) for IPv6 [5]
and IPv6 Stateless Address Autoconfiguration [6] against
known attacks [7]. CGA is also proposed to prevent Denial-of-
Service (DoS) attack and to authenticate the Binding Update
messages in Mobile IPv6 [8, 9].

A. CGA Generation Algorithm

In CGA, the interface identifier portion of IPv6 address is
created from cryptographic hash of the address owner’s public
key and other auxiliary parameters. Since the 64-bit are not
enough to provide sufficient security against brute-force attacks
in the foreseeable future, the standard CGA uses the Hash
Extension [1] to increase the security strength above 64-bit.

The purpose of the Hash Extension [2] is to increase
artificially the cost of creating a hash without increasing its
length. The address owner computes two independent hash
values (Hash1 and Hash2) by using the public key and other
parameters. The Hash Extension (Hash2, or portion of it) value
sets an input parameter for Hash1. The combination of the two
hash values increases the computational complexity of
generating new address and the cost of brute-force attacks.
CGA generation algorithm should fulfill two conditions [1]:

1. The leftmost 64-bit of Hash1 equals the interface
identifier. The Sec, “u” and “g” bits are ignored in the
comparison.

2. The 16×Sec leftmost bits of Hash2 are equal to zero.

The security parameter (Sec) indicates the security level of
the generated address against the brute-force attacks.
Increasing Sec value by “1” adds 16-bit to the length of hash
that the attacker must break. Sec is an unsigned 3-bit integer
having a value between “0” and “7”.

The use of CGA requires the sender to send CGA
parameters to the receiver. CGA parameters are concatenated
to form a CGA parameter data structure which contains the
following parameters:

1. Modifier (128-bit): is initialized to random value.

2. Subnet Prefix (64-bit): it is set to routing prefix value
advertised by the router at the local subnet.

3. Collision Count (8-bits): is a collision counter used for
Duplicate Address Detection (DAD) to ensure the
uniqueness of the generated address.

4. Public Key (variable length): is set to the DER-
encoded public key of the address owner.

5. Extension field has variable length for future needs.

A schematic of CGA generation algorithm is shown in
Figure 1. CGA generation begins with determining the address
owner’s public key and selecting the proper Sec value. Then
continue the Hash2 computation loop until finding the Final
Modifier. Hash2 value is a hash of combination of the Modifier
and the Public Key is concatenated with zero-value of Subnet
Prefix and Collision Count. The address generator tries
different values of the Modifier until 16×Sec-leftmost-bits of
Hash2 computes to zero. Once a match is found, the loop for
Hash2 computation terminates. Afterward, the Final Modifier
value is saved and used as an input for Hash1 computation.
Hash1 value is a hash of combination of the whole CGA
parameter data structure. Then, the interface identifier (IID) is
derived from Hash1. The hash value is truncated to the
appropriate length (64-bit). The Sec value is encoded into the
three leftmost bits of the interface identifier. The 7th and 8th
bits from the left of IID are reserved for special purpose.
Finally, the Duplicated Address Detection (DAD) is done to
ensure that there is no address collision within the same subnet.

B. CGA Generation Computational Cost

CGA algorithm increases the computational cost for both
the attacker and the address generator (owner). The address
generator needs O(2

16×Sec
) brute-force search to satisfy Hash2

condition and finding the Final Modifier. The attacker needs to
do a brute-force attack against an (16×Sec+59)-bit hash value
which costs O(2

16×Sec + 59
).

Fulfilling the condition of Hash2 is the computationally
expensive part of CGA generation. The address owner may
have not powerful machine to compute CGA within certain
time. Selecting too high Sec value may cause unacceptable
delay in address generation. For Sec value greater than zero,
there is no guarantee to stop after a certain number of

SHA-1

Hash2

(112 bits)
16*Sec=0?

