
Reputation Objects for Interoperable Reputation
Exchange: Implementation and Design Decisions

Rehab Alnemr
Hasso Plattner Institute

Potsdam University
Germany

rehab.alnemr@hpi.uni-potsdam.de

Christoph Meinel
Hasso Plattner Institute

Potsdam University
Germany

meinel@hpi.uni-potsdam.de

Abstract—Reputation systems aim to provide a mechanism for
establishing trust for online interactions attempting to mimic
their real-world counterparts. Reputation-based approaches de-
pend on the users local experiences and feedback to create a
soft measure for trust decision. They use various clues and
past experience to decide on taking the risk of dealing with an
entity. Reputation communities cannot exchange reputation or
reputation information following an isolated-silos approach. The
reasons for this varies from missing contexts in the reputation
representations and heterogeneity in these representations, to
technical reasons such as not being represented in an interoper-
able knowledge representation method. Developing interoperable
reputation ontologies requires a technology that can provide
means of integrating data sources and methods to relate the data
to its explicit semantics. In this paper, we describe our design
decisions in developing our reputation object (RO) ontology
using semantic web technologies. The main motivation that leads
these decision is to facilitate reputation information exchange
or reputation interoperability along with model expressivity.
Therefore, choosing the ontology language and specific APIs is
explained in relation to this motivation.

Index Terms—Reputation, Rating, Semantic Web Technologies,
Collaboration, Trust Management

I. INTRODUCTION

The population of users online is diverse and comprised
of people from different backgrounds and cultures. Online
systems have developed rating and reputation mechanisms for
the sole purpose of establishing a measure of trust between
these users and encouraging trustworthy behaviour. In current
online communities, a user’s reputation is viewed as the
collection of ratings given by users in a community (global
rating) about this user. However, how others see and perceive
this reputation varies based on their views, tastes, opinions,
backgrounds, needs, biases, and preferences, and on the con-
text of interaction. The goal of reputation mechanisms is to
help lower the risks of online interactions, thereby increasing
the robustness and efficiency of internet-based applications.
Reputation mechanisms are then used in finding experts,
selecting compatible partners or service providers, and locating
reliable recommendations and opinions. Because of this, these
mechanisms also were extended to other environments such
as Service Oriented Architecture (SOA) and cloud systems.
This can only happen if system participants collaborate and
share knowledge about their experience and ratings of the

services provided. Reputation systems sometimes provide an
incentive not only to collaborate but also to encourage con-
structive behavior. However, this open collaboration results in
a challenge of what is being shared, how it is being shared, and
the common versus the intended meaning of this information.

Virtual communities, especially online reputation commu-
nities, cannot exchange reputation or reputation information
following an isolated-silos approach. Exchanging and trans-
ferring reputation from one community to the other increases
trustworthy interactions, lowers the risk when dealing with
new users, and eliminates the cold start problem (i.e. when
registering in a new community, a user has to build up his
reputation from scratch). By taking a closer look at the actual
difficulties of reputation transfer, we can identify the crucial
points of a working reputation transfer system and finally
present a means of implementing such a framework. The first
difficulty is that each reputation system has its own way of
collecting, querying, calculating, and representing reputation.
Most of these systems do not embed context related informa-
tion within their reputation representation though most of repu-
tation transactions are sensitive to the context of the reputation
involved. A reputation without its context is meaningless and
can sometimes be misleading. Second, there is heterogeneity
in reputation representation and meaning. Third, even if it is
possible to mine users’ reputations from other domains (or to
be presented by the user himself), the computation algorithm
that computed these values remains as a black box. Thus,
processing of reputation should be dynamically changeable
by users in a declarative way, easily manageable with high
levels of automation, and reputation information should be in-
terchangeable in a well-defined machine-interpretable format.
Moreover, it is also important to reach with the collaborative
communities (or services) a state that reflects the behaviour of
their counterpart natural societies, hence making them more
intuitive and easier to trust. Reflecting this goal, reputation
transfer is a common phenomenon in our society and therefore
should be facilitated in its computerized counterparts.

Our research is mainly concerned with creating a generic
reputation representation model that is tractable enough to
represent knowledge and enhance communicability between
several domains. The first step was to understand the rep-
utation concept from different perspectives and to use this

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250519



knowledge for providing trustworthy interactions between
participants of virtual environments by studying and analysing
reputation-related literature, as well as through online surveys,
experiments, and user studies.[9][5][7] The second step was
to determine a method to define such generic representation.
Ontologies are used to enhance knowledge reuse by sharing
common understanding of a domain.[14] They also facili-
tate interoperability and intelligent processing. Therefore, we
have defined a generic ontology for representing an entity’s
reputation- called Reputation Object (RO) - given that our
definition of reputation is the notion of profiling an entity’s
performance in several domains.[8] [6] [5] The third step was
to develop our reputation object ontology using a technology
which can provide means of integrating data sources and
methods to relate data to its explicit semantics. Semantic
web technologies were developed to provide a common data
representation framework in order to facilitate the integration
of heterogeneous sources. Therefore, it was our choice of
technology for developing the ontology. Design decisions and
implementation details of the model is the focus of this paper.
The fourth step was to evaluate the generality of the ontology,
by representing an entity’s reputation in several use cases using
our ontology which is discussed in [23][20][2].

