
Published as : Hosnieh Rafiee and Christoph Meinel. "A Secure, Flexible Framework for DNS Authentication in IPv6 Autoconfiguration". The 12th
IEEE International Symposium on Network Computing and Applications (IEEE NCA13), IEEE, August 22 - 24, 2013 Cambridge, MA USA.

A Secure, Flexible Framework for DNS

Authentication in IPv6 Autoconfiguration
Hosnieh Rafiee, Christoph Meinel

Hasso-Plattner-Institut, University of Potsdam

P.O. Box 900460, 14440 Potsdam, Germany

{Rafiee, Meinel}@hpi.uni-potsdam.de

Abstract— The Domain Name System (DNS) is an essential part

of the Internet on whose function many other protocols rely. One

key DNS function is Dynamic Update, which allows hosts on the

network to make updates to DNS records dynamically, without

the need for restarting the DNS service. Unfortunately, this

dynamic process does expose DNS servers to security issues. To

address these issues two protocols were introduced: Transaction

SIGnature (TSIG) and Domain Name System Security

Extensions (DNSSEC). In Internet Protocol version 4 (IPv4)

networks using these protocols eliminated security issues. In

Internet Protocol version 6 (IPv6) however, there is an issue with

the DNS authentication process when using the StateLess

Address AutoConfiguration (SLAAC) mechanism (new to IPv6,

nonexistent in IPv4). This authentication issue occurs when a

node wants to update its resource records on a DNS server,

during the DNS update process, or when a client wants to

authenticate a DNS resolver to ensure that the DNS response

does not contain a spoofed source address or message. In this

paper we propose the use of a new mechanism which makes use

of asymmetric cryptography to establish a trust relationship with

the DNS server. We also consider the use of the current security

parameters used to generate IPv6 addresses in a secure manner,

i.e. Secure Neighbor Discovery (SeND), for assuring clients and

DNS servers that the one they are communicating with is the real

owner of this IP address. Since we are extending the RDATA

field within the TSIG protocol to accommodate these new

security parameters, we will call this new mechanism the CGA-

TSIG algorithm.

Keywords- DNS update, DNS, CGA, IPv6 autoconfiguration,

TSIG, NDP,CGA-TSIG, Resolver authentication

I. INTRODUCTION

The Domain Name System (DNS) is a fundamental service
of the Internet used by every application using IP addresses or
IP devices. It is a distributed, hierarchical database which
stores the mappings of IP addresses to hostnames. This
hierarchy is referred to as the Domain Name System and is
organized like an inverted tree radiating from a single root. The
stored data is maintained in Resource Records (RRs). A RR is
the basic data element that defines the structure and content of
the domain name system. They are recognized by their type
identifications. For example, type “AAAA” (IPv6 address
record) is a RR that contains the IPv6 address of a host and
type “NS” (Name Server record) is another RR used to identify
the authoritative name servers for a zone. A zone is a portion of
domain space that is authorized and administered by a primary
name server and one or more secondary name servers. A name
server can be a master or a slave. Master or primary name
servers are the ones from which other name servers can transfer

zone files. The authoritative name servers are the DNS servers
that do not need to look for responses within their own cache,
or to ask other name servers for the response, because they own
this data and thus look for responses within their own RRs.

The main function of DNS servers or name servers is to
respond to queries asked by different hosts. In order to provide
hosts with up-to-date responses, the DNS RRs should be
updated as soon as any changes are made to a host’s IP
address, a host name, or any other data that is maintained
within the RRs. Because manually changing the RRs in a zone
file and then restarting the DNS service would have an adverse
effect on the performance of the DNS servers, including the
loss of many DNS queries during the restart process, dynamic
update mechanisms have been put in place to facilitate this
process. The latest versions of DNS implementations support
Dynamic DNS (DDNS). DDNS is a mechanism used to update
DNS RRs, on-the-fly, without the need for restarting the DNS
service. This mechanism can be used in conjunction with other
mechanisms, one such being Dynamic Host Configuration
Protocol (DHCP). The main problem with DDNS is its security
vulnerability. This is due to the fact that DDNS servers support
the basic authentication mechanism which allows a host to
update RR records that are based on a source IP address. This
will allow a malicious host to spoof the authorized host’s IP
address and then to modify the RRs on the DNS server which
is the master of a zone. In IPv4 networks some mechanisms
have been introduced in order to secure DNS operations in
general and DDNS operations in particular: DNS Security
extension (DNSSEC) (RFC 4033) and Transaction SIGnagure
(TSIG) (RFC 2845). For example, it is possible to use both the
active directory and DHCPv4 to give only the authorized host
the ability to make updates to DNS records.

Although the mechanisms mentioned earlier work well in
IPv4 networks they do not work well in IPv6 networks when
Neighbor Discovery Protocol (NDP) is used. The NDP
protocol requires no human intervention for the generation and
assignment of addresses to the hosts on that network. But this
does mean that a new host, who may be malicious, can join a
network, can set its IP address, and then update the DNS record
if the process is based merely on a source IP address. If any
security mechanisms are running during DDNS, such as
DNSSEC or TSIG, then problems could be encountered. The
first problem relates to the manual configuration requirements
needed for both of the previously described secure DDNS
protocols. The second problem relates the lifetime of an IP
address. In order to maintain privacy, the IP address should
only be valid for a short period of time. Thus, to generate a

Published as : Hosnieh Rafiee and Christoph Meinel. "A Secure, Flexible Framework for DNS Authentication in IPv6 Autoconfiguration". The 12th
IEEE International Symposium on Network Computing and Applications (IEEE NCA13), IEEE, August 22 - 24, 2013 Cambridge, MA USA.
TSIG shared key, first, the key needs to be generated in the
host and then placed on the server so that the authentication
process can take place. Since this shared secret is only valid
between two nodes (a host and a DNS server), this process will
need to be repeated for all nodes on that network. This would
again see the need for human intervention which is not really a
viable solution. To address this issue, and to facilitate the
authentication process when Secure NDP (SeND) is used in
IPv6 networks, we propose to use the same parameters as are
used in Cryptographically Generated Addresses (CGA) for
verifying a host and for proving the address ownership of this
host. We also propose the use of a flexible framework for the
authentication process.