Increment

Modifier

No

Final

Modifier

(128 bits)

Subnet

Prefix

(64 bits)

Colision

Count

(8 bits)

Public Key

RSA

(variable)

SHA-1

 Hash1

Subnet Prefix Interface ID u g

Yes

CGA

64 bits

S e c

64 bits

leftmost 64 bits

16*Sec leftmost Hash2

bits must be zero

0

CGA

parameters

 Generate/ Obtain an RSA key pairs

 Pick random Modifier

 Select Sec value

 Set Colision Count to 0

U=g=1

Modifier

(128 bits)

0

(64 bits)

0

(8 bits)

Public Key

RSA

(variable)

0 1 2 ... 6 7

(59 bits are in used)

Compute
Intensive
part

Figure 1. CGA generation algorithm.

iterations. Therefore, it is better to force the CGA generation
algorithm to stop after a certain time.

Aura and Roe [10] explained the possibility to select the
Hash Extension parameters automatically instead of manual
configuration to get more practical algorithm. But this idea
does not standardize for CGA. Also, based on our knowledge,
there is no implementation of this idea for CGA addresses.
Therefore, we decide to modify the standard CGA and
implement it based on stopping time.

III. MODIFICATIONS TO THE STANDARD CGA

For simplicity, usability, and practical requirements, it is
better to determine Sec value in an automatic or indirect way
based on tangible factor such as time. This section discusses
the modified CGA algorithm with stopping time condition.

A. Stopping Time Condition for CGA

To guarantee that CGA generation process terminates after
a certain time, the modified CGA algorithm takes the time as
an input to determine the termination time. If this time
threshold exceeds, the CGA generation algorithm stops. The
algorithm keeps track of the best discovered value which has
the highest number of zeros found in leftmost bits of Hash2.
The extension length has to be rounded down to the nearest
multiple integer of “16” or “8” to determine the security level
for the rest of the CGA generation and verification algorithm.

It is better to set the security parameter (Sec) automatically
based on a termination time rather than configuring it by the
address generator (owner) for the following reasons:

 It is unreasonable to ask the user to understand the
details of CGA algorithm to select the proper Sec
value. But, it is possible to offer the user the possibility
to select the value if she/he knows the details of the
CGA algorithm.

 It is difficult to determine the proper Sec value,
because Sec value has an exponentially scale effect on
both the security and the computational cost.

 It depends on the time that the node has for configuring
its address and on the application requirements. In
mobile communication, the node should get its address
within a certain time to achieve the handover.

 Not all devices have equal CPU speeds. Especially,
mobile and embedded computers are likely to be much
slower than a desktop workstation. Even if the user
knows the details of the CGA algorithm, it is hard to
select the practical Sec value for specific device. If the
user has the possibility to select proper parameters, it is
good to provide her/him with, at least, rough
estimation about the expected time for each specific
Sec value based on his device specifications.

 Preconfigured Sec value may compromise the security
level. Setting the Sec to a fixed value (i.e., Sec = 0 or
1) may reduce the security of the resulting CGA over a
period of time. The increase of computing power
should be corresponding with the increment of Sec
value to maintain the same level of security against

brute-force attacks. Therefore, Setting Sec
automatically based on a termination time offers an
automatic adjust of Sec value based on the CPU speed.
Faster CPU can achieve better security level within the
same time. Accordingly, for the same termination time,
the security level increases over the time by increasing
the CPU speed. For the future devices with more
powerful CPUs, the Hash Extension increases
automatically.

The stopping time can be determined based on the
maximum time for address generation. In fact, the maximum
tolerable CGA address generation time depends on several
factors. It depends on the device computing power, the
particular application requirements, and other factors such as
how long the user is willing to wait for CGA generation.
Therefore, it is needed to select the proper termination time to
get a feasible Sec value for CGA generation. The CPU speed of
the address generator device can be used as an indication to the
approximate estimation of the required CGA generates time
[10]. In this manner, the Sec value can be selected or can be set
indirectly to match the current available CPU speed.

The Sec is treated exactly in the same way as in the
standard CGA similar that there is no time parameter in used.
The method of determining the Sec value is independent of the
mechanism for communicating it. Also, the CGA verification
process remains the same as it is in standard CGA.

