
Cryptographically Generated Addresses (CGAs):

Possible Attacks and Proposed Mitigation

Approaches

Ahmad AlSa’deh

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

ahmad.alsadeh@hpi.uni-potsdam.de

Hosnieh Rafiee

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

hosnieh.rafiee@hpi.uni-potsdam.de

Christoph Meinel

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

christoph.meinel@hpi.uni-potsdam.de

Abstract—Cryptographically Generated Addresses (CGAs) were

mainly designed to prove address ownership and to prevent the

theft of existing IPv6 addresses by binding the owner’s public key

to the generated address. The address owner uses a

corresponding private key to prove its ownership by using signed

messages that are originated from that address. Though the CGA

approach is quite useful in providing a means of proving address

ownership in IPv6 networks, it does have some limitations and

some vulnerabilities. In this paper we will provide a security

analysis and descriptions of possible ways of attacking CGA. We

found that the CGA verification process is prone mainly to

Denial-of-Service (DoS) attacks. We also found that CGAs are

still susceptible to privacy related attacks. We will therefore

propose some extensions to the CGA standard verification

algorithm to mitigate DoS attacks and to make CGA more

privacy-conscious.

Keywords- IPv6 Security; IPv6 Privacy; Authentication of IPv6

addresses; IPv6 addresses ownership

I. INTRODUCTION

In the absence of a reliable authentication mechanism, it is
easy to fabricate forged IPv6 messages which lead to various
types of attacks. In the IPv6 network, Neighbor Discovery
Protocol (NDP) assumes that all nodes on the link trust each
other. However, this assumption does not hold for a number of
scenarios one of which is over a wireless network where
anyone can join a local link either with a minimal or with no
link layer authentication. Consequently, an attacker can
impersonate legitimate nodes by forging NDP messages in
order to generate Denial-of-Service (DoS) attacks, and instigate
theft and traffic spoofing.

Cryptographically Generated Addresses (CGAs) [1] were
first proposed in order to provide the necessary authentication
for IPv6 addresses. CGAs are IPv6 addresses where the
interface identifier (ID) portion of the addressing scheme (the
64-rightmost bits of IPv6 address) is created from a
cryptographic hash of the address owner’s public key and other
auxiliary parameters. The address owner uses a corresponding
private key to sign messages sent from that address. In this
manner the CGA technique enables the address owner to prove
address ownership by binding the public key signature to an
IPv6 address.

The self-certified feature of CGA is its main advantage. No
third party or additional security infrastructure is needed. The
CGA approach can thus be scaled up for large networks. Any
node can generate its own CGA address locally and then only
the address and the public key are needed to verify the binding
between the public key and the address. CGA also works
automatically without the need for manual user configuration.

Although CGA is a promising security technique for use
with IPv6 addresses, there are some limitations and
disadvantages. The main disadvantage of using CGA is the
computational time necessary to generate the address. Also,
CGA is not a complete security solution; it still exhibits
weaknesses and vulnerabilities to threats. For instance, CGA
cannot provide the assurance needed with respect to the
authority of the node so there is no guarantee that the CGA
address was created from the appropriate node. Attackers can
thus exploit this weakness to create a new valid address from
their own public key. Attackers can also capture Neighbor
Discovery (ND) messages and alter the sender’s CGA
parameters. When this happens the CGA verification process
on the receiver’s side will fail. Thus the communication
between a legitimate sender and receiver is prevented. It is also
possible for an attacker to conduct a Duplicate Address
Detection DoS Attack which will prevent a CGA node from
joining a link. An attacker can copy the CGA parameters and
the signature and then respond with a Neighbor Advertisement
(NA) message that contains the same security parameters. In
this way the attacker can prevent the CGA address
configuration for all nodes attached to a local link. Another
type of attack is one in which the victim’s node is kept busy
with the verification process. An attacker will inundate the
verifier with valid or invalid CGA signed messages.

In this paper we analyze the possible methods an attacker
could use to attack the standard CGA [2]. The conclusions that
we have reached are first, that the CGA verification process is
still vulnerable to DoS attacks. Therefore we proposed an
extension to the CGA verification algorithm in order to
eliminate this attack. Second, an attacker can capture and
replay the sender’s CGA parameters so that the verification
process fails on the verifier side. To combat this attack the
CGA should include a Timestamp Option in order to mitigate
this type of attack. Third, that CGA may be susceptible to

Published as: Ahmad AlSa'deh, Hosnieh Rafiee, Christoph Meinel, “Cryptographically Generated Addresses (CGAs): Possible Attacks and Proposed Mitigation
Approaches,” in Proceedings of the 12th IEEE International Conference on Computer and Information Technology (CIT 2012), IEEE Press, Chengdu, Sichuan,

China, 27-29 October 2012.

privacy related attacks. Thus we extend it to make it more
privacy-conscious by changing the addresses over time.
Changing the addresses over time makes it more difficult for
eavesdroppers to correlate when different addresses are used
for different activities corresponding to the same node.

