
IPv6 Stateless Address Autoconfiguration:
Balancing Between Security, Privacy and

Usability

Ahmad AlSa’deh, Hosnieh Rafiee, and Christoph Meinel

Hasso-Plattner-Institute at University of Potsdam,
Potsdam, Germany

{ahmad.alsadeh,hosnieh.rafiee,christoph.meinel}@hpi.uni-potsdam.de

Abstract. Included in the IPv6 suite is a method for devices to auto-
matically configure their own addresses in a secure manner. This tech-
nique is called Cryptographically Generated Addresses (CGAs). CGA
provides the ownership proof necessary for an IPv6 address without re-
lying on any trust authority. However, the CGAs computation is very
high, especially for a high security level defined by the security pa-
rameter (Sec). Therefore, the high cost of address generation may keep
hosts that use a high Sec values from changing their addresses on a
frequent basis. This results in hosts still being susceptible to privacy re-
lated attacks. This paper proposes modifications to the standard CGA
to make it more applicable security approach while protecting user pri-
vacy. We make CGA more privacy-conscious by changing addresses over
time which protects users from being tracked. We propose to reduce the
CGA granularity of the security level from 16 to 8. We believe that an
8 granularity is more feasible for use in most applications and scenarios.
These extensions to the standard CGA are implemented and evaluated.

Keywords: IPv6 Security, IPv6 Address Autoconfiguration, Users’ Pri-
vacy

1 Introduction

IPv6 comes with many enhancements to IPv4. One major enhancement is the
stateless autoconfiguration feature, which allows a node to self-determine its own
address without the need of a Dynamic Host Configuration Protocol (DHCP)
server. The autoconfiguration feature enables nodes to directly connect to the
network. The host uses the information advertised by the router and its interface
identifier (IID) information to construct its address.

The most well-known way of setting the IID is based on Neighbor Discovery
(ND) [1] and Stateless Address Autoconfiguration (SLAAC) [2]. SLAAC embeds
a network devices Ethernet Media Access Control (MAC) address into an IPv6
address. Since every MAC address is unique, IPv6 could allow devices to be
globally uniquely identified. Unfortunately this uniqueness property can allow
for the tracking of an individuals device thus violating the users privacy. In

ahmad.al-sadeh
Typewritten Text
Published as: A. Alsa'deh, H. Rafiee and C. Meinel. "IPv6 Stateless Address Autoconfiguration: Balancing Between Security, Privacy and Usability". 5th International Symposium on Foundations & Practice of Security (FPS). October 25 — 26, 2012 Montreal, QC, Canada.



2 Ahmad AlSa’deh, Hosnieh Rafiee, and Christoph Meinel

practice, a lot of devices (e.g., laptops, cell phones, etc.) are associated with
individual users.

IPv6 privacy extensions [3] help to protect users from being tracked. This
technique is used to assign temporary IPv6 address values that change over time.
Changing the addresses over time makes it more difficult for eavesdroppers to
track nodes as they roam between networks. It is also harder to make a correla-
tion between addresses when different addresses are used for different activities
corresponding to the same node. Although the privacy extensions protect the
users’ privacy, they cannot prevent attacks related to IP spoofing.

Besides dealing with the privacy issues, ND and SLAAC are also directed
at malicious operators. RFC 3756 [4] describes possible attacks against ND.
The SEcure Neighbor Discovery (SEND) [5] was developed to counteract the
vulnerabilities in ND and SLAAC.

SEND is mainly dependent on Cryptographically Generated Addresses (CGAs)
[6]. CGA is a technique that offers the authentication of IPv6 addresses without
the need of a third party or additional security infrastructure. In CGA addresses,
the IIDs are generated by one-way hashing of the nodes public key and other
auxiliary parameters such as Modifier, Subnet Prefix and Collision Count. Thus
the IPv6 node address is bound to its public key.