B. Selection the Granularity for Hash Extension Condition

The time-based stopping condition may waste the CPU
resources because the multiple factor “16” is relatively large.
CGA generator computes multiple Hash2 values during a time
period defined by the time parameter input, and the output
value is the one which has the greatest number of zeros bits.
Since the number of zeros is expressed in 16×Sec, the most
secure value is determined by selecting Hash2 value that has
the greatest number of zeros bits rounded down to the nearest
integer multiple of “16”. Most likely the final value of Sec is
reached early on the generation process, and the rest of the
brute-force search will not find any better results (Sec + 1).

Smaller multiple factor is more suitable for TB-CGA. The
multiple factor “16” was chosen to increase the maximum
length of the Hash Extension up to 112 bits, but the benefit of
this is questionable for the current CPU speeds. Therefore, for
the TB-CGA, selecting the factor “8” instead of “16” is more
reasonable for these reasons:

 It is more useful to round down to the nearest smaller
multiple factor 8-bit instead of 16-bit to reduce the
wasting time and achieve better security level. The
chance to have “8” successive zeros is more than “16”
successive zeros, especially for short stopping time
parameter. Thus, having “8” zeros is better than round
it to Sec value “0” in case the multiple factor is “16”.

 Currently, Sec value “0” or “1” can be used in practical
application. For Sec = 2, CGA address generation
process may take several hours or days. So, having
values in between (8 zeros or 24 zeros) is better than
rounding down to the nearest integer of “16”.

 The multiply factor “8” increases the maximum length
of the Hash Extension up to 56 bits. Therefore, the
total hash length will be between 59 up to 115 bits,
which is enough for the current CPU speeds.

C. Time-Based CGA (TB-CGA) Generation Algorithm

Figure 2 shows a schematic of TB-CGA generation
algorithm. Instead of Sec value, the time parameter is used as
an input. If the time parameter has not been exceeded,
increment the Modifier and compute a new Hash2 value. After
generating each Hash2 value, the number of zero bits are
counted and compared to the number of zero bits of a previous
computed Hash2 value. During the brute-force search loop,
Hash2 that matches the largest number of zeros in its leftmost
bits is stored. Besides, the corresponding Modifier which
results to the “best” Hash2 value is stored. When the time
parameter is exceeded and the loop terminates the Modifier
value that produces the highest found Sec value will be used
for the remainder of the CGA address generation and
verification.

IV. EXPERIMENT SETUP AND IMPLEMENTATION

 We run our CGA implementation on guest Windows 7
operating system hosted by Virtualbox4.1.0 software. The
settings of VirtualBox offer the flexibility to control the CPU
execution capacity. For example, setting the execution capacity
to 50% means a single virtual CPU can use up to 50% of a
single host CPU. In our experiments, the hosted machine has
2.67 GHz CPU speed. Thus, the guest machine can use
maximum up to 2.67 GHz.

Windows 7 guest runs WinSEND Analyzer
implementation. WinSEND Analyzer is a light program for
analyzing the CGA and SEND implementation for Windows
families. It is used to analyze WinSEND implementation [11].
WinSEND Analyzer uses WinSEND main classes with some
modifications to implementTB-CGA.

WinSEND Analyzer generates CGA based on selected
parameters. WinSEND Analyzer Interface offers the flexibility
for selecting the standard CGA or the TB-CGA (see Figure 3).
Also, it offers the possibility to choose the desired CGA
parameters. The user can select the RSA key size and
determine how many times the CGA generation will be
computed. If the standard CGA is used, the user can set the
desired security level. In case the TB-CGA in use, the user sets

the CGA stopping time and the multiple factor for Hash2
condition (8 or 16). The final Sec value is the highest founded
Sec value within the stopping time period. WinSEND Analyzer
records and saves some measurements and statistics about the
CGA generation process and writes it in an output text file.
Figure 4 shows a part of WinSEND Analyzer output file which
shows the CGA data structure and some other statistical
information for TB-CGA with multiple factor “8” for stopping
time 200 Milliseconds.