The remainder of this paper is organized as follows: Section
II briefly summarizes the CGA algorithm, Section III analyzes
the CGA attack types and costs and suggests modifications that
can be made to the standard CGA. Section IV presents the
implementation of the proposed extensions, besides
implementing some attacks against CGA in practice. Finally,
Section V summarizes our conclusions.

II. CRYPTOGRAPHICALLY GENERATED

ADDRESSES (CGAS)

In this section we will provide a review of the works related
to the basic idea of CGA and then briefly introduce the
standard CGA generation and verification algorithms being
used. At the end of this section we will introduce a security
analysis of the standard CGA.

A. CGA Related Work

The idea of using Cryptographically Generated Addresses
first appeared in the Child-proof Authentication for MIPv6
(CAM) which was proposed by O’Shea and Roe [3]. In the
CAM approach, the hash of the owner’s public key is added to
the interface ID portion of IPv6 address. Later Nikander [4]
suggested an improvement and an extension to the CAM
approach to make it more resistant to birthday collision by
adding some “random” data to the hash input. Montenegro and
Castelluccia [5] worked on a similar proposal for Mobile IPv6.
The final model of CGA was proposed by Aura [1] and was
standardized in RFC 3972 [2].

Introduction of the Hash Extension is the main difference
between Aura’s proposal [1] and the earlier proposals. The use
of a 64-bit value does not adequately protect the address from a
security standpoint. The Hash Extension technique increases
the hash length beyond the 64-bit limit without actually

increasing its length. This technique increases both the cost of
generating a new CGA address and the cost of initiating a
brute-force attack against the address. This is realized by a
scaling factor called the Security Parameter (Sec) which
determines the level of security for each generated address.
Henceforth the term CGA will be used to refer to the
standardized CGA which appears in RFC 3972.

B. CGA Algorithm

Instead of a single hash value, the standard CGA [2]
computes two independent one-way hash values (Hash1 and
Hash2). The purpose of the second hash (Hash2), Hash
Extension, is to increase the cost of the brute-force attack
without increasing the length of the hash output value which is
written to the interface ID portion of IPv6 address.

The computational complexity of Hash2 depends on the Sec
value. The Sec is an unsigned 3-bit integer having a value
between 0 and 7 (0 being the least secure while 7 the most)
which indicates the security level of the generated address
against brute-force attacks.

The procedure for the CGA generation process is depicted in

Figure 1. The algorithm uses as input values; Public Key,

Modifier, Subnet Prefix, and Sec value. The output from the

CGA algorithm is CGA address and CGA parameters which

are comprised of the following fields:

 Modifier (128-bit): initialized to a random value.

 Subnet Prefix (64-bit): set to the routing prefix value
advertised by the router at the local subnet.

 Collision Count (8-bits): a collision counter used for
Duplicate Address Detection (DAD) to ensure the
uniqueness of the generated address.

 Public Key (variable length): set to the Distinguished
Encoding Rules (DER) encoded public key of the
address owner.

Hash

Hash2

(112 bits)
16*Sec=0?

Increment

Modifier

No

Final

Modifier

(128 bits)

Subnet

Prefix

(64 bits)

Colision

Count

(8 bits)

Public Key

RSA

(variable)

Hash

 Hash1

Subnet Prefix Interface ID u g

Yes

CGA

64 bits

S e c

64 bits

leftmost 64 bits

16*Sec leftmost Hash2

bits must be zero

0

CGA

parameters

 Generate/ Obtain an RSA key pairs

 Pick random Modifier

 Select Sec value

 Set Colision Count to 0

U=g=1

Modifier

(128 bits)

0

(64 bits)

0

(8 bits)

Public Key

RSA

(variable)

0 1 2 ... 6 7

(59 bits are in use)

Compute
Intensive
part

Figure 1. CGA Generation Algorithm.

 Extension Field: variable length field for future use.