The high computational cost is the main disadvantage for using CGA. It
is likely that once a host generates an acceptable CGA, it will continue to use
this address. This results in hosts using CGAs still being susceptible to privacy
related attacks. It is therefore important to find a way to balance between secu-
rity, privacy and usability issues of CGA before the wide deployment of IPv6 is
undertaken.

IPv6 privacy extensions provide the privacy protection necessary for nodes
in IPv6 networks but it cannot secure the addresses. While the CGA can prevent
address theft related attacks, it is computationally heavy and might be vulner-
able to privacy related attacks. Therefore, it is important to find an in between
approach which offers security and protection of the users’ privacy.

In this paper we define a mechanism that eliminates the security and privacy
concerns in IPv6 SLAAC. To protect the users’ privacy, we present a modified
CGA implementation that integrates the privacy extensions approach into CGA.
In this way, CGA will prevent IPv6 address spoofing related attacks while chang-
ing addresses over time will protect the users’ privacy. We also propose to reduce
the security level CGA granularity from 16 to 8, to better increase the chance
of having a better security level (Sec) and avoiding the large step between the
successive Sec values. We also modify the CGA implementation to allow for the
generation of the public key pair on-the-fly to increase the randomness of CGA
addresses and to enhance the users’ privacy protection.

The paper is organized as follows. In Section 2, we briefly introduce the IPv6
Neighbor Discovery Protocol (NDP) and discuss its security and the privacy
implications. In Section 3, we discuss the related work to solve the NDP privacy
and security issues. In Section 4, we provide the details of the modifications we
propose for CGA to achieve the security and privacy in feasible way. In section



CGA: Balancing Between Security, Privacy and Usability 3

5, we evaluate the implementation and usage of the modified CGA and discus
the compatibility concerns and deployment limitations. In Section 6, we present
our conclusions.

2 Neighbor Discovery Protocol (NDP)

ND for IPv6 [1] and IPv6 SLAAC [2] together are referred to as NDP. NDP is
one of the main protocols in the IPv6 suite. It is heavily used for several critical
functions, such as discovering other existing nodes on the same link, determining
others link layer addresses, detecting duplicate addresses, finding routers and
maintaining reachability information about paths to active neighbors.

2.1 Stateless Address Autoconfiguration (SLAAC)

In IPv6 SLAAC, the node creates the rightmost 64 bits (IID), which identifies
an individual node within a local network. The IID is often configured from the
Extended Unique Identifier (EUI-64) that is generated based on the interface
hardware identifier - usually the MAC address of the network card. Afterwards,
the node combines the subnet prefix with the IID to form a complete 128 bits
IPv6 address. The subnet prefix can be the reserved local link prefix used to
generate local link addresses or the prefix which is advertised by the router
through the Router Advertisement (RA) message. Finally, the Duplicate Address
Detection (DAD) algorithm is run by the node to ensure that there is no address
conflict on the same link. The IID includes two bits which are reserved by the
IPv6 addressing architecture for special purpose. The 7th bit from the left in
the 64-bit IID is the Universal/Local bit (u bit). The 8th bit from the left is the
Individual/Group (g bit).

2.2 SLAAC Privacy Implications

IPv6 SLAAC leads to serious privacy implications because IPv6 address may
reveal sufficient information to identify the hardware and track the individual.
Generating an IID based on the MAC address results in a static IID. This IID
will remain the same same in all networks the node contacts. This means that
the host MAC address is exposed to the Internet because any website a user
visits will log his IP. Consequently, an attacker can use data mining techniques
to correlate the users activity based on the IID. A more worrying case concerns
mobile devices (e.g., cell phones, laptops, PDAs, etc.) because most of these
devices are associated with individual users. An attacker can use the IID to
track the movement and the usage of a particular device. Once the location
and the identity of the user are determined, an attacker can target the user for
identity theft or other related crimes [7].