The paper is organized as following: section II defines some
relevant concepts to reputation systems and discusses problems
in current systems. Section III explains our Reputation Object
(RO) ontology and the proposed model. Section IV discusses
the design decisions for the development of the model, its
implementation and how to use it. In section V we conclude
the paper and discuss future work.

II. REPUTATION SYSTEMS

A reputation model describes all of the reputation state-
ments, events, and processes for a particular context. This
context is the relevant category for a specific reputation. In
the literature, reputation is defined as an expectation about an
entity’s behavior based on information about or observations
of its past behavior [1].

We distinguish between: reputation ontology, reputation
system, model, or framework, reputation engine or mechanism,
and reputation architecture. A reputation ontology describes
the notion of reputation and the relations to the concepts
that compose it, while a reputation system, model, or frame-
work describes the collection, distribution, and aggregation
of reputation information. A reputation computation engine
or mechanism is one of the modules in a reputation system
which shows how reputation value(s) are calculated. A repu-
tation architecture is a set of protocols that determines how
reputation values are communicated between the participants
in a reputation system. A reputation context or criterion is
defined as a characteristic, a property, or a measurement by
which an entity is judged or evaluated in a certain context.
Sometimes it is called reputation attribute or quality attribute
and in general also it is called reputation scope which defines
the general category in which a reputation was created i.e. for
e-Market, for web services. [6]

There are extensive studies about reputation systems that
discuss not only the current commercial ones but also proposed
approaches from academia. For example, studies done by
Jøsang in [13] and Sabater in [22], provide an exhaustive
view of current reputation community. Commercial appli-
cations implementing trust and reputation mechanisms use
relatively simple schemes than those proposed by research
papers. However, online reputation systems are the biggest
and most obvious examples of reputation systems. In [9]
we categorized them by characteristics as: subject of rating,
providers of the ratings (open to the public or restricted),
business model (revenue derived from an associated online
auction, advertising, or a public service) and relative reviews
(whether users ratings are relative to the attributes of the
rating). Another category is based on the common features
and properties of the online communities as: e-market places,
opinions, activity sharing, social and entertainment sites, news
sites, the web and semantic web for anyone who publish
anything in a decentralized way, and P2P networks where peer
clients share opinions about other peers.

Each System use different kind of rating/raking to evaluate
an entity’s reputation. In online reputation communities, trust
and reputation (or rating at this point) is represented numeri-
cally or graphically using bars and stars, karma, or in natural
language (i.e. good, bad). The range of possible values for a
trust level and the meaning of these values varies according
to each system. [3] E-markets use reputation to manage trust
between service providers and consumers. In this domain,
users collaboration is essential i.e. If the users refrain from
sharing their opinions and reviews of a product, the reputation
system will seize to exist. Also, if the users share less, the
reputation values will have insignificant meaning because
there is not enough information to construct a credible and
meaningful trust. The problem with these markets, however,
is not sharing as what is being shared. In their book [11],
Farmer and Price elaborated on the types of reputation system
patterns that exist in current successful online systems.

Reputation mechanisms are used in finding experts, se-
lecting compatible partners or service providers, and locating
reliable recommendations and opinions. They are used also in
other environments such as Service Oriented Architecture and
cloud systems to facilitate service or service provider selection.
Several approaches were presented to include QoS metrics
(as reputation criteria or attributes) in the service descriptions
and to help the consumer in distinguishing good services
automatically. Examples of the work done in this area can be
found in [16][18][17] and more. In [7], we explain the steps
to construct a reputation system and elaborate on their types
in [5][9][3].

A. Problems in the Current Representations and Interfaces

Vagueness of the rating is one of the problems in the online
reputation systems. It is obvious when a user is rating a book:
is the rating for the book itself (i.e. the user liked what he
read) or the quality of the book (i.e. was new and good
printing) or the service provided by Amazon for example



(i.e. offering the book, price, delivery, payment method, etc.)?
Rating should differentiate between rating the service and
rating the product. Also it should take a different form if
the domain is ”Multiple Products eMarket” (i.e. when rating
Amazon service) or ”One Provider eMarket” (i.e. when the
rating of the provider includes the quality of the product).