The remainder of this paper is organized as follows:
Section 2 will briefly summarize the IPv6 autoconfiguration
mechanisms, Section 3 will explain the DNS functions and the
security in use in DNS and DDNS mechanisms, Section 4 will
introduce our proposed extension to the TSIG protocol and the
flexible framework for DNS authentication, Section 5 will
evaluate using our proposed mechanisms, and Section 6 will
summarize our conclusions.

II. IPV6 AUTOCONFIGURATION

IPv6 represents the next generation of Internet protocol that
was proposed in RFC 2460. The main reason for its creation
was to address the issue of the exhaustion of IP addresses that
exists with IPv4. There are two mechanisms, stateless and
stateful autoconfiguration, that can be used to configure a
node's IP address. With autoconfiguration, the node is able to
configure its IP address as soon as it has joined a new network,
without the need for human intervention.

A. Stateful Autoconfiguration

This mechanism uses Dynamic Host Configuration
Protocol (DHCPv6) [1] as the means for configuring a node’s
IP address. This requires a certain amount of human
intervention with respect to the installation and administration
of the DHCPv6 servers.

B. Stateless Autoconfiguration

This mechanism specifically refers to the generation of a
link local address, the generation of global addresses via
StateLess Address AutoConfiguration (SLAAC), and the
verification of the uniqueness of the addresses in IPv6
networks [2]. It is used in conjunction with other mechanisms,
called Neighbor Discovery (ND) [3], to enable hosts to
discover who their neighboring routers and hosts are and to
present a means by which the host can obtain router
information from them.

Two different mechanisms can be used by hosts to obtain
DNS information: stateless DHCPv6 and Router
Advertisement (RA)-based DNS configuration [4]. The RA
message is sent by a router detailing information about the
router prefixes in use in this network. It is needed to enable a
node to generate its IP address. In Stateless DHCPv6, hosts
configure their IP addresses using stateless IP address
configuration and receive other information that is not
contained in the RAs from DHCPv6 servers, such as DNS
servers. As stated in section A, the configuration of DHCPv6

servers for this mechanism requires extra infrastructure and
human intervention.

An alternative mechanism that may be used, when there is
either no DHCPv6 infrastructure or clients do not support a
DHCPv6 client, is a RA-based DNS configuration. Use of this
mechanism enables hosts to obtain DNS information from RA
messages.

C. SEcure Neighbor Discovery (SEND)

In order to make NDP more secure an extension to NDP,
called Secure Neighbor Discovery (SeND) [5], is used. It
provides NDP with security enhancements. SeND adds four
new options to NDP messages. These options are
Cryptographically Generated Addresses (CGA) [6], timestamp,
nonce, and signature.

1) Cryptographically Generated Addresses (CGA)

CGA is an important option in SeND which provides

nodes with the necessary proof of address ownership. It does

this by providing a cryptographic binding between a host's

public key and its IP address without the need for new

infrastructure. A SeND-capable node relies on a CGA

algorithm where the new dynamic IP address is automatically

generated by use of the node’s public key and a one-way

hashing algorithm generated from CGA parameters.
When a SeND-capable node wishes to generate a new IP

address it uses a RSA algorithm [7] to generate key pairs
(public/private keys) on-the-fly. It can also use an external
application to generate the necessary key pairs that would then
be made accessible to the CGA algorithm. A security level
(Sec value) between 0 and 7 is selected. When a Sec level
higher than 0 is selected, the strength of the generated IP
address is higher thus providing greater protection against brute
force attacks. Since we do use the CGA algorithm to prove IP
address ownership, the following information is provided
describing, briefly, how it works.

The node -

1. Generates a random modifier

2. Concatenates the modifier with a zero valued prefix (64
bits), a zero valued collision count (1 byte) and a RSA
public key

3. Executes a Secure Hash Algorithm (SHA1) on the result
of step 2 and takes the 112 bits of the digest and calls it
Hash2

4. Compares the 16×Sec leftmost bits of Hash2 to zero. If the
condition is not met, increments the modifier and repeats
steps 2 thru 4. If the condition is met, goes to the next step.

5. Concatenates the modifier with the prefix, collision count,
and public key. Executes SHA1 on the result and calls it
Hash1. Takes 64 bits of Hash1 and sets the first 3 left-most
bits to the Sec value. Sets bits u and g (bits 7 and 8) to one.
The end result is the Interface ID (IID)

6. Concatenates the subnet prefix with the IID and executes
Duplicate Address Detection (DAD) against the result to
avoid possible address collisions on the network. It sends
all CGA parameters (modifier, subnet prefix, collision

Published as : Hosnieh Rafiee and Christoph Meinel. "A Secure, Flexible Framework for DNS Authentication in IPv6 Autoconfiguration". The 12th
IEEE International Symposium on Network Computing and Applications (IEEE NCA13), IEEE, August 22 - 24, 2013 Cambridge, MA USA.

count, public key) along with the messages so that other
nodes can verify its address ownership.