4 Ahmad AlSa’deh, Hosnieh Rafiee, and Christoph Meinel

2.3 NDP Vulnerabilities

It is easy to perform attacks against NDP because it has no authentication
mechanism. For instance, it is difficult for a node to distinguish between a fake
and the authorized routers’ advertisements. The newly connected node cannot
validate the routers before having an IP address. Thus, a malicious node can
send a fake RA to perform Denial-of-Service (DoS) or Man-in-the-Middle (MitM)
attacks and effectively receive, drop, or replay the packets. An attacker can also
generate DoS on DAD to prevent a node from obtaining a network address. A
malicious node may block the legitimate node from getting a new IPv6 address
by always responding to every DAD attempt with the spoofed message that “I
have this address”. The victim would thus find out that every IPv6 address that
it tried to use was being used by other nodes. It would therefore be unable to
obtain an IP address to access the network. RFC 3756 [4] describes the possible
attacks against NDP.

3 Approaches to Mitigate NDP Privacy and Security
Implications

3.1 Privacy Extensions for SLAAC in IPv6

IPv6 privacy extensions [3] describe a technique for assigning temporary IPv6
addresses that change over time. Changing the addresses over time makes it
more difficult for eavesdroppers and other information collectors to correlate
IP address with host (user) when different addresses used for different activity
correspond to the same host. The random IID is generated via a hash function
using a quantity which forces randomization of the IID. A node can use different
IIDs with different prefixes to have a set of global addresses that cannot be easily
linked to each other. The temporary address would be used for a certain period
of time and then would be deprecated.

Although the privacy extensions can protect a users’ privacy it cannot pre-
vent IP spoofing related attacks. The privacy extensions have no authentication
mechanism with which to enable the receiver to verify the identity of the sender.
Therefore, an attacker can usurp other users’ addresses to carry out a wide vari-
ety of attacks. Fortunately another approach which is called CGA [6] can provide
the authentication needed to prevent address theft in the IPv6 environment.

3.2 Cryptographically Generated Addresses (CGAs)

CGA Generation Algorithm. In CGA, the IID portion of IPv6 address is
created from a cryptographic hash of the address owner’s public key and other
auxiliary parameters - Modifier, Collision Count and Subnet Prefix. The address
owner computes two hash values (Hash1 and Hash2). The combination of the two
hash values increases the computational complexity for the attacker to do the
brute-force search attack. Since the 64-bit are not enough to provide sufficient
security against brute-force attacks in the foreseeable future, the standard CGA



CGA: Balancing Between Security, Privacy and Usability 5

uses the Hash Extension (Hash2) to increase the security strength above 64-
bit. The computational complexity of Hash2 depends on the Sec value. Sec is
an unsigned 3-bit integer having a value between 0 and 7 which indicates the
security level of the generated address.

Each CGA is associated with a CGA parameters data structure, which con-
tains the following fields:

– Modifier (128 bits): it is initialized to a random value.
– Subnet Prefix (64 bits): it is set to the routing prefix value advertised by the

router at the local subnet.
– Collision Count (8 bits): it is the result of a collision counter used for DAD

algorithm to ensure the uniqueness of the generated address.
– Public Key (variable length): it is set to the DER-encoded public key of the

address owner.
– Extension Field has a variable length for future needs.

Fig. 1 shows a schematic of the CGA generation algorithm. CGA generation
begins with determining the address owner’s public key and selecting the proper
Sec value. The Hash2 computation loop then continues until finding the final
Modifier. The Hash2 value is a hash of the combination of the Modifier and the
Public Key which are concatenated with a zero-value for the Subnet Prefix and
the Collision Count. The address generator tries different values of the Modifier
until 16×Sec-leftmost bits of Hash2 become zero. Once a match is found, the
loop for the Hash2 computation terminates. Then the final Modifier value is
saved and used as an input for the Hash1 computation. The Hash1 value is a
hash of the combination of the whole CGA parameters. The IID is then derived
from Hash1. The Sec value is encoded into the three leftmost bits of the IID.
Finally, the DAD algorithm is run by the client to ensure that the address is
unique within the same subnet. If an address collision occurs, increment the
Collision Count and compute Hash1 again to get the IID. However, after three
collisions, CGA algorithm stops and reports an error.