CGA generation begins by determining the address owner’s
public key and selecting the proper Sec value to use. The
process continues with the Hash2 computation loop which
finds the Final Modifier which satisfies the condition where the
16×Sec leftmost bits of the Hash2 are equal to zero. The Hash2
value is a Secure Hash Algorithm (SHA)-1 hash value over all
CGA parameters (the Public Key and Collision Counts are
zeros). The address generator tries different values for the
Modifier until the 16×Sec-leftmost-bit of Hash2 computes to
zero. Once a match is found, the loop for the Hash2
computation terminates. At this point the Final Modifier value
is saved and used as an input for the Hash1 computation. The
Hash1 value is a hash created by the combination of all of the
CGA parameters. Then the interface ID is derived from the
Hash1 value. The hash value is truncated to the appropriate
length (64-bit). The Sec value is encoded into the three leftmost
bits of the interface ID. The 7th and 8th (u and g) bits, from the
left of interface ID, are reserved for a special purpose; they are
equal to 1 to identify a field as a CGA address. Thus, the hash
output of the CGA parameters will be distributed across the
remaining 59 bits of the interface ID. The concatenation of the
subnet prefix (64-bit leftmost bits) with the interface ID portion
forms the completed IPv6 address. The subnet prefix can be a
routable global prefix which is obtained by listening for the
local Router Advertisement (RA) or local link prefix. Finally a
DAD algorithm is executed against this tentative address to
ensure that there is no address collision within the same subnet.
If an address conflict does occur, then the Collision Count will
be incremented and the Hash1 process will be repeated until a
link-unique address is obtained or the Collision Count reaches
2 (after three collisions).

The fact is that fulfilling the condition of Hash2 is the
computationally expensive part of CGA generation. Selecting a
high Sec value may cause an unacceptable delay in address
generation. For a Sec value greater than zero there is a
probabilistic guarantee that the process will stop after a certain
number of iterations but not exactly when. Thus, the required
time to find the final Modifier that satisfies the condition where
16×Sec = 0 is very diverse for the same Sec value. We
measured the generation time of 1000 CGAs with Sec =1 and
with 1024-bit RSA key size. We found that the required time to
satisfy the Hash2 condition and to find a valid CGA varied
between 10 to 2060 milliseconds. Our CGA calculation was
performed using a computer with a 2.67 GHz CPU speed.

To assert the ownership of an address and to protect the
message, the address owner uses a corresponding private key to
sign messages sent from that address. Signing a message using
CGA requires the combined use of the CGA address, the
associated CGA parameters, the message, and the private key
that corresponds to the Public Key in the CGA parameters.
Finally, the node will send the message, the CGA parameters,
and the signature to the receiver node.

CGA verification takes as an input the IPv6 address and the
CGA parameters. If the verification succeeds, the verifier
knows that the public key belongs to that address. The verifier
can then use the Public Key to authenticate the signed messages
received from that address. According to RFC3972, the

verification process is achieved by executing the following
steps:

 Check that the Collision Count value is 0, 1 or 2, and
that the Subnet Prefix value is equal to the subnet
prefix of the address. The CGA verification fails if
either check fails.

 Concatenate the CGA parameters and execute the hash
algorithm (SHA-1) on the concatenation. The 64
leftmost bits of the result make up Hash1.

 Compare Hash1 with the interface ID of the address.
Differences in the u and g bits and in the three leftmost
bits are ignored. If the 64-bit values differ (other than
in the five ignored bits), the CGA verification fails.

 Read the security parameter (Sec) from the three
leftmost bits of the interface ID of the address.

 Concatenate the Modifier, 64+8 zero bits and the
Public Key. Execute the hash algorithm on the
concatenation. The leftmost 112 bits of the result make
up Hash2.

 Compare the 16×Sec leftmost bits of Hash2 with zero.
If any one of these is non-zero, CGA verification fails.
Otherwise, the verification succeeds. If Sec=0,
verification never fails in this step.

In addition to the CGA verification process outlined above,
the verifier uses the Public Key to verify the signature on the
message. If the signature is valid, the verifier knows that the
message was sent by the specific IPv6 address.

The CGA algorithm increases the computational cost for
both the attacker and the address generator (owner). For Sec
values greater than zero, the address generator needs, on
average, O(2

16×Sec
) iterations to complete a brute-force search

in order to satisfy the Hash2 condition and to find the Final
Modifier. This requires that the attacker performs a brute-force
search for (16×Sec+59) hash bits which costs, on average,
O(2

16×Sec + 59
). Hence, increasing the Sec value by 1 adds 16 bits

to the length of hash that the attacker must break.

III. POSSIBLE ATTACKS TO COMROMISE A CGA NODE

There are several possible ways for an attacker to
compromise a CGA node. Some of these methods are known
and are mentioned in the literature while others are not. These
methods include; discovering an alternative key pair hashing
for the victim’s node address, performing a Global Time-
Memory Trade-Off attack, and carrying out DoS attacks on the
verification process. In this section we will discuss, in more
detail, these attacks and possible approaches that may be used
to mitigate them. The proposed mitigation approaches come
solely within the CGA domain without needing to rely on other
deployments.