Such problem raised legal hassles. An interesting study
about legal challenges that face online reputation systems
was conducted in [10]. In this study, the authors explore
legal cases against reputation systems as eBay (California,
Grace vs.eBay) and Amazon (cases in UK and USA). Mostly,
the main reason for these cases is rating ambiguity. Users
misreport their ratings in a way that influences negatively
the entity being rated and does not correspond to the rating
attributes. For example, a seller of second hand books was
given bad ratings because a book was not good or too long
though the book was in a very good condition which is what
matters for rating a used-books seller. Legally, systems like
eBay holds no responsibility for users who are expressing
their taste. What is important from the legal perspective is
the distinction between ”expressions of fact” and ”opinion”.
In spite of the fact that eBay instituted limited assurance
coverage- Standard Purchase Protection Program - the problem
still exists and growing. What these systems need is specific
rating attributes categorized and semantically defined. The less
vague the rating, the fewer legal issues arise.

In general, reputation systems have also other issues some
of which are:

• Excluding the context from the reputation value because
most representation and exchange format has no embed-
ded information about the context in which reputation
was earned. Since context is not usually included in a
reputation query, it is assumed that the implicit context
is the domain of the reputation system (e.g. rate the seller
for this purchase transaction) resulting in a too general
query. In online markets, for instance, a consumer rates a
seller generally for a trading/purchase transaction, leaving
the details to be written in a natural language review.

• Difficulty in mapping between reputation values due to
difference in perceptions

• Incorrect modeling and variance in calculations and in-
terpretations because in spite of the wide variety of
computation models, most of them do not reflect the real
cognitive nature of reputation as they do not represent all
the parameters that affect it.

• No portability or interoperability of reputation informa-
tion because it is hard to exchange the knowledge when
the semantics are not considered in the calculation or the
representation of reputation. Reputation interoperability
can solve problems such as the cold start problem.

These issues explain why it’s hard to asses and exchange
reputation especially between e-markets due to the differ-
ence in perception, calculation, interpretation, but most of
all because the given reputation is an overall one that does
not reflect the related contexts in which it is earned. These

contexts can vary from the category it is earned (i.e. a selling
transaction) to the quality aspects of one transaction (i.e.
different quality criteria or attributes). [4]

III. REPUTATION OBJECT MODEL

Most of the existing work on reputation systems focuses
on improving the calculation of reputation values, prevent-
ing malicious actions, and the deployment into the business
world where reputation is mostly represented in a singular
value form. Our work focuses on how to represent reputa-
tion to reflect its real-world concept (i.e. non-general, con-
text specific, and dynamic). The argument is that in most
reputation systems the context of a reputation value is not
embedded within the given reputation information. Mostly
because it has the single value format. Since reputation
changes with time and is used within a context and every
domain has its own information sources as well as its own
requirements, the representation -not the calculation- of rep-
utation should be unified between communities in order to
facilitate knowledge exchange. In this ontology reputation
is represented as a new form of reputation value: Repu-
tation Object (RO). This object holds information on the
reputation of an entity in multiple contexts. The ontology’s
components are: a ReputationObject hasCriteria
of one or multiple instances of class Criterion or
QualityAttribute (for a service, the criterion describ-
ing service reputation is referred to as a quality attribute).
The criterion is collected using a CollectingAlgorithm
and hasValue ReputationValue. Each criterion in-
stance has a ReputationValue (which includes the
currentValue, its time stamp, and a simple list of its
previous values called historyList) that in turn has the
range of values defined in PossibleValues. It describes
the data type that the criterion can have or a specific set
of values (literals or resources URI) evaluating this criterion
(e.g. a set of integers {1, 2, 3, 4} describing 4 trust levels or
a set of Strings {′′good′′,′′ bad′′,′′ excellent′′} describing a
user opinion). Each time a criterion is being evaluated (i.e. a
new entry value for this criterion), a new currentValue is
calculated using the ComputationAlgorithm which is the
reputation computation function/engine used with this criterion
such as sum, avg, etc..

Since it is not always easy to identify intuitively what the
highest reputation value is - among the defined possible value
set -, the PossibleValues class has an orderedList
that is ordered from the relatively highest reputation value
to the lowest (e.g.{′′excellent′′,′′ good′′,′′ bad′′}). It also has
the possibility to define a comparison and ordering function;
OrderFunction to compare between values within each
criterion and to be used by the reasoning engine. A RO is
constructed either offline or during negotiation process. It’s a
generic object that changes according to the domain and the
user preference but in general it holds a profile (functionality,
quality, ratings, etc.) about an entity (service or agent) which
is collected from heterogeneous information sources.



Reputation 
Object

CriterionReputation 
Value

hasCriteria 1...* 

* 

1...* 
ha
sR
ep
uta
tio
nV
alu
es

CollectingAlgorithm

isCollectedBy 1 

* 

ComputationAlgorithm

isC
om
pu
te
dB
y * 

1 

hasValue 1 1 

* 

PossibleValues

is
Pa
rt
O
f

hasRa
nge

:is_a

Reputation

Rating

:is_a

An Entity Identifier

hasReputation1

Context

QualityAttribute
* 

1 

computes

HistoryList

"Time"
isTimeStamped

OrderedValuesList

OrderFunction

orderedBy

OWLList
Algorithm

AggregationAlgorithm

isAggregatedBy

orderO
utputs

hasHistory

hasOrderedList

0...* 

:is_a

:is_a

:i
s_
a

CriteriaList
:eq
uiv
ele
ntT
o

me
mb
erI
n

:is_a

:is_a:is_a

0,1 
1 

Fig. 1. The Reputation Object Ontology Model

The model is graphically represented in figure 1. A study
and a comparison of current reputation ontologies is explained
in [6] where we show why our ontology and model is more
suitable for reputation interoperability.