To assert the ownership of the address and to protect the message, the address
owner uses the private key that corresponds to the Public Key in the CGA
parameters to sign messages sent from that address. Finally, the node will send
the message, the CGA parameters, and the signature.

CGA verification takes as input an IPv6 address and CGA parameters. If the
verification succeeds, the verifier knows that the public key belongs to that ad-
dress. Then, the verifier uses the public key to authenticate the signed messages
from the address owner.

The CGA algorithm increases the computational cost for both the attacker
and the address generator (owner). The address generator needs O(216×Sec)
brute-force search to satisfy the Hash2 condition and for finding the final Modi-
fier. The attacker needs to do a brute-force attack against an(16×Sec + 59)-bit
hash value which costs O(216×Sec+59). Fulfilling the condition of Hash2 is the
computationally expensive part of the CGA generation. Selecting a high Sec
value may cause unacceptable delay in address generation. Even there is a prob-
abilistic guarantee that the CGA address generation will stop after a certain



6 Ahmad AlSa’deh, Hosnieh Rafiee, and Christoph Meinel

Fig. 1. CGA Generation Algorithm

number of iterations, but it is impossible to tell exactly how long it will take for
the CGA generation when Sec is not zero.

CGA Privacy Concerns. With CGA, the Modifier is used to enhance the
privacy by adding randomness to the address. Changing the Modifier over time
leads to different IIDs. Therefore, CGA can provide IPv6 addresses with the
privacy they need.

However, there are two apparent limitations to this privacy protection. First,
hosts that use a high Sec value may choose not to change their addresses fre-
quently. Due to the high computational complexity of generating Hash2, it is
likely that once a host generates an acceptable CGA it will continue to use this
fixed IID in multiple activities thus reducing its need for frequent regeneration -
at least for that subnet. The result is that hosts using CGAs are still susceptible
to privacy related attacks. Second, the Public Key of address owner is attached
with message that is sent to the receiver. This means that the node can still be
identified by its public key.

Therefore, the CGA has a privacy implication (especially for high Sec value)
and the privacy extensions approach is vulnerable to the address spoofing related
attacks. In the next section we will integrate the two approaches in a balanced
way to attain both the security and the privacy in a usable method.

4 Modifications to Standard CGA

We propose three main modifications to the standard CGA process to attain
the users’ privacy in a practical manner. First, we modify the CGA to have a
lifetime that indicates how long the address is bound to an interface. Second,
we reduce the granularity of CGA security levels to get more practical security



CGA: Balancing Between Security, Privacy and Usability 7

levels. Third, we generate the keys, on-the-fly, using CGA code to ensure more
security and privacy for the users of CGA addresses.

4.1 Setting a Lifetime for Temporary CGA Addresses

We propose to change the CGA addresses periodically to protect the users pri-
vacy. Each CGA address has an associated lifetime that indicates how long the
address is bound to an interface. Once the lifetime expires, the CGA address is
deprecated. While a CGA address is in a deprecated state, its use is discour-
aged, but not strictly forbidden. New communication (e.g., the opening of a new
TCP connection) should use a new CGA address when possible. A deprecated
address should be used only by applications that have been using it and would
have difficulty switching to another address without a service disruption. When
the lifetime expires and the address is not used by an opened connection, the
CGA address is removed from the network interface by the kernel and no longer
used.

The lifetime of a temporary CGA address depends on several parameters and
actions. For instance, the lifetime should depend on the time needed for a host to
generate a new CGA address, the time needed for an attacker to break the CGA
address and user desired setting for security and privacy. The following lists the
conditions under which a new temporary CGA address should be generated:

– When a host joins new subnet. In this case, the new CGA parameters will
be used to generate the new address. A new public key will be used for
calculating both the Hash1 and Hash2 values. In the standard CGA it is not
necessary to use new CGA when the node moves to new subnet.