V. PERFORMANCE MEASUREMENTS

A. Standard CGA Generation Time Measurements

The CGA generation time measurements are taken by
running WinSEND Analyzer on Windows 7 virtual machine
over a range of CPU speeds started from 0.5 GHz up to 2.67
GHz. We choose this range to study the feasibility of using
CGA for mobile devices. Now, the modern mobile devices
have CPU speeds around 1 GHz. Some of these devices have
Dual core 1.2 GHz. All the measurements are done for RSA
key size equal to 1024-bit. The CGA address is generated 1000
times to have sufficient samples. The average (avrg.), the
minimum (min.), and the maximum (max.) values of CGA
generation times for Sec value “0” and “1” are recorded in
Table I and Table II respectively. As it can be seen from Table
I, the standard division of CGA generation time is high due to
randomness of Hash2 and RSA key generation process. The

SHA-1

Hash2

(112 bits)

Exceed time

parameter?

Increment

Modifier

No

Modifier

(128 bits)

Subnet

Prefix

(64 bits)

Colision

Count

(8 bits)

Public Key

RSA

(variable)

SHA-1

 Hash1

Subnet Prefix Interface ID u g

Yes

CGA

64 bits

S e c

64 bits

leftmost 64 bits

8*Sec leftmost Hash2

bits must be zero

0

CGA

parameters

 Generate/ Obtain an RSA key pairs

 Pick random Modifier

 Set Time prameter

 Set Colision Count to 0

U=g=1

Modifier

(128 bits)

0

(64 bits)

0

(8 bits)

Public Key

RSA

(variable)

0 1 2 ... 6 7

(59 bits are in used)

- Store the best Hash2

- Store the Modifier

Figure 2. Time-Based CGA generation algorithm

Figure 3. TB-CGA settings parameters

CGA parameter Data Structure

============================

Final Modifier: 9e8c313519756bf4ad5515159535f674

Subnet Prefix : 2007fe5aab8c7dc0

Collision Count : 00

Public Key: d48f5137175003313c013d377b6a2eb188c7ed371158d304

73088cd090c7a954a04e0584428564fdb4a42546bef73b6b8c474785e8c0

2e45dee98eae1c746e7c95186310471954d661a3a1842dee5f480c0dbf93

3b65227028ebcf8d4ec34f81f1569620640e17c0e6ee4d27256994fdcaa0

e7426f0276769fc8a166d5c182e7010001

The best founded Sec value (8*Sec): 1

Interface ID (CGA): 33e372e64fbe1439

Key size (RSA) = 1024-bit

Hash Algorithm: SHA-1

Hash1: 52e372e64fbe143951cb21008bfeb5f9b8e09c71

Hash2: 00545451ceabf1b52634d33039ce4ff225e1ee95

The stopping time: 200 milliseconds

The total number of iteration during the stopping time: 19166

Number of iteration to find best modifier :437

Time to find the best modifier: 140 milliseconds

Figure 4. A part of WinSEND analyzer output file that shows CGA

parameter data structure and other statistical information for TB-CGA with
multiple factor “8” for 200 milliseconds stopping time.

CGA generation time highly varies between the minimum and
the maximum value.

Here, the CGA generation time is the total duration of the
whole CGA generation process. It includes: the time for
generating the RSA public/private keys, the time spent
computing a Hash2 value that matches the condition 16×Sec-
leftmost-bit of Hash2 are equal to zero, and the time for
computing the interface identifier including Hash1 calculation.
Beside the Duplicate Address Detection (DAD) check.

In Table II, the average number of tried modifiers indicates
the average number of modifier values tried so far to find the
Final Modifier in 1000 sample. Form Table II, the average
number of iterations to find the Final Modifier over the range
of CPU speeds from 0.5 to 2.67 GHz is 65388.56 iterations.
This experimental result is close to the theoretical value which
is (2

16×1
= 65536 iterations). Therefore, we can say that 1000

CGA samples are sufficient to get relatively accurate
approximation to the CGA measurements.

As expected, the average CGA generation time for Sec= 1
is greater than the average CGA generation time for Sec =0.
We found that increasing Sec value from “0” to “1” causes on
average a CGA generation time to jump by a factor 469.01
Milliseconds. Figure 5 shows the CGA generation average time
for both Sec = 0 and Sec = 1. From Figure 5, it can be seen that
CGA generation average time decreases by increasing CPU
speed, the trend curve for Sec=1 is:

TCGA(S) = 714.5 S
-0.526

 Milliseconds (1)

Where TCGA is the average generation time and S is the CPU
speed. Based on above equation, one can roughly predict the
average required time to generate CGA address for Sec = 1 for
different CPU speeds.