A. Discover an Alternative Key Pair Hashing of the Victim's

Node Address (Second Pre-image Attack)

In this case an attacker would have to find an alternate key
pair hashing of the victim’s address. The success of this attack
will rely on the security properties of the underlying hash
function, i.e., an attacker will need to break the second pre-

image resistance of that hash function. The standard CGA,
RFC 3972, proposes the use of SHA-1 which may be
vulnerable to collision attacks [6]. The RFC 4982 [7] analyzes
the implications of attacks against hash functions and updates
the CGA's specifications in support of multiple hash
algorithms. We thus recommend the use of an alternative hash
function instead of SHA-1, such as SHA-256 which has proven
to be safe against a collision attack.

The attacker will perform a second pre-image attack on a
specific address in order to match other CGA parameters with
Hash1 and Hash2. When the underlying hash function has no
weaknesses, the following equation, authored by Bos, Özen,
and Hfubaux [8], can be used to define the cost (: hash
function evaluation) of the attack:

 {

()

()

 (1)

It is clear that the strength of the CGA depends on the Sec
value. If the user uses a sufficient security level, it will be not
feasible for an attacker to carry out this attack due to the cost
involved. On the other hand, a large Sec value may lead to
significant and undesirable address generation delay. We found
that for a Sec value 2, the CGA address computation takes
several hours, on average, on a computer with 2.67 GHz CPU
speed, but it can take several days. Therefore users will
probably opt for a Sec value of 0 or 1. They will accept that
“good enough security” is better than very strong security with
a cost of waiting for days or years to achieve this level of
security. One proposed modification to the standard CGA in
order to limit the time that CGA generation may takes is
proposed by AlSa’deh et al. [9]. The authors modified the CGA
generation algorithm to take the time that the user is willing to
wait for CGA generation and determine the Sec value as an
output of Hash2 computation.

B. Find the Victim Node’s Private Key

Another possible method an attacker can use is to find the
private key for a given public key. In this case the attacker will
be able to impersonate the CGA address and forge signatures.
Here we will not talk about breaking the RSA by factoring the
public key modulus because we assume that the RSA is strong
enough as long as an appropriate key length is used. Our focus
here is on the situation where the attacker exploits an insecure,
specific implementation of the RSA. For instance, if the private
key is stored in an insecure place, an attacker may discover it.
In this case choosing a long key size will not guarantee that the
RSA scheme is safe.

We propose the generation of the key pairs automatically
inside the CGA code so that the keys are not stored in a
particular path before starting the CGA generation. After
generating the CGA, the key pairs are stored in the device’s
memory (RAM) for quick accessibility. In this manner the
node is forced to regenerate a new key pair after rebooting the
system. The recommended default key length for the RSA is
1024 bits [10]. The user will, however, be able to change the
default value of the CGA generation input parameters.

C. Global Time-Memory Trade-Off Attack

As shown by Bos et al. [8], CGAs are vulnerable to global
Time-Memory Trade-Off (TMTO) attacks. The attacker needs
to do an exhaustive search for hash collision or create a large
pre-computed database of interface IDs from the attacker’s own
public key(s) which are used to find matches for many
addresses. Therefore, they proposed a more secure version,
called CGA++, to resist this type of attack. In CGA++, the
Subnet Prefix is included in the calculation of Hash2, and then
the Modifier, Collision Count, and Subnet Prefix values are
signed by the private key corresponding to that public key. In
this way TMTO cannot be applied globally. The attacker would
have to do a brute-force search for each address prefix
separately.

However, we believe that the global Time-Memory Trade-
Off attack against CGA is not an easy attack due to the
practical problems in carrying it out. It is not easy to
impersonate a random node in a network because a large
amount of storage is required in order to carry this attack out.
For a network of the size 2

16
, the attacker would need to have

128 terabytes of storage [8]. The CGA++ enhancement also
comes with a new, additional signature. This new signature
adds new additional cost due to the number of signature
generations/verifications necessary and the size of the attached
signature to each message. CGA++, therefore, requires much
more computational time than that for the generation of a CGA
using the same Sec value. CGA++ does enhance the security of
the CGA global address against a TMTO attack but it does not
solve the problem with local link addresses because the local
link prefix is the same for all subnets. To obtain a more
compact CGA++, the work in [11] adopts the Elliptic Curve
Cryptograph (ECC) keys in CGA++ instead of standardized
RSA keys in order to minimize the size of CGA parameters and
reduce CGA generation time.