– Before the lifetime for the in-use CGA address has expired. To ensure that
the CGA address is always available and valid, new CGAs should be regen-
erated in advance before the predecessor will be deprecated. In practice, a
valid lifetime should not be zero. Using the standard privacy extensions, the
default interval is 24 hours; however, we recommend a minimum lifetime of
one hour.

– When the subnet prefix lifetime has expired. A new CGA address will then
need to be regenerated. It must include the newly received prefix used in
calculating Hash1.

– When the user needs to override the default value of the lifetime in order
to generate a new CGA address. The CGA implementation should offer the
user the ability to override the current lifetime values and force the CGA
algorithm to generate a new address.

Determining the proper lifetime for a CGA address depends on the privacy
and security level constraints. For the security level analysis we refer to the
security model which has been proposed by Bos et al. [8] for studying the security
and efficiency of the CGA. The necessary notation used in the CGA time analysis
is defined as follows:

– TG: The average time needed for a node to generate a CGA.



8 Ahmad AlSa’deh, Hosnieh Rafiee, and Christoph Meinel

– TA: The average time needed for an attacker to impersonate an address.
– T1: The time needed to compute Hash1.
– T2: The time needed to compute Hash2.
– b: The number of available bits in the address, which is the truncated output

of Hash1 (IID).
– g : The granularity of the security level in CGA.
– s: The number of bits needed to satisfy the Hash2 condition (s=g×Sec),

which is the truncated output of Hash2.

The address generator needs on average (2s×T2) in order to fulfill the Hash2
condition, plus T1 to generate the IID from Hash1. Therefore, the cost of address
generation, TG, is:

TG = (2g×Sec × T2) + T1 (1)

An attacker has two ways to impersonate a node - by satisfying the con-
straints on Hash1 and then the conditions on Hash2 or vice versa. Beginning
with Hash1, the attacker must first perform the attack on Hash1, which takes
(2b × T1) hash function evaluations. Once fulfilled, the conditions on Hash2 for
the generated Modifier should be satisfied, which takes 2s hash function eval-
uations. Thus, the total time for impersonation when beginning with Hash1
(H1)becomesTA : H1 = (2b × T1 + T2)2s.

When the attacker starts from Hash2, the conditions on Hash2 are met at a
cost of (2s × T2) hash function evaluations. Next, Hash1 is verified if it matches
the target address. Hash1 verification costs 2b. Therefore, the total cost when
beginning with Hash2 (H2)becomesTA : H2 = (2s × T2 + T1)2b.

The attacker can choose between the two ways to minimize his attack cost.
Hence, the time for impersonation an address (TA) is:

TA = min
{

(259 × T1 + T2)2g×Sec, (2g×Sec × T2 + T1)259
}

(2)

The resistance of CGA against impersonation is mainly controlled by increas-
ing the number of bits on the Hash2 condition s=g×Sec. For the standard CGA,
with g=16 and Sec value between 0 and 7, the number of operations required
for impersonation on a specific node is:

TA =


259 × T1 if Sec = 0,

(259 × T1 + T2)216×Sec if 1 ≤ Sec ≤ 3,

(216×Sec × T2 + T1)259 if 4 ≤ Sec ≤ 7,

(3)

In next subsection, we propose to reduce the granularity of CGA for practi-
cal and usability reasons. When the granularity, g, is ≤ 8 the cost of address
generation TG becomes:

TG =
{

(28×Sec × T2) + T1 if 0 ≤ Sec ≤ 7 (4)

And the number of operations required for the impersonation of a specific
node becomes:



CGA: Balancing Between Security, Privacy and Usability 9

TA =

{
259 × T1 if Sec = 0,

(259 × T1 + T2)28×Sec if 1 ≤ Sec ≤ 7.
(5)

We can surmise from equation 5, that it would be easier for the attacker to
start by calculating Hash1 then fulfilling the Hash2 condition. Here, the assump-
tion is that the hash function has no known weaknesses.