III. DOMAIN NAME SYSTEM (DNS) UPDATES

A. DNS and its functions

The DNS consists of a distributed tree structure of
databases which contain individual records called Resource
Records (RRs) -- such as AAAA, PTR, etc. Each RR describes
the characteristics of a zone (domain) and has a binary or wire-
format, which is used in queries and responses, and a text
format used in zone files. A detailed description of these RRs,
as well as their message format, can be found in RFCs 1034
and 1035.

There are two categories of name servers: Authoritative
and Recursive.

 Authoritative:
An authoritative name server is one that gives original
and authoritative answers to DNS queries.

 Recursive:
A recursive name server responds to queries about any
domain. It first checks its own records and cache for
the answer to the query and then, if it cannot find an
answer, it queries other servers before passing the
response back to the originator of the query.

1) The mechanisms used to Update DNS

DNS update [8] is the process of adding, changing, or

removing a RR record in a zone’s master file. Dynamic DNS

(DDNS) (RFC 2136) is a mechanism used to enable real-time,

dynamic updates to entries in the DNS database. The clients or

servers can automatically send updates to the authoritative

name servers to modify the records they want to change.

B. DNS Threats

Originally DNS did not contain robust security features

because scalability was an issue. The basic security

mechanism of this protocol is to check whether or not the

source and destination IP address and the query ID are the

same as that which was sent by the resolver. If so, the query

answer will be accepted. The use of this process makes it easy

for an attacker to spoof this data and then send it to the client’s

DNS resolver, or to update the node's records on the DNS

server, in order to have the traffic forwarded to his desired

nodes for the purpose of his gaining network access. This

illustrates just how vulnerable this protocol is to several types

of attack. These vulnerabilities can be classified into three

categories; bugs in DNS implementations or other services,

information leakage within the DNS configuration, and other

attacks such as cache poisoning, man in the middle, DoS, and

DDNS vulnerabilities [9, 10]. An example of how information

leakage could occur would be when a zone transfer from a

master to a slave server takes place. An attacker can sniff to

obtain a copy of the entire DNS zone for a domain. He would

thus not need to scan the entire network as he would have

already obtained a complete listing of all the hosts in that

domain. Moreover, when using DNS for a dynamic update in

conjunction with other protocols, such as DHCP, the DNS

server may become vulnerable to several other types of attack,

such as IP spoofing, record deletion, redirection, and DoS.

This could occur because the server is usually the master of a

zone and the authentication for such updates is based solely on

the source IP address

C. Existing Security Mechanisms in DNS

Mechanisms have been introduced in an attempt to make
DNS more secure. . The problem with these mechanisms is that
they only provided partial solutions to the vulnerability issues
mentioned earlier. Therefore some extensions, such as the
DNSSEC and TSIG, were implemented in the DNS protocol to
try to further reduce its vulnerability.

1) DNS Security Extension (DNSSEC)
DNSSEC, introduced by the Internet Engineering Task

Force (IETF), is an extension to DNS (RFC 4033) used to
validate DNS query operations. It verifies the authenticity and
integrity of query results from a signed zone. It uses
asymmetrical cryptography meaning that separate keys are
used to encrypt and decrypt data to provide security for certain
name servers with their respective administrative domains.
When DNSSEC is used, all responses include a digital
signature. This prevents DNS spoofing attacks because the
attacker does not have the same private key as the server and
thus will be unable to sign his own response and send it to the
victim. But a problem with using DNSSEC is that the
signatures are not created on-the-fly because the DNS, itself,
does not have access to the keys which would enable it to sign
its own responses. Thus the administrator of that zone needs to
sign each domain and sub domain manually, ahead of time, and
then store those signatures in the SIG RRs of the DNS server.
Also, the zone private key should be stored offline. This is the
reason that Dynamic Update cannot be fully supported. It
cannot generate the signature, on-the-fly, in order to respond to
real-time queries. Also, the use of DNSSEC cannot guarantee
the data's confidentiality because it does not encrypt the data
but just signs it [9].

2) Transaction SIGnature (TSIG)

TSIG (RFC 2845) is a protocol that provides endpoint

authentication and data integrity using one-way hashing and

shared secret keys to establish a trust relationship between two

hosts that may be either a client and a server or two servers.

The TSIG keys are manually exchanged between these two

hosts and must be kept in a secure place. This protocol can be

used to secure a Dynamic Update by verifying the signature

with a cryptographic key shared with that of the receiver.

The TSIG Resource Record (RR) has the same format as other

records in a DDNS update request. Some fields contained in

the TSIG RR are: Name, Class, Type, Time To Live Resource

Data (TTL RDATA), etc. The RDATA field is used to specify

the type of algorithm used in a one-way hashing function

along with the other information normally included.

IV. PROPOSED FLEXIBLE FRAMEWORK

The current solution for automating the manual
configuration process makes use of current security protocols,
like TSIG or DNSSEC, which allows the use Active Directory
(AD) or GSS-TSIG (RFC 3645). This means that the node has

Published as : Hosnieh Rafiee and Christoph Meinel. "A Secure, Flexible Framework for DNS Authentication in IPv6 Autoconfiguration". The 12th
IEEE International Symposium on Network Computing and Applications (IEEE NCA13), IEEE, August 22 - 24, 2013 Cambridge, MA USA.
already been authenticated and thus will be able to update the
DNS records. To address this problem, and to offer a more
general solution for minimizing the need for human
intervention during the DNS authentication process, we
propose a framework where asymmetric cryptography is used
to provide nodes with a high level of security. There are two
scenarios in play here. The authentication of a node (a client or
another DNS server) to a DNS server during a DNS update,
and the authentication of a DNS resolver with a client. In both
scenarios we assume that the node is aware of the IP address of
the DNS server and that of the DNS resolver. This is because
they can get this address from the DHCPv6 server (that will not
be secure) or from a router advertisement message after
authenticating the router via a trusted authority. The IP
addresses can be generated using CGA, Simple Secure
Addressing Scheme (SASS) [11] or other mechanisms. In this
scheme the lifetime of an IP address is not short.