CGA with Sec value greater than “1” is unpractical with
current CPU speed. Sec value “2” could be used in the next
upcoming years. A test on unrepresentative set of 5 samples
which carried out on 2.67 CPU speed gives on average
5923857 Milliseconds (1 hour and 39 minutes) CGA
generation time. The average number of Hash2 computations is
1703473784 times. Still, Sec value “3” is not computationally
feasible for the current CPU speeds since Sec value increases
the CGA computation exponentially. CGA computation for
Sec vale “3” will take on average more than 12 years if the
CPU speed is 2.67 GHz.

B. Time-based CGA Generation Measurements

For TB-CGA, the algorithm searches for the largest Sec
value during the termination time. The extension length is
rounded down to the nearest multiple of 16-bit. The multiple
factor “16” is quite large and cases a big jump between the two
successive Hash Extensions. For Sec = 1, Hash2 must contains
16 zeros in the left most bits, while it is 32 zeros if Sec = 2.
This large jump wastes CPU time of the address generator
computing device because most probability the CGA
generation algorithm will find the best Sec value early, and the
rest of the brute-force search will not find any better Sec value.

Figure 6 shows the total number of founded Sec values over
a range of stopping time started from 100 Milliseconds to 1500
Milliseconds for multiple factor “16”. The experiment was

TABLE I. CGA GENERATION TIME WITH SEC = 0 FOR DIFFERENT

CPU SPEEDS.

Virtual

CPU speed

(GHz)

Sec = 0

Number of samples (1000), RSA key size 1024-bit

CGA generation time (Milliseconds)

Avrg. Min. Max. STD

0.5 251.59 30 940 119.46

1.0 168.25 40 650 74.65

1.5 137.79 40 510 68.13

2.0 101.74 10 500 63.34

2.5 97.29 10 350 50.95

2.67 93.41 3 360 50.48

Avrg. 142.68 --- --- ---

TABLE II. CGA GENERATION TIME WITH SEC = 1 FOR DIFFERENT

CPU SPEEDS.

Virtual
CPU speed

(GHz)

Sec = 1

Number of samples (1000), RSA key size 1024-bit

CGA generation time (Milliseconds) Average

number

of tried

Modifiers

Avrg. Min. Max. STD

0.5 1047.94 80 6430 802.07 66604.48

1.0 691.82 60 3060 527.44 66920.81

1.5 570.09 50 3190 446.51 63870.86

2.0 512.67 50 2780 396.88 64050.86

2.5 439.64 4 2220 388.68 67728.37

2.67 401.99 10 2160 320.2 63155.97

Avrg. 610.67 --- --- --- 65388.56

Figure 5. CGA generation average time for Sec = 0 and Sec = 1

done on a computer with 2.6 GHz. For each stopping time
value, the CGA is computed 1000 times. As you can see from
Figure 6, most of the time only Sec values “0” are found. The
percentage of founded Sec value “0” is equal to 96.25% while
it is only 3.75% for Sec value “1”, which means that most of
the time the algorithm is busy for searching for higher Sec
value than “1” but it rarely succeed. Therefore, it is better to
reduce the multiple factor of successive zeros in the leftmost of
Hash2 by using smaller multiple factor than “16”.

Figure 7 shows the number Sec values for multiple factor
“8”. Sec value “1” (which means 8 successive zeros)
dominates. It forms 80.05% of the founded Sec values. And
only 12.53 % for Sec value “0”. The algorithm successes to
find one Sec value “3” which is means 24 zeros in Hash2.
Definitely, having Sec value “1” in case of using the multiple
factor “8” is better than having Sec value “0” in case the
multiple factor “16” by rounding these “8” zeros down to
nearest multiple integer “16”. Sec value “1” in case of using
the multiple factor “8” is more secure than Sec value “0” with
multiple factor “16”. Multiple factor “16” wastes the CPU
computation without achieving better security level especially
for short stopping time or for slow CPU speeds.