The lifetime of a CGA address (Tl) should be safe enough so the attacker is
not able to impersonate the other nodes’ addresses. We recommend that TA be
at least nTl (where n is an integer) in order to have a safe margin. Clearly, the
speed of hash function computation depends on the CPU speed of the computing
device. Reading the CPU speed by using the CGA code makes it possible to
determine whether or not the selected lifetime is suitable. On the other hand,
the Tl time should be greater than the time required for the node to generate a
CGA address. It is not feasible to invest the time and resources of the computing
device to create an address and then, after a very short period of time, deprecate
this address. We recommend that Tl be greater than mTG (where m is an
integer). Therefore, Tl can be described by the following equation:

mTG ≤ Tl ≤
TA

n
(6)

Where m and n are integers.

4.2 Reducing the Granularity of CGA Security Levels

In the CGA generation algorithm, the granularity factor 16 is relatively large.
The multiplier 16 was chosen to increase the maximum length of the Hash Ex-
tension [6] up to 112 bits, but the benefit of this is questionable [9]. Currently,
Sec value 0 or 1 can be used in practice. For Sec value 2, the CGA address gen-
eration process may take several hours or days. We carried out a test on a set of
5 samples using 2.67 GHz CPU speed which gave us an average CGA generation
time of 5923857 Milliseconds (1 hour and 39 minutes). The CGA computation
for a Sec value of 3 will take, on average, more than 12 years on a 2.67 GHz
CPU.

Smaller granularity is more suitable for CGA computations. Therefore, we
proposed to reduce the granularity factor from 16 to 8 for the following reasons:

– The granularity factor 16 is quite large and causes a big jump in CGA
computation time for successive Sec values. Having values in between is
better than waiting for a very long time to reach the second security level
(Sec+1). A smaller granularity factor gives the users the opportunity to have
better security level particularly if the user is not willing to wait a long time
for the CGA generation. Having a Sec value of 1 with a granularity factor
of 8 is better than a Sec value of 0 with a granularity factor of 16.

– Changing the CGA addresses over time in order to protect the users’ privacy
makes it unnecessary to select a high security level. It does not make sense



10 Ahmad AlSa’deh, Hosnieh Rafiee, and Christoph Meinel

for the address owner to select a high Sec value that is expensive in time
and CPU cycles if the address will be changed after a short period of time.
For instance, it is not reasonable to select a high Sec value which costs the
address owner several days if the address will be changed every one hour due
to the privacy need. However, the security level should be sufficient to cover
a lifetime period. For example, if the lifetime is one day, the security level
should be safe enough so that the attacker cannot break the address within
several days.

– The privacy concerns are usually much more important for mobile devices.
The mobile devices generally have limited resources (battery, memory, and
processing power). For a high Sec value, the CGA computation will take too
long a time and will consume too much of the computing device’s energy.
Smaller granularity is more suitable for these devices.

– The multiplication factor of 8 increases the maximum length of the Hash
Extension up to 56 bits. Therefore, the total hash length will be between
59 and 115 bits, which are adequate for current CPU speeds. Decrementing
the granularity to 4 or 2 might lead to weaker hash values which leave small
margin of safety. With granularity 4, the total hash length will be between
59 and 87 bits.

4.3 Automatic Key Pair Generation

We propose to generate the key pairs automatically by using the CGA code as
proposed in [10]. The default key size is 1024 bits. This can be changed by the
use of the CGA parameter setting interface. Setting the keys automatically is
better for the following reasons:

– Generating the key pair on-the-fly each time the host needs a new address
enhances the CGA security and protects the user’s privacy. The automatic
generation of the public key increases the randomness of the CGA and con-
sequently enhances its security against a brute-force attack. Moreover, each
time the node moves to a new location, it will get a new CGA address and
will use a new public key. Therefore, it will not be easy for attackers to track
users based on their addresses or even to correlate traffic to their public keys.