IV. MODEL DEVELOPMENT AND DESIGN DECISION

In order to realize our model, a technology which provides
a common data representation framework as well as a way
to connect concepts with their definitions is needed. Semantic
Web is developed with a main objective of facilitating data
integration, enhancing information usage by connecting it to
its definitions and context. Therefore, it was our choice of
technology for implementing the model and to provide an
integration possibility with the arising new semantic web
services to be deployed on current semantic web infrastructure.
In this section, we explain our design decisions, the languages
and the APIs chosen for the implementation, and the imple-
mentation steps. The main motivation is to enable reputation
interoperability within several domains and platforms. This
motivation will lead the design decisions in every step.

A. Why Ontologies

In [24], an ontology is defined as: ”A set of terms of
interest in a particular information domain and the relationship
among them”. Ontologies describe domain-dependent as well
as domain-independent knowledge. An Ontology defines com-
mon vocabulary for researchers who need to share information
in a domain. In [19], the authors explain the reasons why one
would want to develop an ontology. Some of them are:

• sharing common understanding of the structure of infor-
mation,

• enabling information reuse,
• making domain assumptions explicit and clear,
• separating domain knowledge from operational knowl-

edge,
• analysing the domain knowledge,
• and having the ability to integrate existing ontologies

describing portions of the large domain.
Within the same community, ontologies enable mutual un-
derstanding among peers by providing precise semantics to
concepts and relationships between these concepts. Therefore
they are the most suitable knowledge representation of an
interoperable object.

B. Choosing Ontology Language

Our goal is to have an ontology that can be of practical
value and therefore the decision of which ontology language
to use is critical. The choice was between using RDFS, and
Web Ontology Languages (OWL-Lite, OWL-DL, or OWL-
Full)1. Our requirements were to use a language that facil-
itates reasoning without being heavy in performance, that
can describe complex relations between classes including the
intersection and union relations, and that is compliant with
both RDF and OWL elements. RDFS does not offer the same
expressive capabilities of OWL, and therefore the choice was
between the three families of OWL [12]. We decided to use
OWL because it provides expressive modelling capabilities

1OWL-2: http://www.w3.org/TR/owl2-overview/



that help describe the restrictions and axioms of the model
that should be incorporated in its description. OWL is a family
of three languages: OWL-lite, OWL-DL, and OWL-full. From
the three, OWL-DL was chosen because:
• OWL-Lite is not as expressive as OWL-DL and OWL-

full. Low expressiveness prevents the developers from
describing their ontology classes using complex axioms
and restrictions. It does not support the use of quantifiers,
and hence it is not suitable for developing a knowledge-
base.

• OWL-Full is very expressive, yet in practice it does not
support reasoning over the ontology.

• OWL-DL offers much expressiveness in describing the
ontology and is also compatible with several reasoning
engines.

A number of ontology editing tools are created to facilitate
OWL ontology creation especially OWL-DL ontologies. One
of the most popular editing tools is Protégé 23 which is the
one used in developing our ontology.

C. Ontology Axioms and Knowledge-base

After choosing the language to use in describing our ontol-
ogy, the model knowledge is represented in a knowledge-base.
A knowledge-base is then used to produce new knowledge and
to prove consistency of existing knowledge. An OWL ontol-
ogy, from an abstract point of view, is a collection of axioms
i.e. elementary pieces of knowledge or statements. They are
assertions or logical statements about one or more objects in
the class hierarchy. In a Description Logic (DL) knowledge-
base, concepts and properties are separated from individuals
in a TBox and an ABox. ATBox T is the terminology box
which contains the axioms that make up the ontology. An
ABox A is the assertion box where assertions are made about
the terminologies, or in other words, facts are stated about
individuals. The knowledge-base is described as:

KB = 〈T,A〉

where T is the union of the sets of concepts and properties
along with their axioms, and A is the set of individuals in the
domain with axioms that relate only to them. The development
of such knowledge-base involves:
• The design of the TBox for the knowledge base. This

is done by: classifying entities as classes and properties,
declaring atomic and non-atomic concepts, creating the
ontology taxonomy, partitioning the taxonomy, defining
properties characteristics, and defining the axioms and
restrictions to the TBox.

• The population of the ABox with individuals. This is
done by enumerating and classifying each individual and
relating them using properties.