The probability of success for the attacks outlined above in
subsection III.A to C is quite small, but not zero, and the cost
of the attacks may exceed the benefits gained from them. For
instance, the attacker may need to do a brute-force search for a
long period of time using a powerful processor in order to
break the second pre-image resistance. Also, for a TMTO
attack the attacker would need a very large storage capacity.
However there are still other ways to compromise CGA nodes
as will be shown in the following subsections.

D. Denial-of-Service (DoS) Attack Against the CGA

Verification Process

An attacker can conduct DoS attacks on some particular
steps within the CGA verification process. He can perform a
DoS attack against the DAD check and the CGA parameter
verification.

1) DoS Attack Against the DAD-CGA
It is well known that the DAD algorithm defined in IPv6 is

susceptible to a DoS attack as was stated in section 4.1.3 of
RFC 3756 [12]. Each time the victim’s node performs a DAD
on a tentative address, an attacker can reply by saying that the
address is already in use. Thus the victim’s node will be unable
to configure the IP address so that it can join the network.

It was proposed that to counter this type of attack the CGA
process use signed DAD and Neighbor Advertisement (NA)
messages [2]. If the NA message sent in response to a DAD
does not fulfill the validity check, then the verification fails and
the node performing the DAD discards that response. The
verifier checks the validity of both the CGA parameters and the
signature.

However, it is still possible to conduct the DoS attack on
DAD in order to prevent a CGA node from joining a link. If the
attacker replays a NA message in order to gain a valid
signature, then this security protection will be void. In this way
the attacker does not need to do any brute-force searches
against the CGA in order to carry out this attack. Below is the
detailed description of this type of attack.

A CGA node (victim) that wants to configure a CGA will
generate a DAD and send it over the local link. When an
attacker receives this packet he can immediately copy the IP
address, CGA parameters, and signature. Then he replies with
an NA message that has the same valid signature and CGA
parameters. The victim’s node receives the reply via a secure
NA message and checks its validity as defined by the CGA
verification algorithm. If it is valid, because the signature is
valid and the reply was received in the allotted time frame, then
the victim will increment its Collision Count value, and try
another address. If the attacker replies again and the Collision
Count reaches 2, the victim stops and reports an error. Even
though this attack is limited to DoS attacks because the attacker
does not have the private key needed to sign messages, the
attacker can prevent the CGA address configuration for all new
nodes that want to attach to the local link.

There are some constraints on the attacker’s ability to carry
out the above attack. First, the attacker needs to have access to
the link resources and must be able to listen to multicast
packets sent by the victim’s node. Second, the attacker needs to
conduct the attack within a short period of time. The attacker’s
response should be fast enough, i.e., to replay the packet and
send it before the end of the DAD process. RFC 4862 [13]
specifies this delay by using a RetransTimer variable. The
default value for the RetransTimer is 1,000 milliseconds.

One possible solution would be for the host to discard the
same DAD, i.e., the DAD with the same tentative address,
CGA parameters, and signature that was sent before. The
probability that two nodes would generate the same RSA key
pair is very small [14]. Having the same public key and the
same CGA parameters is a clear indication of an attack.
Therefore, if a node receives a CGA protected message with
the same CGA parameters and signature as its own, the node
assumes this message was sent by an attacker and discards it.

In the case of receiving a DAD message from a non-CGA
(unsecured) node or from a tentative address with different
CGA parameters and signature, one heuristic solution is to trust
the first three DAD failures that occurred with a specific node
in a given link layer. After that, ignore any DAD failures and
consider the other node as a malicious node and use tentative
address in DAD process as a valid address.

The probability that two legitimate CGA nodes will
generate the same interface ID is very low. The following

formula, which was defined by Bagnulo, et al. [15], defines the
probability of having at least two nodes generate the same
interface ID:

 () (

)

 (2)

Where CGA addresses, n=2
59

 and k is the number of
interfaces in the same link. For a large subnet with one hundred
thousand (100,000) interface IDs, the Pb(2

59
,100000) <=1.7e-

08. Accordingly, this very small probability makes the heuristic
approach reasonable. Receiving three NA messages as a
response to DAD is a strong indication of malicious activity.

The CGA DAD verification process can be extended as
follows. When a DAD is detected, the node should check to see
whether or not the NA message contains the exact CGA
parameters as those used in the NS message that it sent. If the
message received as a response to the NS DAD contains the
same CGA parameters and signature as its own, then discard
this message and consider the tentative address as a valid
address and start using it. When the received response to the
NS DAD comes from a non-CGA, then the node generates
another tentative CGA. If after three consecutive attempts a
non-unique address is generated, the CGA node will consider it
as an attack and will discard the NA message from that non-
CGA node and will start using this tentative address. Figure 2
depicts a flowchart of DAD extension used to eliminate the
DoS in the CGA-DAD process.

