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Abstract— The Domain Name System (DNS) is an essential part 

of the Internet on whose function many other protocols rely. One 

key DNS function is Dynamic Update, which allows hosts on the 

network to make updates to DNS records dynamically, without 

the need for restarting the DNS service. Unfortunately, this 

dynamic process does expose DNS servers to security issues. To 

address these issues two protocols were introduced: Transaction 

SIGnature (TSIG) and Domain Name System Security 

Extensions (DNSSEC). In Internet Protocol version 4 (IPv4) 

networks using these protocols eliminated security issues. In 

Internet Protocol version 6 (IPv6) however, there is an issue with 

the DNS authentication process when using the StateLess 

Address AutoConfiguration (SLAAC) mechanism (new to IPv6, 

nonexistent in IPv4). This authentication issue occurs when a 

node wants to update its resource records on a DNS server, 

during the DNS update process, or when a client wants to 

authenticate a DNS resolver to ensure that the DNS response 

does not contain a spoofed source address or message. In this 

paper we propose the use of a new mechanism which makes use 

of asymmetric cryptography to establish a trust relationship with 

the DNS server. We also consider the use of the current security 

parameters used to generate IPv6 addresses in a secure manner, 

i.e. Secure Neighbor Discovery (SeND), for assuring clients and 

DNS servers that the one they are communicating with is the real 

owner of this IP address. Since we are extending the RDATA 

field within the TSIG protocol to accommodate these new 

security parameters, we will call this new mechanism the CGA-

TSIG algorithm.  

Keywords- DNS update, DNS, CGA, IPv6 autoconfiguration, 

TSIG, NDP,CGA-TSIG, Resolver authentication 

I.  INTRODUCTION 

The Domain Name System (DNS) is a fundamental service 
of the Internet used by every application using IP addresses or 
IP devices. It is a distributed, hierarchical database which 
stores the mappings of IP addresses to hostnames. This 
hierarchy is referred to as the Domain Name System and is 
organized like an inverted tree radiating from a single root. The 
stored data is maintained in Resource Records (RRs). A RR is 
the basic data element that defines the structure and content of 
the domain name system. They are recognized by their type 
identifications. For example, type “AAAA” (IPv6 address 
record) is a RR that contains the IPv6 address of a host and 
type “NS” (Name Server record) is another RR used to identify 
the authoritative name servers for a zone. A zone is a portion of 
domain space that is authorized and administered by a primary 
name server and one or more secondary name servers. A name 
server can be a master or a slave. Master or primary name 
servers are the ones from which other name servers can transfer 

zone files. The authoritative name servers are the DNS servers 
that do not need to look for responses within their own cache, 
or to ask other name servers for the response, because they own 
this data and thus look for responses within their own RRs.  

The main function of DNS servers or name servers is to 
respond to queries asked by different hosts. In order to provide 
hosts with up-to-date responses, the DNS RRs should be 
updated as soon as any changes are made to a host’s IP 
address, a host name, or any other data that is maintained 
within the RRs. Because manually changing the RRs in a zone 
file and then restarting the DNS service would have an adverse 
effect on the performance of the DNS servers, including the 
loss of many DNS queries during the restart process, dynamic 
update mechanisms have been put in place to facilitate this 
process. The latest versions of DNS implementations support 
Dynamic DNS (DDNS). DDNS is a mechanism used to update 
DNS RRs, on-the-fly, without the need for restarting the DNS 
service. This mechanism can be used in conjunction with other 
mechanisms, one such being Dynamic Host Configuration 
Protocol (DHCP). The main problem with DDNS is its security 
vulnerability. This is due to the fact that DDNS servers support 
the basic authentication mechanism which allows a host to 
update RR records that are based on a source IP address. This 
will allow a malicious host to spoof the authorized host’s IP 
address and then to modify the RRs on the DNS server which 
is the master of a zone. In IPv4 networks some mechanisms 
have been introduced in order to secure DNS operations in 
general and DDNS operations in particular: DNS Security 
extension (DNSSEC) (RFC 4033) and Transaction SIGnagure 
(TSIG) (RFC 2845). For example, it is possible to use both the 
active directory and DHCPv4 to give only the authorized host 
the ability to make updates to DNS records.  

Although the mechanisms mentioned earlier work well in 
IPv4 networks they do not work well in IPv6 networks when 
Neighbor Discovery Protocol (NDP) is used. The NDP 
protocol requires no human intervention for the generation and 
assignment of addresses to the hosts on that network. But this 
does mean that a new host, who may be malicious, can join a 
network, can set its IP address, and then update the DNS record 
if the process is based merely on a source IP address. If any 
security mechanisms are running during DDNS, such as 
DNSSEC or TSIG, then problems could be encountered. The 
first problem relates to the manual configuration requirements 
needed for both of the previously described secure DDNS 
protocols. The second problem relates the lifetime of an IP 
address. In order to maintain privacy, the IP address should 
only be valid for a short period of time. Thus, to generate a 
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TSIG shared key, first, the key needs to be generated in the 
host and then placed on the server so that the authentication 
process can take place. Since this shared secret is only valid 
between two nodes (a host and a DNS server), this process will 
need to be repeated for all nodes on that network. This would 
again see the need for human intervention which is not really a 
viable solution. To address this issue, and to facilitate the 
authentication process when Secure NDP (SeND) is used in 
IPv6 networks, we propose to use the same parameters as are 
used in Cryptographically Generated Addresses (CGA) for 
verifying a host and for proving the address ownership of this 
host. We also propose the use of a flexible framework for the 
authentication process. 