Terminological axioms make statements about members
of the TBox. The concepts and properties of the previously

2Protégé: http://protege.stanford.edu/
3Protégé was developed in Stanford Center for Biomedical Informatics

Research (BMIR) at Stanford University.

described reputation object model are added to the TBox by
means of declaration and definition. Also, assertions about
these concepts and properties are added in the form of axioms.
For example, the restrictions and relations axioms for the
conceptReputation Object and its cardinality are, respectively:

ReputationObject v ∃(hasCriteria(Criterion u
(∃hasReputationV alue.ReputationV alue)) (1)

ReputationObject > 1 hasCriteria.Criterion (2)

Every concept in the model is described by such axioms. We
further construct the ABox by populating the ontology with
individuals creation methods, either through the Individual
Plug-in in Protégé or via the OWLFactory API implemented
in our Java library (described in sub-section IV-E). In DL,
populating a knowledge base ABox with individuals (i.e.
adding individuals) is equivalent to adding concrete data to
the knowledge contained in the knowledge-base as following:

ComputationAlgorithm(Summation) (3)

Criterion(Delivery) (4)

CollectingAlgorithm(ReviewsEntry) (5)

ReputationObject(BobRep) (6)

Relating these individuals to the relations or properties
described in the TBox is relatively easy then:

hasCriteria(BobRep,Delivery) (7)

computedBy(Delivery, Summation) (8)

collectedBy(Delivery,ReviewsEntry) (9)

Note that in OWL-DL or DL we cannot state,
for example, relations for the delivery individual as
relates(Delivery,Summation,ReviewEntry) for
a property relates, since only binary relationships are
allowed. That is why it is separated into two relations for
the the individual Delivery. Figure 1 shows a graph of our
ontology where the edges represent relations (or properties)
between the classes and also their cardinality.

D. Choosing the Java API

As a part of developing a semantic web application, we
developed a Java library to process the ontology and to give
developers control over their domain logic implementation.
An API is needed to communicate with the developed OWL
ontology and to provide the same data model design of
the ontology to the developers. Among the semantic web
community, the most three famous Java APIs for dealing with
ontologies and ontology graphs are: Jena 4, OWL-API 5, and
Protégé-OWL API 6.

4Jena Ontology API:http://jena.sourceforge.net/ontology/
5The OWL API: http://owlapi.sourceforge.net/
6Protégé-OWL API: http://protege.stanford.edu/plugins/owl/api/



In order to develop our library, we tested some of the
functionalities of each API and compared some of the features
provided by them. All of these APIs are also integrated with
reasoners to perform semantic queries on the ontology. OWL-
API is the easiest to work with if one does not need to
access the Protégé libraries. However, Jena is more mature and
includes additional functionalities such as a database backend
and transaction support. Nevertheless, as an RDF API, Jena
represents OWL ontology in a lower-level of abstraction than
the abstraction presented in the OWL functional syntax. On the
other hand, since OWL-API does not support RDF, SPARQL7,
queries are not used. We chose Protege-OWL API over other
APIs because:
• It supports both OWL and RDF. OWL-API bypasses RDF

and provides services based on OWL only.
• Protege-OWL API can be used to edit OWL ontologies

and to access description logic reasoners. As an extension
of Protégé, the OWL Plugin benefits from the large user
community and a library of reusable components.

• It supports direct creation and modification of SWRL
rules from the API.

• It can be extended with a GUI using the integrated UI
capabilities and libraries.

• It is the most complete of all of them.
• It includes most of the Jena properties including working

with SPARQL queries.
• The mapping of OWL-Classes to Java interfaces reflects

the intention of OWL.

E. Implementation

The goal of developing a semantic web application is to
be able to use this application in an open infrastructure (such
as the Semantic Web) that is based on formal models. Web
services and software agents use these formal models - on-
tologies - as a way of understanding and communicating with
each other. Developing a semantic web application consists of
two stages: formalizing domain knowledge using a standard
ontology language, and coding the functionality and the logic
of the desired system using conventional programming lan-
guage. According to [15], these two stages correspond to the
two layers of any semantic web application where the semantic
web layer publishes the ontologies and the interfaces on the
web for discovery and service usage, and the internal layer
controls the logic and the reasoning mechanisms and can be
developed as a black box. Here, we describe our two stages of
implementation that correlate with the previously mentioned
semantic web application development.

For formalizing the domain knowledge, OWL-DL was cho-
sen for the reasons mentioned in sub-section IV-B. Others
who may decide to use this formalized ontology can define
their own domain classes by the specialization of the default
classes, and can add semantic restrictions to best define their
characteristics (e.g. define a WebServiceRO as a subclass of
RO class). For the logic and functionality layer, we use Java

7SPARQL Query Language: http://www.w3.org/TR/rdf-sparql-query/

for implementing a library that can be used and integrated in
other systems. The functionality is also exposed to software
agents and web services through a service interface. The output
is formally represented as an OWL object (i.e. the reputation
object).