– Minimizing the amount of required configurations so that the end user does
not need to know the technical details behind the cryptography. There is
also no need to use an external program to generate the key pairs. It is not
easy for the user to generate key pairs manually each time the host wants
to generate a new address. It becomes more tedious when the CGA address
changes frequently due to privacy time constrains.

– Keys are not stored in a particular path before starting the CGA compu-
tation. The keys are therefore not vulnerable to theft. In our CGA imple-
mentation, the key pairs are stored in computer memory (RAM) for quick
accessibility, but also the digested keys are stored in an XML file for further
usage, such as after rebooting the system while the IP address is still valid
or the host is connected to the same subnet.



CGA: Balancing Between Security, Privacy and Usability 11

– The average time to generate a key pair with a RSA 1024-bit key using
1000 samples is 27.8 Milliseconds, while the average time for Standard CGA
generation with Sec value 1 and a 1024-bit key size is 439.6 Milliseconds. So,
the key generation takes about 6.3% of the total CGA generation time. We
took these measurements on a computer with 2.67 GHz.

5 Modified CGA Implementation and its Evaluation

5.1 Modified CGA Implementation

To test the above mentioned modifications, we modified the CGA part of SEND
implementation for the Windows operating system (WinSEND)[11]. WinSEND
works as a service to provide security for Windows NDP. WinSEND has the
SEND functionalities and can generate IP addresses in a secure manner.

Our modified version of CGA automatically offers the default parameters to
generate a temporary CGA address. The default value for the minimum lifetime
is 24 hours, similar to the proposed preferred lifetime in RFC 4941, and the
public key size is 1024-bit. The default value for Sec is 2 and the granularity is
8. The user can override these parameters via CGA setting (See Fig. 2).

Fig. 2. Modified CGA settings parameters.

To get a rough idea about the time required for generating a CGA address
for different Sec values with associated granularity factors, we used the results
shown in Table 1. The CGA generation algorithm is run on a 2.67 GHz Quad
core CPU computer. The results are taken over 1000 samples with a 1024-bit
key size.

5.2 Limitations and Deployment Considerations

Our proposed modification to the standard CGA is compatible with addressing
scheme and could be implemented as an extension to RFC 3972. The CGA-



12 Ahmad AlSa’deh, Hosnieh Rafiee, and Christoph Meinel

Table 1. CGA Generation Time in Milliseconds (ms) for Different Sec Values with
Different Granularity Over 1000 Samples

Granularity
Sec 4 8 16

1 117ms 121ms 427ms
2 128ms 425ms 5923857ms
3 135ms 88217ms *
4 409ms * *

enabled nodes need to consider the granularity factor 8 in CGA generation and
verification algorithms. This task is not complicated, eventually feasible modifi-
cations can be upgraded. The other modification for changing the addresses over
time and generating keys on-the-fly do not affect the CGA algorithm and the
way of communication. It is more implementation decisions which do not change
the CGA algorithm.

There are some implications and deployment considerations for changeable
addresses. Most of these limitations are also valid for the privacy extensions
approach (RFC 4941) as explained below:

– The changeable address may cause unexpected difficulties with some applica-
tions. Some servers reject the connection from clients whose address cannot
be mapped into a DNS name that also maps back into the same address.

– Changing the addresses frequently (e.g., every few minutes) has a perfor-
mance implication and will severely impact user experience.

– Protecting the user’s privacy may conflict with the administrative need to
effectively maintain and debug the network.

– The implementation needs to keep track of the addresses being used by the
upper layer in order to be able to remove the deprecated addresses from the
internal data structure when these addresses are no longer used by the upper
protocols, but not before.