VI. CONCLUSION

CGA is an IPv6 bound to owner’s public key. It provides
an authentication mechanism in a decentralized way. The
security parameter (Sec) has a great impact on the CGA
generation time and it makes CGAs computationally costly.
Fulfilling the second hash (Hash2) condition is the
computationally expensive part of CGA generation.

In this paper we presented a practical and automatic way
for selecting the Sec parameter for CGA generation algorithm.
In this modified version, the time is taken as an input and then
the Sec value is determined as an output of the brute-force
search to satisfy Hash2 condition. The security level is
determined automatically based on the computing device CPU
power available for hash generation. Faster devices are able to
find a better Sec value than slower ones for the same time. The
communication of Sec value and CGA verification process
remains the same as the standard CGA. For Time-base CGA,
we recommend the use of multiple factor “8” instead of “16” in
Hash Extension condition. The use of factor “8” reduces the
steps between the successive Sec values and consequently
reduces wasting computation to find better Sec vale.

REFERENCES

[1] T. Aura, “Cryptographically Generated Address”, RFC3972, Internet
Engineering Task Force, March 2005, http://tools.ietf.org/html/rfc3972

[2] T. Aura, “Cryptographically generated addresses (CGA)”, In
Proceedings of the 6th Information Security Conference(ISC’03),
Bristol, UK, LNCS, vol. 2851, pp. 29-43, 2003.

[3] G. O’Shea and M. Roe, “Child-proof authentication for MIPv6 (CAM)”,
ACM Computer Communications Review, vol. 31, no. 2. 2001.

[4] J. Arkko, J. Kempf, B. Zill and P. Nikander, “SEcure Neighbor
Discovery (SEND)”, RFC 3971 (Proposed Standard), Internet
Engineering Task Force, March 2005, http://tools.ietf.org/html/rfc3971.

[5] T. Narten, E. Nordmark, W. Simpson, and H. Soliman, “Neighbor
Discovery for IP version 6 (IPv6)”, RFC 4861, Internet Engineering
Task Force, September 2007, http://tools.ietf.org/html/rfc4861.

[6] S. Thomson, T. Narten and T. Jinmei, “IPv6 Stateless Address
Autoconfiguration”, RFC 4862, Internet Engineering Task Force,
September 2007, http://tools.ietf.org/html/rfc4862.

[7] P. Nikander, J. Kempf and E. Nordmark, “IPv6 Neighbor Discovery
(ND) Trust Models and Threats”, RFC 3756 (Informational), Internet
Engineering Task Force, May 2004, http://tools.ietf.org/html/rfc3756.

[8] J. Arkko, C. Vogt and W. Haddad, “Enhanced route optimization for
mobile IPv6”, RFC 4866, Internet Engineering Task Force, May 2007,
http://tools.ietf.org/html/rfc4866.

[9] T. Aura, M. Roe, “Designing the Mobile IPv6 Security Protocol”,
Annals of telecommunications, special issue on Network and
information systems security, volume 61 number 3-4, March-April 2006.

[10] T. Aura and M. Roe, “Strengthening Short Hash Values”
http://research.microsoft.com/en-us/um/people/tuomaura/misc/aura-roe-
submission.pdf.

[11] H. Rafiee, A. AlSa’deh, and Ch. Meinel, “WinSEND: Windows SEcure
Neighbor Discovery”, 4th International Conference on Security of
Information and Networks (SIN 2011), 14-19 November 2011, Sydney,
Australia, pp.: 243-246, November 2011.

Figure 6. The number and the percentage of founded Sec values over a range
of stopping time for multiple factor “16”

Figure 7. The number and the percentage of founded Sec values over a range

of stopping time for multiple factor “8”

http://tools.ietf.org/html/rfc3972
http://tools.ietf.org/html/rfc3971
http://tools.ietf.org/html/rfc4861
http://tools.ietf.org/html/rfc4862
http://tools.ietf.org/html/rfc3756
http://tools.ietf.org/html/rfc4866
http://research.microsoft.com/en-us/um/people/tuomaura/misc/aura-roe-submission.pdf
http://research.microsoft.com/en-us/um/people/tuomaura/misc/aura-roe-submission.pdf