Is DAD NA

came from CGA

node?

Send NS DAD

message to all

nodes on the link

Start DAD

process on

tentative CGA

Wait for DAD NA

message

NoYes

Is CGA options

& signature in NA is

the same as in the

sent NS?

Consider it an attack.

Discard NA Message silently

and configure the tentative

address as valid address

Yes

Increment the Collision Count

(CC)

No

Is

CC> 2?

Yes

No

Figure 2. The flowchart of a DAD extension used to eliminate a DoS attack

in the CGA-DAD

2) DoS Attack by Replaying the Sender CGA Parameters
CGA is vulnerable to a replay attack where an attacker can

sniff and store signed messages from the victim’s node and
replay them later. It is easy for an attacker to conduct a DoS
attack against a CGA-enabled host by replaying the sender’s
CGA parameter. The CGA-enabled receiver is required to
calculate Hash1in order to verify the interface ID of the sender.
This verification requires that the sender sends its CGA
parameters to the receiver. If the attacker modifies any of the
CGA parameters, Hash1 will fail. It would be easy for the
attacker to modify the Collision Count so that it exceeds 2
thereby making the verification process fail. In this way the
attacker can prevent the communication between a CGA-
enabled sender and receiver.

The use of the Timestamp Option of SEcure Neighbor
Discovery (SEND) [10] eliminates the possibility of a replay
attack. We therefore recommend the use of this option with
CGA even when CGA is deployed alone. The verifier will thus
not receive two messages with the same signature since two
successive messages from the same node will have a different
timestamp and thus different signatures. Therefore, we suggest
not using CGA as a lone option. The Timestamp option must be
used with CGA. Details describing these options can be found
in RFC 3972.

3) DoS to Kill a CGA Node
Sending a valid or invalid CGA signed message with high

frequency across the network can keep the destination node(s)
busy with the verification process. This type of DoS attack is
not specific to CGA but it can apply to any request-response
protocol. One possible solution to mitigate this attack is to add
a controller at the verifier side to determine the maximum
number of messages that the receiver can accept within a
certain period of time from a specific node. If this threshold
rate is exceeded, the receiver drops the new incoming messages
from that node.

E. CGA Privacy Implication

Due to the high computational complexity necessary for the
creation of a CGA, it is likely that once a node generates an
acceptable CGA it will continue to use it at that subnet. The
result is that nodes using CGAs are still susceptible to privacy
related attacks. Using the same address for a long time makes it
possible for an attacker to violate the users’ privacy by tracking
an individual’s device(s) online. In practice, a lot of devices
(e.g., laptops, cell phones, etc.) are associated with individual
users. Therefore, changing the CGA should be done often
enough to prevent the attacker from collecting enough
information about the node to mount an attack.

We think that the CGA privacy implication can be resolved
by setting a lifetime (the length of time the address can be
used) for a CGA address. When this time has elapsed, a new
CGA, with a new CGA parameter, should be generated. We
also propose that the key generation be included in the CGA
code. This will force the node to generate a new address when
it is rebooted or moved to a new location. When using
changeable CGA addresses, it makes no sense to select a high
security parameter (Sec). There should be a balance between

the CGA lifetime and the security level. We do not recommend
the use of a Sec value greater than 1.

To protect the users’ privacy we propose changing the CGA
addresses periodically. These temporary CGA addresses would
be used for a certain period of time (hours to days as
recommended in RFC 4941 [16]) and would then be
deprecated. Deprecated addresses can continue to be used for
connections that are already established, but they are not to be
used to initiate new connections. Once a CGA address is
deprecated, a new CGA should be used.

The lifetime of a temporary CGA address depends on
several parameters and actions. For instance, the lifetime will
be dependent on the time needed for a host to generate a new
CGA address (TG), the time needed for an attacker to break the
CGA address (TA) and a user desired setting for security and
privacy. The following lists the conditions under which a new
temporary CGA address should be generated:

 When a host joins a new subnet. In this case, the new
CGA parameters will be used to generate the new
address. A new public key will be used for calculating
both the Hash1 and Hash2 values.

 Before the lifetime for the in-use CGA address has
expired. To ensure that the CGA address is always
available and valid, new CGAs should be generated in
advance before the predecessor is deprecated. In
practice, a valid time should not be zero. We
recommend a minimum value for a lifetime to be one
hour.

 If the prefix has expired, a new CGA address will need
to be generated and it must include the newly received
prefix in the Hash1 calculation.

 When the user needs to override the default value in
order to generate a new CGA address. The CGA
implementation should offer the user the ability to
override the default values and force the CGA
algorithm to generate a new address.