Tracking users at other layers, such as tracking through DNS, cookies, or
browser characteristics is out of the scope of this paper. However, in order to
have privacy protection at higher-layers, we believe that the underlying protocols
must also have privacy protection mechanisms.

6 Conclusion

It is very important to be sure that the increasing deployment of IPv6 will be
done in a secure way without compromising the Internet users’ privacy. It is
proposed that CGA be used to prove the ownership of an IPv6 address and
to prevent spoofing of existing IPv6 addresses, but it might be susceptible to
privacy related attacks. On the other hand, the privacy extensions protect the
users’ privacy but are of no value to related address spoofing attacks. In this pa-
per we showed how to integrate the privacy extensions into CGA to resolve both



CGA: Balancing Between Security, Privacy and Usability 13

privacy and security issues for IPv6 addresses. We also changed the granularity
of the CGA security level and generated the public-key pair on-the-fly to make
CGA more practical. We also provided a mechanism for the CGA implemen-
tation with which to automatically set the maximum lifetime and to decrease
administrative tasks. This approach definitely involves tradeoffs between pri-
vacy, security, usability and the cost of address generation but it is a very viable
solution.

Our proposal has several benefits over the current CGA scheme, including:
(1) the ability to diminish the CGA possible privacy concerns and protect users
from being tracked; (2) the ability to configure when new CGA should be created;
and (3) the possibility to have finer granularity for CGA security level. We have
implemented and tested the CGA modification and found that it generates new
CGA address as designed while not impacting Internet activities.

References

1. Narten, T., Nordmark, E., Simpson, W., Soliman, H.: Neighbor Discovery for IP
version 6 (IPv6). RFC 4861, Internet Engineering Task Force (September 2007)

2. Thomson, S., Narten, T., Jinmei, T.: IPv6 Stateless Address Autoconfiguration.
RFC 4862, Internet Engineering Task Force (September 2007)

3. Narten, T., Draves, R., Krishnan, S.: Privacy Extensions for Stateless Address Au-
toconfiguration in IPv6. RFC 4941, Internet Engineering Task Force (September
2007)

4. Nikander, P., Kempf, J., Nordmark, E.: IPv6 Neighbor Discovery (ND) Trust Models
and Threats. RFC 3756 (Informational), Internet Engineering Task Force (May
2004)

5. Arkko, J., Kempf, Ed., J., Zill, B., Nikander, P.: SEcure Neighbor Discovery (SEND).
RFC 3971, Internet Engineering Task Force (March 2005)

6. Aura, T.: Cryptographically Generated Addresses (CGA). RFC 3972, Internet En-
gineering Task Force (March 2005), updated by RFCs 4581, 4982.

7. Groat, S., Dunlop, M., Marchany, R., Tront, J.,: The privacy implications of stateless
IPv6 addressing. In Proceedings of the Sixth Annual Workshop on Cyber Security
and Information Intelligence Research, CSIIRW 10, pp. 52:1-52:4, New York, NY,
USA, ACM (2010)

8. Bos, J.W., Ozen, O., Hubaux, J-P.: Analysis and Optimization of Cryptographically
Generated Addresses. Information Security 2009, pp. 17-32, (LNCS 5735) (2009)

9. Alsa’deh, A., Rafiee,H., Meinel, C.: Stopping Time Condition for Practical IPv6
Cryptographically Generated Addresses. In 2012 International Conference on Infor-
mation Networking (ICOIN), pp. 257-262, (2012)

10. Rafiee, H., Alsa’deh, A., Meinel, C.: Multicore-based Auto-scaling SEcure Neighbor
Discovery for Windows Operating Systems. In 2012 International Conference on
Information Networking (ICOIN) pp. 269-274, (2012)

11. Rafiee, H., AlSa’deh, A., and Meinel, Ch.: WinSEND: Windows SEcure Neighbor
Dis-covery. 4th International Conference on Security of Information and Networks
(SIN 2011), 14-19 November 2011, Sydney, Australia, pp.: 243-246, ACM (November
2011)