A. Authentication during the DNS Update

There are two different scenarios in play here also. One
pertains to the authentication of a node with a DNS server in
order to update the DNS records, and the other pertains to the
authentication of two DNS servers, such as a slave and a
master. Our solution focuses primarily on the first scenario but
it can also be used to resolve issues stated in the second
scenario.

When a client joins a new SeND-enabled network, it first
generates its IP address and then must update its DNS RRs. To
accomplish this a DNS request message is sent requesting the
public key of the DNS server. The DNS server’s response to
this client will include the public key contained in DNSKEY
RR (RFC 3757) with SEP flag set to zero. This is because it is
not the zone key. The client then verifies the public key of the
DNS server. If the DNS server's IP address was set using
SeND, then there will be a binding between its public key and
its IP address. The client can then use the verification steps
explained in [7, 11]. If the DNS server did not use SeND to set
its IP address, it will need to provide the node with the name of
the third party Trusted Authority (TA) where the node can
verify the DNS server’s public key. In this case the public key
verification process is the same as that used in Secure Socket
Layer (SSL) processing, which is explained in RFC 6101.
When the SSL protocol is used, the clients are provided with a
list of TAs from which they can obtain the public keys of
authorized nodes. After a successful verification, using either
approach, the client saves the DNS server's public key in its
memory, encrypts its hostname and other data using th DNS
server’s public key and the same algorithm as is used by the
DNS server for key pair generation, and signs this encrypted
data, along with the DNS update message, using its own
private key. A DNS update message is then sent to the DNS
server. For sending this data to the DNS server, we propose an
extension be added to the current TSIG RDATA field (this will
be explained in more detail in the next sections). We chose to
use the TSIG RDATA field because it has an Other Data
section that can be used to insert the parameters necessary for
our verification purposes. In this case we do not need to
introduce any new RRs.

In the case of multiple DNS servers (authentication of two
DNS servers) there are again two possible scenarios with
regard to the authentication process. The authentication process
may differ from that of a node (client) with two DNS servers
because of the need for human intervention.

1. Manually exchange the public/private keys

A DNS server administrator needs to manually save the

public/private keys of a master DNS server within the

slave DNS server. Any time any DNS server wants to

change its IP address it needs to use these public/private

keys for the authentication.

2. Retrieve the public/private keys from a third party TA

by using the SSL key verification process (explained

earlier).

1) Generation of a modified TSIG
The public key and other required parameters used to

generate a new IP address for a node can be used to create the
TSIG RR. These values should thus be cached in the node's
memory for later use.

The following steps outline our proposed solution to the
Update Request vulnerability issue.

 Step 1. Retrieve the public/private keys and other

parameters from cache

The key pairs are generated using a RSA algorithm, or

other CGA/SSAS supported algorithms, during IP address

generation using SeND. In this step all required CGA/SSAS

parameters are obtained from cache. If the node cannot find

these values in cache, it will generate key pairs using ECC

[12] or RSA algorithms.

 Step 2. Encrypt the data using the DNS server’s

public key
A DNS update message consists of a header, a zone, a

prerequisite, an update, and additional data. The header
contains the control information (RFC 2136). The zone
identifies the zones to which this update should be applied
(Section 4.1.2 RFC 1035). The prerequisite prescribes the RRs
that must be in the DNS database. The update contains the RR
that needs to be modified or added. When our framework is
used, the update and prerequisite sections should be encrypted
using the DNS server’s public key and should not be sent
unencrypted. The additional data is that data which is not a part
of the DNS update, but is necessary in order to process this
update. The node first encrypts the prerequisite data and the
update section containing RRs separately using the DNS
server’s public key and the same algorithm that the DNS server
uses for its keypair generation, which can be RSA, ECC or any
other future algorithm. Then it places them in the update and
prerequisite sections of the DNS message. To improve this, it
is possible to encrypt the update and prerequisite sections using
a symmetric algorithm and encrypt the shared secret using the
DNS server’s public key. In this case the overhead for using
public/private key encryption will be mitigated.

 Step 3. Generate the signature
To generate the signature, all CGA parameters (modifier,

collision count and subnet prefix excluding the public key) that
were concatenated with the encrypted DNS update message
(such as the prerequisite and the update sections) and the Time

Published as : Hosnieh Rafiee and Christoph Meinel. "A Secure, Flexible Framework for DNS Authentication in IPv6 Autoconfiguration". The 12th
IEEE International Symposium on Network Computing and Applications (IEEE NCA13), IEEE, August 22 - 24, 2013 Cambridge, MA USA.
Signed field, are signed using an ECC algorithm and the
private key which was generated in the initial step for the IP
address generation. This signature can be added, as an option,
to the Other Data section of TSIG RDATA field. Figure 1
shows the format of the data in this signature. Time Signed is
the same timestamp as is used in RDATA. This value is the
number of seconds since 1 January 1970, in UTC date and time
format, obtained from the signature’s generator system. This
approach will prevent replay attacks by changing the content of
the signature each time a node wants to send a DNS Update
Request.