The application we developed access ontology objects (i.e.
classes and properties) and the run-time objects (i.e. indi-
viduals). The structure of the package is as shown in figure
2. We developed it in such a structure to allow others the
addition of their domain logic (i.e. adding new methods)
and also to separate what has to be done from how it is
done. For example, if a programmer wants to customize the
methods used on his/her domain ontology, the new parameters
and methods are added to the programmer defined part (e.g.
interface ROInterface, class RO). The idea is that using
Java (or via Java) we are able to fill the data model with data,
the data model being the Reputation Object OWL ontology
and the data being the individuals. This corresponds to the
structure of the knowledge-base. The definition of the ontology
itself will remain constant in the TBox and the change will
be in the ABox. Changing the ontology itself is considered a
major development cycle. Another functionality to the library
is the access of the current individuals to query and update
them. The package represents the internal data structure by
which a programmer can perform actions on the ontology in an
”object-oriented” approach by means of parsing and serializing
the ontology .

Java Implementation

OWLModel

Knowledge-base

Rep. Ontology
RO Repository 
OWL file-based 

Directories

Query Endpoint OWLFactory API

Protégé-OWL 
tools

ReputationPackage

ReputationObject
(methods declarations)

RO
(extra implemented methods)

DefaultReputationObject
(Default implementation)

ROInterface
(extra methods declarations)

implements

de
fa

ul
t

pr
og

ra
m

er
 

de
fin

ed implements

extends OWLIndvidual extends RDFIndvidual

<<Interface>> 

<extends><extends>

<<Interface>> 

Fig. 2. Reputation Object Ontology Java Package

Parsing and Serializing the OWL ontology.: A parser
is a method that takes an ontology serialization format such
as RDF/XML, OWL/XML, or Turtle and converts it into
an in-memory representation of the ontology that the se-
rialization encodes. Renderers or serializers allow storage



Parser Serializer

OWL OWL

Internal RO 
Data Structure

Manipulating and Updating

Inference

Fig. 3. Parsing and serializing

of ontologies using those serializations (figure 3). Protege-
OWL API has two modes of loading and saving an ontol-
ogy: OWL Files mode (class JenaOWLModel) and OWL
Database mode (class OWLDatabaseModel). The static
methods from the ProtegeOWL class can be used to load
an existing OWL file from a stream or a URL. The calls
will return a JenaOWLModel, and the save methods in the
JenaOWLModel can be used to write the file back to disk.
We use the file mode to load the ontology (called native
repository), because it reduces the load and update time, as
the following:

1 // create the corresponding Factory
2 MyFactory fac = new MyFactory(owlModel);
3 String uri = ”http://www.owl−ontologies.com/RepOntologyModel.

owl”;
4 owlModel= ProtegeOWL.createJenaOWLModelFromURI(uri);

, where the uri can be the actual URL of the ontology or a
string with the local directory where the ontology file is stored.
We then use the returned model to map the classes (from the
core ontology file) and instances (from the instances file) to
the internal data structure. After updating the ontology, the
serializer writes it back to the file and saves it. We stored
the ontology in several serialization formats. For example,
the OWLModelWriter writes out a TripleStore in a
specified OWLModel in RDF/XML format. However, this
method takes lots of time (to create triples and a triplestore
then serialize it). Another way is to serialize the model in
an XMLAbbr. The method owlModel.save() can save an
ontology in the format FileUtils.langXMLAbbrev as:

1 owlModel.save(new File(fileName).toURI(), FileUtils.langXMLAbbrev,
errors);

or directly to the file stream:

1 owlModel.save((new File(”RepOntologyModel.owl”)).toURI() );

Once the ontology is loaded in an OWLModel it
can be queried. The API also has methods to access
resources (classes or properties) by their names (e.g.
OWLModel.getOWLObjectProperty(PropName)).
They were used to query specific properties and classes
instances.

Usage and Integration: When using the library, a de-
veloper needs to extend both the interfaces and their default

class implementation (figure 2) in the programmer part of the
package. Any instances of the default classes has to be created
via the MyFactory class. Here we show some examples on
how to use the library. To create a new individual, for example,
a new criterion:

1 //get a link to the factory
2 MyFactory fac = new MyFactory(owlModel);
3 //instantiate the individual and create its name
4 Criterion avail= (Criterion)fac.createCriterion(”Availability”);
5 ReputationValue v=(ReputationValue)fac.createReputationValue(”80%”)

;
6 ComputationAlgorithm comp=(ComputationAlgorithm)fac.

createComputationAlgorithm(”Actual−time−online/Lease−time”
);

7 // set the properties to the Criterion Individual
8 avail.addHasDescription(”Measure the availability of the web service

online”);
9 avail.addHasValue(v);

10 avail.addIsComputedBy(comp);

To simplify, we used string values in the example. A
developer who uses the library can extend the class methods
to input data from external sources and hand them over to
the create individual methods. One can add a new object
property to class Criterion that says a criterion can be
a measurement, for instance:

1 OWLObjectProperty canBeProperty = owlModel.
createOWLObjectProperty(”canBe”);

2 canBeProperty.setRange(measurement);
3 canBeProperty.setDomain(criterion);