The lifetime of a CGA address (Tl) should be safe enough
so that the attacker is not able to impersonate the other nodes’
addresses. We recommend that TA be at least nTl (where n is an
integer) in order to have a safe margin. Clearly, the speed of
hash function computation depends on the CPU speed of the
computing device. Reading the CPU speed by using the CGA
code makes it possible to determine whether or not the selected
lifetime is suitable. On the other hand, the Tl time should be
greater than the time required for the node to generate a CGA
address. It is not feasible to invest the time and resources of the
computing device to create an address and then, after a very
short period of time, deprecate this address. We recommend
that Tl be greater than mTG (where m is an integer). Therefore,
Tl can be described by the following equation:

 (3)

Where m and n are integers

IV. EVALUATION AND IMPLEMENTATION

According to RFC 4861 [17], the maximum time a node
holds an IP address of neighboring nodes in its neighbor cache
is 30 seconds. This time is defined by a constant called
REACHABLE_TIME. Based on REACHABLE_TIME and
the CGA message verification time (TVerification), the attacker can
determine the number of ND messages (NND) necessary for the
generation of a DoS attack against the CGA verification
process. Formula 4 calculates the required number of packets
for the generation of this DoS attack.

 (4)

To carry out this attack against the CGA verification

process, we implemented a small program that calls NA

generation and verification functions and then writes the

average time to execute these functions to a file. Table I shows

the average (Avg.), minimum (Min.), and maximum (Max.)

times, in milliseconds, required for NA packet generation and

for the verification process of a NA message. We obtained this

data by running the NA packet generation 100 times.

TABLE I. NA GENERATIONAND VERIFICATION FOR 100 SAMPLES

NA generation time

(milliseconds)

NA verification time

(milliseconds)

Avg. Min. Max. Avg.

51.35 5 221 12.5

By referring to formula 4 and Table I, one can see that the

attacker needs to generate a minimum of 2400 NA messages
with different CGA values before he starts sending them over
the network in sequential order within an infinite loop. The
attacker can do this before starting his DoS attack against the
verification process on the victim node. This prevents the
victim node from detecting old NA messages and thus for each
message a new verification process would be started. The
victim node first checks whether or not that address exists in its
neighbor cache. If the address does not exist, the victim node
starts the verification process to check whether or not the node
is authorized for that address. Then, if the verification is
successful, it adds that IP address to its neighbor cache. Based
on our experimental results, the victim node CPU is kept busy
processing the attacker’s packet and, then, finally, the victim’s
buffer will overflow making it impossible to process more
packets.

We evaluated the aforementioned attack in a test scenario
on a computer with three Virtual Machines (VMs) running
windows 7 as a guest Operating System (OS). All VMs are in
the same local network and have 2 GB RAM with a 2.6 GHz
CPU. All the VMs use the default values of the CGA
parameters, i.e., RSA key size 1024 and Sec value 1. VM1
plays the role of the attacker. It runs our small application that
generates different CGA values and sends NA messages in
order to execute DoS attacks against the CGA verification
process on the victim node. VM2 runs a simulated router that
can send RA messages. VM3 is the victim node.

In our tests we extended the standard CGA to mitigate DoS
and privacy-related attacks. We modified the CGA function of
our WinSEND implementation [18]. WinSEND is a user space
SEND implementation for the Windows family of software. It
has all the functionality of SEND and can be easily installed on
systems. We modified the CGA part and disabled the other
SEND options in WinSEND in order to focus on CGA attacks.

The modified version of WinSEND uses the parameters

necessary to generate a temporary CGA address as the default.

The default value for the minimum valid lifetime is up to one

day, the public key size is 1024-bit, and the default value for

Sec is 1. The user can override these parameters because such

default values may not always fits with the users requirements.

V. CONCLUSION

Cryptographically Generated Addresses (CGAs), as defined
in RFC 3972, offer a means of authenticating the identity of
communication nodes in a network. This is accomplished by
finding the relationship between the addresses and public keys.
In CGA, the interface ID is a cryptographic one-way hash of
the node’s public key and other parameters.

In this study we have analyzed the security of and threats to
the standard CGA. Several types of attacks and their
countermeasures are explained. We found that CGAs are still
vulnerable to some types of attack, such as DoS and replay
attacks. We thus proposed extensions to RFC 3972 in order to
eliminate the standard CGA’s vulnerability to the kinds of
attacks that we uncovered. Even though DoS attacks against
CGA were known there were no countermeasures proposed by
other researchers. We suggest the use of extensions and
enhancements to the CGA verification process in order to
defeat the DoS attack against the DAD algorithm. We also
propose the use of the Timestamp Option within CGA when it
is run alone and not as a part of SEND. CGA may also be
susceptible to privacy related attacks. Specifying a lifetime for
a CGA address can resolve this privacy issue. However, this
approach definitely involves tradeoffs between privacy and
security, but it is a very viable solution. The new extensions
can easily be added to the original CGA without affecting its
performance or its security level. We will write these
extensions as an update to RFC 3972.