As explained in section III (Part C), the TSIG RR contains

fields such as Name, Class, etc. We added our option to Other

Data section of the TSIG RDATA field to accommodate the

addition of a signature and public keys. Figure 2 shows our

proposed options to the TSIG RDATA field. The algorithm

type refers to CGA-TSIG. Other Len defines the overall length

of the Other Data which contains the algorithm type used to

generate key pairs and sign the message which, by default,

would be ECC. Type indicates the Interface ID generation

algorithm that was used by SeND. This field allows for the use

of future algorithms in place of CGA. The assigned default

value for CGA is 1. Other algorithms would be assigned

numerical values sequentially. For example, SSAS could be

assigned a value of 2. If the node does not use SeND, and it

generates its public/private key by itself, with no association

to its IP address, then this value will be set to 0. Other fields in

Other Data are the parameters, public keys and the signature

(the format of this signature was explained in the prior

section), and fields for the length of each of them. The length

of the parameters is variable and depends on the Type. If the

node generates a new public/private key, it needs to include

the old public key, signed by the old private key, and add it to

the old signature section of the CGA-TSIG data structure (see

figure 2). The old pubkey len field contains the length of the

old public key. It is set to zero when the public key of the node

does not exist in the DNS server. If the node only wants to

change its hostname, and the DNS server already has its public

key, then the node will set both the old public key len and new

public key len to zero. A client's public key can be associated

with several IP addresses on a server. This allows the client to

update his own RRs using multiple IP addresses, while at the

same time, allowing him to change IP addresses. When a host

sends a DNS Update message to a DNS server for the first

time, the DNS server must save the public key and hostname

of this node in the CGATSIGkeys table. The DNS server

assigns the validation time to the public key and stores in

CGATSIGkeys. If it does not receive an update request from

the node, using this public key, during this allotted time,

which depends on the privacy policy of the network, the DNS

server sets a status flag, in its database for this public key, to

inactive. These inactive records can be removed automatically

or by the DNS administrators.

DNS update requests/responses sent to the DNS server, or

vice versa, should contain our modified TSIG RR to give the

other communicating nodes the ability to validate the sender.

These update requests/responses will contain all the required

information needed to process the DNS Update Request.

Whenever a client, or a DNS server, generates a DNS update

request (it should include our proposed TSIG RR), and uses

either TCP or UDP as the transport layer to send this Update

Request message to one DNS server, the DNS server should

verify this message and, according to the verification result,

discard it without further action or process the message. When

the process is successful, the DNS server will send a DNS

response message back to the sender informing the sender that

the update process was completed successfully.

2) Modified TSIG Verification
It is very important to authenticate senders to prevent

attackers from making unauthorized DNS update
modifications. Since we propose to use the CGA or SSAS
algorithm in our approach, the first steps of the verification
process are almost identical to those used in the CGA standard
RFC [6] or SSAS, i.e., there will be only a few modifications.
This is because, in CGA, there is no need to add the signature
as it already exists in the SeND [5]. This is why the signature
verification is considered as a part of SeND and not as part of
the current CGA verification process. In our proposed
approach, when a receiver (DNS server or a client) receives a
DNS update message, it executes the following verification
steps in sequence to authenticate the sender:

 Step 1. Process the CGA/SSAS verifications

The receiver will obtain all the CGA parameters from the
TSIG RDATA field. Then Hash1 is calculated by executing
SHA1 against these CGA parameters to obtain the 64 leftmost
bits of the result. Hash1 is then compared to the 64 rightmost
bits of the sender’s IP address known as the Interface ID (IID).
Any difference in the first three leftmost bits of the IID (Sec
value) is ignored along with the u and the g bits. u and g are
bits 7 and 8 of the first leftmost byte of the IID. If there is no
match, the source is considered a spoofed source IP address
and the message is discarded without further action.

When they match, the receiver obtains the CGA
parameters. It sets the collision count and the subnet prefix to
zero and executes SHA1 on the resulting data. The 112
leftmost bits of the result is called Hash2. The 16×sec leftmost
bits of Hash2 are compared to zero. When the condition is met,
execute the next step. When the condition is not met, the CGA
parameters are considered spoofed CGA parameters and the
message is discarded without further action. When SSAS is
used, the node follows the SSAS verification process as
explained in [11]. If the node generates its public/private key

Collision count
(8 bits)

Final Modifier
(128 bits)

Subnet
Prefix

(64 bits)

Time Signed DNS Update Message

private key

CGA Parameters

Signed by
ECC

Algorithm
Signature

Figure 1. Modified TSIG Signature Content

Published as : Hosnieh Rafiee and Christoph Meinel. "A Secure, Flexible Framework for DNS Authentication in IPv6 Autoconfiguration". The 12th
IEEE International Symposium on Network Computing and Applications (IEEE NCA13), IEEE, August 22 - 24, 2013 Cambridge, MA USA.
itself, and sets its Type in the modified TSIG RR (Other Data
field) to zero (see figure 2), then skip this step.

 Step 2. Check the Time Signed

The Time Signed value is obtained from TSIG RDATA and
is called t1. The current system time is obtained and converted
to UTC time in seconds and this value is called t2. If t1 is in
the range of t2 and t2 minus x seconds (see formula 1), then go
to step 3, otherwise the source is considered a spoofed message
and the message is discarded without further action. The range
of x seconds is used because the update message may
experience a delay during the transmission over TCP or UDP.
This time value is dependent on network policy and
transmission delay, so both times will use UTC time to avoid
any differences in time based on different geographical
locations.