To add a new data property:

1 OWLDatatypeProperty property = owlModel.
createOWLDatatypeProperty(”name”);

2 name.setRange(owlModel.getXSDstring());

Using Inference and Reasoning.: In order to make sure
that the implemented classes confer with the ontology and
its taxonomy, we instantiated a reasoner and queried it for
the subclasses. This ensures that the hierarchy is correct and
complete. Protégé-OWL API accesses only DIG and Pellet
reasoners and has limited interface functionalities to their
reasoning capabilities. Therefore, the reasoners in OWL-API
were used instead. In order to use OWL-API reasoners, the
ProtegePelletOWLAPIReasoner converts a Protégé-
OWL model into an OWL-API model. The reasoner has
methods to get inferred classes and to perform consistency



checks on the ontology. We can also query the reasoner to
get all the individuals of a certain class, to ask for a specific
property value, and to get the class tree.

Output Data: Once a reputation object has been re-
trieved (in case of a query request) or updated (in case
of a new entry), this object is returned as a response. If
the operation being requested is sorting entities based on
their reputation, a list of ordered ROs is returned as a
response (Collection<OWLNamedIndividual> ROs).
An example of the OWL file that represents an RO of a
seller in an e-market is shown in listing 1. In this simplified
example, a seller’s reputation is described by the evaluation of
two criteria: Review and DeliveryMethod. A seller or a
business entity can be described by the vocabulary GoodRela-
tions 8 which is an ontology for describing offerings and other
aspects of e-commerce on the Web. The WebPortal specifies
that the criterion DeliveryMethod has the reputation value
standard if only one delivery method is available or has the
value several otherwise. Review is a vocabulary for sharable
reviews and simple ratings 9. The final rating value - defined
by the ontology - can only be a numeric value and expresses
the reviewer’s value judgement on the work.

1 <gr:Reseller rdf:reference=”http://www.example.org/John#”>
2 <ro:hasReputation >
3 <ro:ReputationObject rdf:ID=’’SellerRO1’’>
4 <ro:hasCriteria>
5 <ro:Criterion
6 rdf:resource=”http://purl.org/goodrelations/v1/DeliveryMethod”>
7 <ro:hasReputationValue>standard</ro:hasReputationValue>
8 <ro:collectedBy ro:CollectingAlgorithm=’’#WebPortal’’/>
9 </ro:Criterion>

10 <ro:Criterion>
11 <review:Review>
12 <review:rating>8</review:rating>
13 </review:Review>
14 </ro:Criterion>
15 </ro:ReputationObject>
16 </ro:hasReputation >
17 </gr:Reseller>

Listing 1. Seller’s RO

V. CONCLUSION

Reputation systems depend mainly on users sharing their
experiences and opinions in a certain domain. The nature of
the information being shared depends on the user perspective.
Single format ratings tend to ignore the reasons and informa-
tion behind the ratings. These ratings are used to construct
the reputation of a service provider despite the lack of enough
semantic information for the reasons behind them. For this
and other reasons, reputation exchange between communities
is not possible.

To enable such exchange of reputation, interoperable knowl-
edge representation of reputation has to be used. We have
developed an ontology -Reputation Object Ontology (RO)- to
represent reputation in a format that is open, interoperable, and
embedding reputation knowledge. Developing interoperable

8GoodRelation Vocabulary: http://purl.org/goodrelations/
9RDF Review Vocabulary: http://hyperdata.org/xmlns/rev/hReview

reputation ontologies requires a technology that can provide
means of integrating data sources and methods to relate the
data to its explicit semantics. We used semantic web tech-
nologies to develop the ontology and to describe the model.
In this paper we discussed the steps of deciding on the design
and implementation of the model putting interoperability and
explicit knowledge representation as the motivation for each
step. We started by describing the model briefly in section
III, explaining in section why did we use ontologies for
knowledge representation. The development was partitioned
into two stages: (1) formalizing domain knowledge using a
standard ontology language. In sub-sections IV-B, IV-C we
explain why we chose OWL-DL as the ontology language
and how the knowledge-base was constructed. (2) coding
the functionality and the logic of the desired system using
conventional programming language. In subsections IV-D,
IV-E we explain why we chose Protege-OWL API over other
Java APIs in the implementation and explain main parts of the
implementation including: usage, integration, reasoning and
querying the model. This all is done relating to the main goal
of interoperability and expressive representation.

Any representation has its pros and cons, solving some
problems and opening the possibility for others. As advised
by [21], it is critical to find an equilibrium between usable
representations and expressive ones. A highly expressive repre-
sentation can add an unnecessary complexity to the reputation
aggregation algorithm while a low expressive representation
will not include sufficient information to produce meaningful
reputation. By choosing to represent reputation in an OWL-
ontology, we reach a degree of equilibrium. The representation
itself is independent from the computation algorithms used,
and the expressiveness of OWL-DL allows for usable decision-
making processes. In future work, we plan to examine whether
we can predict user buying decision based on our model.