REFERENCES

[1] T. Aura, “Cryptographically Generated Addresses (CGA),” in

Information Security, vol. 2851, C. Boyd and W. Mao, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 29–43.

[2] T. Aura, “Cryptographically Generated Addresses (CGA),” RFC 3972,
IETF, Mar-2005. [Online]. Available: http://tools.ietf.org/html/rfc3972.

[3] G. O’Shea and M. Roe, “Child-proof authentication for MIPv6 (CAM),”
SIGCOMM Comput. Commun. Rev., vol. 31, no. 2, pp. 4–8, Apr. 2001.

[4] P. Nikander, “Denial of Service, Address Ownership, and Early
Authentication in the IPv6 World,” in Security Protocols, vol. 2467, B.
Christianson, J. Malcolm, B. Crispo, and M. Roe, Eds. Springer Berlin /
Heidelberg, 2002, pp. 22–26.

[5] G. Montenegro and C. Castelluccia, “Statistically Unique and
Cryptographically Verifiable (SUCV) Identifiers and Addresses,” in In
Proceedings of the 9th Annual Network and Distributed System Security
Symposium (NDSS), 2002.

[6] X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in the full SHA-1,”
in Proceedings of the 25th annual international conference on Advances
in Cryptology, Berlin, Heidelberg, 2005, pp. 17–36.

[7] M. Bagnulo and J. Arkko, “Support for Multiple Hash Algorithms in
Cryptographically Generated Addresses (CGAs),” IETF, RFC 4982, Jul-
2007. [Online]. Available: http://tools.ietf.org/html/rfc4982.

[8] J. W. Bos, O. Özen, and J.-P. Hubaux, “Analysis and Optimization of
Cryptographically Generated Addresses,” in Proceedings of the 12th
International Conference on Information Security, Berlin, Heidelberg,
2009, pp. 17–32.

[9] A. Alsa’deh, H. Rafiee, and C. Meinel, “Stopping time condition for
practical IPv6 Cryptographically Generated Addresses,” in 2012
International Conference on Information Networking (ICOIN), 2012, pp.
257 –262.

[10] J. Arkko, J. Kempf, B. Zill, and P. Nikander, “SEcure Neighbor
Discovery (SEND),” IETF, RFC 3971, Mar-2005. [Online]. Available:
http://tools.ietf.org/html/rfc3971.

[11] A. AlSa’deh, F. Cheng, and C. Meinel, “CS-CGA: Compact and more
Secure CGA,” in 17th IEEE International Conference on Networks
(ICON), 2011, pp. 299 –304.

[12] P. Nikander, J. Kempf, and E. Nordmark, “IPv6 Neighbor Discovery
(ND) Trust Models and Threats,” IETF, RFC 3756, May-2004. [Online].
Available: http://tools.ietf.org/html/rfc3756.

[13] S. Thomson, T. Narten, and T. Jinmei, “IPv6 Stateless Address
Autoconfiguration.” IETF, RFC 4862, Sep-2007 [Online]. Available:
http://tools.ietf.org/html/rfc4862.

[14] A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and C.
Wachter, “Ron was wrong, Whit is right,” . IACR Cryptology ePrint
Archive 2012: 64, 2012.

[15] M. Bagnulo, I. Soto, A. Azcorra, and A. Garcia-Martinez, “Random
generation of interface identifiers,” IETF, Jan-2002. [Online]. Available:
http://tools.ietf.org/html/draft-soto-mobileip-random-iids-00.

[16] T. Narten, R. Draves, and S. Krishnan, “Privacy Extensions for Stateless
Address Autoconfiguration in IPv6,” IETF, RFC 4941. [Online].
Available: http://tools.ietf.org/html/rfc4941.

[17] T. Narten, E. Nordmark, W. Simpson, and H. Soliman, “Neighbor
Discovery for IP version 6 (IPv6),” IETF, RFC 4861, Sep. 2007.
[Online]. Available: http://tools.ietf.org/html/rfc4861.

[18] H. Rafiee, A. AlSa’deh, and Ch. Meinel, “WinSEND: Windows SEcure
Neighbor Discovery”, 4th International Conference on Security of
Information and Networks (SIN 2011), 14-19 November 2011, Sydney,
Australia, pp.: 243-246, November 2011.