 (1)

 Step 3. Verify the signature

The signature contained in the TSIG RDATA field of the
DNS update message needs verification. This can be done by
retrieving the public key from the DNS server’s database or
from the Other Data in TSIG RDATA and using this to verify
the signature. If the verification process is successful, and the
node does not want to update another node’s RR, then the
Update Message is processed. If the signature verification is
successful and the node wants to update another node’s RRs,
then the process continues with step 4. If the verification is not
successful, the message is discarded without further action.

 Step 4. Verify the public key

If a node’s public key is the same as that present in the
CGATSIGKeys table, then process this update message. If the
node’s public key and hostname do not exist in the
CGATSIGKeys table, and the node does not want to update
other nodes’ RRs (that exists in DNS database or on other DNS
servers on the Internet), add this public key and hostname to
the CGATSIGKeys table and process this update message.
This is done because it is a new node that is joining this
network. If a node wants to update a/many RR(s) on another
DNS server, like a master DNS server wanting to update RRs
on the slave DNS server, then the DNS server checks whether
or not the public key retrieved from the TSIG RDATA is the
same as what was saved manually by the administrator. If it is
the same, then the update message is processed. Otherwise the
message is discarded without further action.

B. Authentication during query resolving

The query response that is sent by the resolver back to the

client needs to include the modified TSIG RR. However, the

client does not need to request the resolver’s public key in a

separate message because the resolver can include its public

key in the same message that is sent to the client in the

CGA/SSAS parameters field of the modified TSIG RR.

Because a resolver responds to anonymous queries sent from

any host, client query requests need not contain this option.

Clients can thus authenticate resolvers and can discard

responses that contain spoofed source IP addresses. In this

case, when the resolver wants to generate the modified TSIG

RR, it skips step 2 of the modified TSIG generation and does

not include the DNS update message in the signature. The

verification steps are the same except for step 4.

 There are two scenarios in play here. In the first, the

resolver generates its public/private key, itself, and does not

associate this with its IP address. In this case, when the client

first receives a message from the resolver, after successful

verification, it stores the resolver’s public key in a file. For all

further DNS queries, the client will accept the DNS response

from the resolver with this public key.

In the second scenario, the resolver generates its IP address

using SeND, which makes use of the SSAS or CGA

algorithm. This approach is more secure because the client is

able to check the address ownership of the resolver the first

time it receives a message from him. This way an attacker

does not have a chance to spoof the resolver’s IP address and

then send its own public key to the client.

In both scenarios the client can obtain the public key from

the CGA/SSAS parameters.

I. EVALUATION

A. Security Analysis

1) Analyzing the RSA algorithm

The security of our proposed approach relies on the degree

of difficulty needed to break the chosen asymmetric

algorithms. To start generating key pairs, in a RSA algorithm,

two prime numbers called p and q are chosen [13]. Then

 is calculated. n is used as a module for public/private

keys and the size of that module is usually the size of

public/private keys. The public/private keys used in the RSA

algorithm are chosen to be the same length for security

reasons. Then the Euler Totient Function is calculated where

the function is the number of prime numbers smaller than

value n. This value is calculated using formula 1.

 () () () ()() (

The Public key consists of two values, an exponential called

and a module called . These two values are sent to the

receiver of the message as a public key. The private key

consists of as a module, and a secret exponential called
where ()() . There is an attack used

against RSA that is related to the size of the module. If the

length of the module, known as the key size, is not enough,

then an attacker can easily break the RSA by using a brute

NAME = domain

Type = TSIG

Class

TTL

RDLength

Algorithm type = CGA-TSIG

Other Len

Parameters

RDATA
...

Signature

} Other DataParam. Len (1 byte)

Sig. Len (1 byte)

Time Signed

Public keys

Algorithm Type = ECC

Type= CGA or SSAS or etc

Old public key

new public key len

New public key

Old public key len

Old Signature len

Old Signature

Figure 2. Modified TSIG RR Format

Published as : Hosnieh Rafiee and Christoph Meinel. "A Secure, Flexible Framework for DNS Authentication in IPv6 Autoconfiguration". The 12th
IEEE International Symposium on Network Computing and Applications (IEEE NCA13), IEEE, August 22 - 24, 2013 Cambridge, MA USA.
force attack in the hope of finding the secret module. He does

this by using the public key and the encrypted message as an

input to the brute force function.

There is another attack used against a factor large integer

(factorization). A sieve prime algorithm is an efficient

algorithm that is used to find the prime numbers smaller than a

certain value x. The attacker can use this function to find all

possible prime numbers less than n. Then he tries them,

looking for a value of x to use in the brute force equation.

2) Possible attacks against our approach

When a node generates its public/private key by itself (not

using SSAS/CGA), then that key is not bound to his IP

address. During the authentication of the resolver for the first

time, with a probability of 0.5, the attacker will be able to send

a message with the spoofed source IP address and sign it with

his own public key. As the node accepts the first response to

its query from the legitimate or illegitimate resolver, this gives

the attacker a chance to poison the client’s cache. To prevent

this attack we propose to use a monitoring system which will

sniff all messages sent from the resolver’s source IP address.

If the monitoring system finds two messages at the same time,

having two different public keys, then log the event and notify

the network administrator. This attack will not be possible if

the resolver generates its IP address using CGA or SSAS.