REFERENCES

[1] Alfarez Abdul-Rahman and Stephen Hailes. Supporting trust in virtual
communities. In Proceedings of the 33rd Hawaii International Confer-
ence on System Sciences-Vol. 6. IEEE Computer Society, 2000.

[2] Olga Streibel Rehab Alnemr. Trend-based and reputation-versed per-
sonalized news network. In The 3rd Int. ACM Search and Mining User-
generated Contents (SMUC) workshop associated with CIKM, UK.,
2011.

[3] Rehab Alnemr, Justus Bross, and Christoph Meinel. Constructing a
context-aware service-oriented reputation model using attention allo-
cation points. Proceedings of the IEEE International Conference on
Service Computing, 2009.

[4] Rehab Alnemr, Stefan König, T. Eymann, and C. Meinel. Enabling
usage control through reputation objects: A discussion on e-commerce
and the internet of services environments. In Special issue of Trust
and Trust Management, Journal of Theoretical and Applied Electronic
Commerce Research, 2010.

[5] Rehab Alnemr, Stefan König, Torsten Eymann, and C. Meinel. Enabling
usage control through reputation objects: A discussion on e-commerce
and the internet of services environments. JTAER, 5(2):59–76, 2010.

[6] Rehab Alnemr and Christoph Meinel. From reputation models and
systems to reputation ontologies. In Proceedings of the 5th IFIPTM,
Springer IFIP, Copenhagen, Denmark. Springer, 2011.

[7] Rehab Alnemr and Christoph Meinel. Why rating is not enough: A
study on online reputation systems. In The Collaborative Communities
for Social Computing workshop (CCSocialComp), Florida, USA, 2011.



[8] Rehab Alnemr, Adrian Paschke, and Christoph Meinel. Enabling rep-
utation interoperability through semantic technologies. In International
Conference on Semantic Systems. ACM, 2010.

[9] Rehab Alnemr, Matthias Quasthoff, and Christoph Meinel. Taking Trust
Management to the Next Level. Handbook of Research on P2P and Grid
Systems for Service-Oriented Computing: Models, Methodologies and
Applications, 2009.

[10] J. Chandler, K. El-Khatib, M. Benyoucef, G. Bochmann, and C Adams.
Legal challenges of online reputation systems. In In L. K. R. Song,
Chapter in Trust in E-Services: Technologies, Practices and Challenges,
pages 84–111. Hershy: Idea Group Publishing, 2007.

[11] Randy Farmer and Bryce Glass. Building Web Reputation Systems.
Yahoo Press, March 2010.

[12] Matthew Horridge, Holger Knublauch, Alan Rector, Robert Stevens, and
Chris Wroe. A practical guide to building OWL ontologies using Protégé
4 and co-ode tools, 2009.

[13] Audun Jøsang, R. Ismail, and C. Boyd. A survey of trust and reputation
systems for online service provision. Decision Support Systems, pages
618–644, 2007.

[14] Vipul Kashyap, Christoph Bussler, and Matthew Moran. The Semantic
Web, Semantics for Data and Services on the Web. Springer-Verlag,
2008.

[15] Holger Knublauch. Ontology-driven software development in the context
of the semantic web: An example scenario with protege/owl. 1st Inter-
national Workshop on the Model-Driven Semantic Web (MDSW2004),
2004.

[16] Yutu Liu, Anne H. Ngu, and Liang Z. Zeng. Qos computation and

policing in dynamic web service selection. In Proceedings of the 13th
international World Wide Web conference, pages 66–73. ACM, 2004.

[17] E. Michael Maximilien. Multiagent system for dynamic web services
selection. In In Proceedings of 1st Workshop on Service-Oriented
Computing and Agent-Based Engineering, page 25?29, 2005.

[18] E. Michael Maximilien and Munindar P. Singh. An ontology for web
service ratings and reputations, 2003.

[19] Deborah L. McGuinness. Ontologies come of age. in spinning the
semantic web: Bringing the world wide web to its full potential. In
MIT Press, 2003.

[20] Adrian Paschke, Rehab Alnemr, and C. Meinel. The rule responder
distributed reputation management system for the semantic web. In
RuleML-2010 Challenge, Washington DC, USA. ACM, 2010.

[21] Jordi Sabater and Mario Paolucci. Representation and aggregation of
social evaluations in computational trust and reputation models. In
International Journal of Approximate Reasoning, 2007.

[22] Jordi Sabater and Carles Sierra. Review on computational trust and
reputation models. Artif. Intell. Rev., 24:33–60, September 2005.

[23] Maxim Schnjakin, Rehab Alnemr, and Christoph Meinel. A security
and high-availability layer for cloud storage. In The 2nd International
Workshop on Cloud Information System Engineering (Springer CISE
2010), 2010.

[24] Matthew Moran Vipul Kashyap and Christoph Bussler. The semantic
web, semantics for data and services on the web. In Springer-Verlag,
2008.