During the DNS update, this attack cannot occur because the

important values will be encrypted using the DNS server’s

public key. Thus, the attacker will not know the content of the

data sent from the node to the DNS server thereby preventing

him from proceeding with his attacks.

There is another attack that can be perpetrated against

DNS servers. Attackers can send thousands of DNS update

message using different hostnames which will deplete the

DNS server’s resources by making it perform countless

verification processes along with adding the public key to the

CGATSIGKeys. Denial of Service attacks are the type of

attacks that cannot be easily prevented unless a monitoring

system is used. Another possibility for preventing these

attacks would be to not allow the DNS server to accept any

requests from nodes with unknown subnet prefixes. This

configuration can be added to the firewall or also to the DNS

server itself.

3) Implementation and Testing
The data that we evaluated after our implementation

consisted of generation and verification times and the packet
from our proposed TSIG modification. For example, the
average time needed to generate a key pair using a RSA key of
1024-bits for 10 samples on a computer with a 2.6 GHz CPU
processor and 2 GB RAM was less than 200 milliseconds. This
value constitutes about 10% of the total process time for the
CGA generation. The main problem with using the CGA
algorithm is the effect that the computational process will have
on performance, i.e., the computational cost involved in
creating the CGA. SSAS is the solution to this problem. Its
compute times are much shorter than those for CGA and it also
provides the node with proof of IP address ownership. Another
solution is to improve the CGA algorithm. In spite of the
sequential nature of CGA, it is possible to improve the
performance time for CGA generation by applying

parallelization techniques [14]. This speeds up the process, thus
reducing the total time spent, by a node, in generating its own
IP address and then sending the DNS Update Message.

Moreover, when a node once generates a CGA it does not
need to re-generate it in order to send the DNS update message.
As was explained in previous sections, it can cache that value
and fetch it from memory whenever it is needed. This means
that once it is generated, CGA will be available for different
uses until it is time for the generation of another IP address.

The use of the ECC algorithm, as the default algorithm, is
preferable in solution to sign the message, but it is not practicle
for message encryption. This is because currently the ECC
algorithm is only available for digitally signing the message
and for symmetric encryption using a shared secret. This
shared secret should be exchanged manually or it should be
encrypted using an assymetric encryption like RSA. Elliptic
Curve Integrated Encryption Scheme (ECIES) [15] is an
assymetric encryption based on Diffie-Hellman Integrated
Encryption Scheme (DHIES) proposed by Victor Shoup in
2001, but, It is not widely used for encryption purposes. Table
1 shows that an ECC with a 192 bit key size can be used for
digitally sign the data. This is equivalent to a 7680 bit RSA key
size. In this case, the packet size would be decreased by a
factor 11 times smaller than when using RSA. RSA key
generation and signature generation and verification times,
using a higher key size than what is shown in this table, are
really slower than those for ECC. But using the current key
sizes, i.e., 1280 key size, RSA performs better than ECC. We
also evaluated the encryption and decryption times of messages
of 50 bytes and 100 bytes. Our results showed that decryption
consumed more time than encryption, but with this size of
message, the total time was a small value, less than a 15000
microseconds.

A. Threat Analysis

Allowing more flexibility in the authentication process, i.e.,
letting the host generate the public/private key itself, alleviates
the host's dependency on other network services, such as
SeND. Even though this high flexibility will work well for the
authentication of a node during a DNS update, it might allow
an attacker to spoof the IP address of the resolver the first time
the node asks for a DNS query from a resolver during the DNS
resolver to client authentication process. There are both
advantages and disadvantages concerning the generation of key
pairs using the DNS service or of the use of cached data. For
example, CGA-TSIG uses the cached values available in the
node after the generation of the IP address in a secure manner.
But if the node does not use SeND, the key pairs must be
generated the first time the node wants to send a DNS update
message. However, it is possible to use the same key pairs for a
certain period of time, which is dependent on network policy.
On the other hand, CGA-TSIG does not depend on SeND.

There are several types of attacks that our proposed
approach may prevent. Here we evaluate some of those attacks.

1) IP Spoofing
During the DNS Update process it is important that both

communicating parties know the one they are communicating
with is the real owner of that IP address and that messages have

Published as : Hosnieh Rafiee and Christoph Meinel. "A Secure, Flexible Framework for DNS Authentication in IPv6 Autoconfiguration". The 12th
IEEE International Symposium on Network Computing and Applications (IEEE NCA13), IEEE, August 22 - 24, 2013 Cambridge, MA USA.

 Table 1. Comparison of ECC and RSA

Algorithm type Key size

Average Key

Generation

(microseconds)

Average Signature

Generation

(microseconds)

Average Signature

Verification

(microseconds)

Message Encryption

<= 100 bytes data

(microseconds)

Message Decryption

<= 100 bytes data

(microseconds)

RSA 1280 bits 350651 45527 34347 1000 12701

ECC 192 bits 95544 66877 104332 - -
not been sent from a spoofed IP address. In the CGA-TSIG

approach, this can be fulfilled by the use of the CGA/SSAS
algorithm which utilizes the node for the IP address ownership
verification. In this case the node generates a public/private key
itself, and then uses the signature and the public key to prevent
this type of attack. However, it is recommended that the DNS
servers (a slave, a master or a DHCP server that wants to
update DNS records on behalf of other nodes) do a manual
exchange of the public keys or use Third Parties in order to
retrieve the proper certificates from them.

2) DNS Dynamic Update Spoofing
Because the signature contains both CGA/SSAS parameters

and the DNS update message, proof is offered of the data
integrity of the message and the validity of the update message.

3) Resolver Configuration Attack
Regardless of whether TSIG or DNSSEC is used, when our

proposed extension is implemented onto a DNS server and into
a client application, the DNS server or the client will not need
further configuration. This reduces the possibility for the
introduction of human errors in the DNS configuration file.
Since this type of attack is predicated on human error, it will be
minimized with the use of our proposed extension. For clients,
DNS clients only need to support CGA-TSIG Data fields so the
update is completely automatic. In servers, only for first time
configuration is human intervention required. In this case a
Third Party Trusted Authority is used to obtain the public key
without a need for human intervention.

4) Replay attack

Using Time Signed in the signature modifies the contents

of the signature each time the node generates it and sends it to

the DNS server. This value is the current time of the node, in

UTC. As explained in prior sections, this prevents the attacker

from copying the content from the original message.

II. CONCLUSION

DNS Update gives nodes the ability to update their DNS

records dynamically. Unfortunately, security issues exist for

DNS servers trying to authenticate nodes whose Resource

Records (RRs) need updating. Two different protocols were

introduced to secure DNS Updates: TSIG and DNSSEC. In

IPv6, when stateless autoconfiguration is used, these secure

protocols fail because in stateless autoconfiguration there is no

control over the nodes that join the network. The secure DNS

Update will thus fail the authentication process. Moreover,

when using TSIG or DNSSEC, not all processing is done

automatically. We thus propose a flexible solution where we

offer the use of asymmetric cryptography for the DNS Update

authentication process of a node within a DNS server

(extension CGA-TSIG). We also offer the same solution for

the authentication of a DNS resolver with a client. We showed

how these processes improve and automate the authentication

process. Our evaluation showed that our approaches could

prevent several types of attacks -- DNS Update spoofing, etc.

We also explained how to authenticate without needing to use

a TA, except when we want to eliminate the manual step

necessary for key exchange when authenticating two DNS

servers,

REFERENCES

[1] R. Droms, J. Bound, B. Volz, T. Lemon, C. Perkins, M. Carney,
"SEcure Dynamic Host Configuration Protocol for IPv6 (DHCPv6)",
RFC 3315, Internet Engineering Task Force, July 2003,
http://tools.ietf.org/html/rfc3315

[2] S. Thomson, T. Narten, T. Jinmei, "IPv6 Stateless Address
Autoconfiguration", RFC 4862, Internet Engineering Task Force,
September 2007, http://tools.ietf.org/html/rfc4862

[3] T. Narten, W. Nordmark, W. Simpson, H. Soliman, "Neighbor
Discovery for IP version 6 (IPv6)", RFC 4861, Internet Engineering
Task Force, September 2007, http://tools.ietf.org/html/rfc4861

[4] J. Jeong, S. Park, L. Beloeil, S. Madanapalli, "IPv6 Router
Advertisement Options for DNS Configuration", RFC 6106, Internet
Engineering Task Force, November 2010,
http://tools.ietf.org/html/rfc6106

[5] J. Arkko, J. Kempf, B. Zill, P. Nikander, "Secure Neighbor Discovery
(SeND)", RFC 3971, Internet Engineering Task Force, March 2005,
http://tools.ietf.org/html/rfc3971

[6] T. Aura, "Cryptographically Generated Addresses (CGA)", RFC 3972,
Internet Engineering Task Force, March 2005,
http://tools.ietf.org/html/rfc3972

[7] J. Jonsson, B. Kaliski, "Secure Public-Key Cryptography Standards
(PKCS) #1: RSA Cryptography Secifications Version 2.1", RFC 3447,
Internet Engineering Task Force, February 2003,
tools.ietf.org/html/rfc3447

[8] B. Wellington, "Secure Domain Name System (DNS) Dynamic Update",
RFC 3007, Internet Engineering Task Force, November 2000,
http://tools.ietf.org/html/rfc3007

[9] R. Austein, M. Larson, D. Massey, S. Rose, " DNS Security Introduction
and Requirements", RFC 4033, Internet Engineering Task Force, March
2005, http://tools.ietf.org/html/rfc4033

[10] S. Ariyapperuma, C. J. Mitchell, "Security vulnerabilities in DNS and
DNSSEC", The Second International Conference on Availability,
Reliability and Security (ARES'07), pp,:335-342, April 2007

[11] H. Rafiee, C. Meinel, "A Simple Secure Addressing Scheme for IPv6
AutoConfiguration", IEEE, The 11th Annual Conference on Privacy,
Security and Trust, July 2013

[12] D. L. R. Brown, “SEC 1: Elliptic Curve Cryptography”, Certicom
Research, http://www.secg.org/download/aid-80/sec1-v2.pdf , 2009

[13] J. Hoffstein, J. Pipher, J. H. Silverman, “An Introduction to
Mathematical Cryptagraphy”, Springer, ISBN: 978-0-387-77993-5,
2000

[14] H. Rafiee, A. AlSa’deh, C. Meinel, “Multicore-Based Auto-Scaling
SEcure Neighbor Discovery for Windows Operating Systems”, IEEE
26th of the International Conference on Information Networking (ICOIN
2012), February 2012

[15] Victor Shoup, “Elliptic Curve Integrated Encryption Scheme”,
http://www.cryptopp.com/wiki/Elliptic_Curve_Integrated_Encryption_S
cheme , 2001

http://www.secg.org/download/aid-80/sec1-v2.pdf
http://www.cryptopp.com/wiki/Elliptic_Curve_Integrated_Encryption_Scheme
http://www.cryptopp.com/wiki/Elliptic_Curve_Integrated_Encryption_Scheme