The remainder of this paper is organized as follows: 
Section 2 will briefly summarize the IPv6 autoconfiguration 
mechanisms, Section 3 will explain the DNS functions and the 
security in use in DNS and DDNS mechanisms, Section 4 will 
introduce our proposed extension to the TSIG protocol and the 
flexible framework for DNS authentication, Section 5 will 
evaluate using our proposed mechanisms, and Section 6 will 
summarize our conclusions. 

II. IPV6 AUTOCONFIGURATION 

IPv6 represents the next generation of Internet protocol that 
was proposed in RFC 2460. The main reason for its creation 
was to address the issue of the exhaustion of IP addresses that 
exists with IPv4. There are two mechanisms, stateless and 
stateful autoconfiguration, that can be used to configure a 
node's IP address. With autoconfiguration, the node is able to 
configure its IP address as soon as it has joined a new network, 
without the need for human intervention. 

A. Stateful Autoconfiguration 

This mechanism uses Dynamic Host Configuration 
Protocol (DHCPv6) [1] as the means for configuring a node’s 
IP address. This requires a certain amount of human 
intervention with respect to the installation and administration 
of the DHCPv6 servers.  

B. Stateless Autoconfiguration 

This mechanism specifically refers to the generation of a 
link local address, the generation of global addresses via 
StateLess Address AutoConfiguration (SLAAC), and the 
verification of the uniqueness of the addresses in IPv6 
networks [2]. It is used in conjunction with other mechanisms, 
called Neighbor Discovery (ND) [3], to enable hosts to 
discover who their neighboring routers and hosts are and to 
present a means by which the host can obtain router 
information from them. 

Two different mechanisms can be used by hosts to obtain 
DNS information: stateless DHCPv6 and Router 
Advertisement (RA)-based DNS configuration [4]. The RA 
message is sent by a router detailing information about the 
router prefixes in use in this network. It is needed to enable a 
node to generate its IP address. In Stateless DHCPv6, hosts 
configure their IP addresses using stateless IP address 
configuration and receive other information that is not 
contained in the RAs from DHCPv6 servers, such as DNS 
servers. As stated in section A, the configuration of DHCPv6 

servers for this mechanism requires extra infrastructure and 
human intervention. 

An alternative mechanism that may be used, when there is 
either no DHCPv6 infrastructure or clients do not support a 
DHCPv6 client, is a RA-based DNS configuration. Use of this 
mechanism enables hosts to obtain DNS information from RA 
messages. 

C. SEcure Neighbor Discovery (SEND) 

In order to make NDP more secure an extension to NDP, 
called Secure Neighbor Discovery (SeND) [5], is used. It 
provides NDP with security enhancements. SeND adds four 
new options to NDP messages. These options are 
Cryptographically Generated Addresses (CGA) [6], timestamp, 
nonce, and signature. 

1) Cryptographically Generated Addresses (CGA) 

CGA is an important option in SeND which provides 

nodes with the necessary proof of address ownership. It does 

this by providing a cryptographic binding between a host's 

public key and its IP address without the need for new 

infrastructure. A SeND-capable node relies on a CGA 

algorithm where the new dynamic IP address is automatically 

generated by use of the node’s public key and a one-way 

hashing algorithm generated from CGA parameters. 
When a SeND-capable node wishes to generate a new IP 

address it uses a RSA algorithm [7] to generate key pairs 
(public/private keys) on-the-fly. It can also use an external 
application to generate the necessary key pairs that would then 
be made accessible to the CGA algorithm. A security level 
(Sec value) between 0 and 7 is selected. When a Sec level 
higher than 0 is selected, the strength of the generated IP 
address is higher thus providing greater protection against brute 
force attacks. Since we do use the CGA algorithm to prove IP 
address ownership, the following information is provided 
describing, briefly, how it works. 

The node - 

1. Generates a random modifier 

2. Concatenates the modifier with a zero valued prefix (64 
bits), a zero valued collision count (1 byte) and a RSA 
public key  

3. Executes a Secure Hash Algorithm (SHA1) on the result 
of step 2 and takes the 112 bits of the digest and calls it 
Hash2  

4. Compares the 16×Sec leftmost bits of Hash2 to zero. If the 
condition is not met, increments the modifier and repeats 
steps 2 thru 4. If the condition is met, goes to the next step. 

5. Concatenates the modifier with the prefix, collision count, 
and public key. Executes SHA1 on the result and calls it 
Hash1. Takes 64 bits of Hash1 and sets the first 3 left-most 
bits to the Sec value. Sets bits u and g (bits 7 and 8) to one. 
The end result is the  Interface ID (IID) 

6. Concatenates the subnet prefix with the IID and executes 
Duplicate Address Detection (DAD) against the result to 
avoid possible address collisions on the network. It sends 
all CGA parameters (modifier, subnet prefix, collision 
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count, public key) along with the messages so that other 
nodes can verify its address ownership.  

III. DOMAIN NAME SYSTEM (DNS) UPDATES 

A. DNS and its functions 

The DNS consists of a distributed tree structure of 
databases which contain individual records called Resource 
Records (RRs) -- such as AAAA, PTR, etc. Each RR describes 
the characteristics of a zone (domain) and has a binary or wire-
format, which is used in queries and responses, and a text 
format used in zone files. A detailed description of these RRs, 
as well as their message format, can be found in RFCs 1034 
and 1035.  

There are two categories of name servers:  Authoritative 
and Recursive. 

 Authoritative:  
An authoritative name server is one that gives original 
and authoritative answers to DNS queries.  

 Recursive:  
A recursive name server responds to queries about any 
domain. It first checks its own records and cache for 
the answer to the query and then, if it cannot find an 
answer, it queries other servers before passing the 
response back to the originator of the query. 

1) The mechanisms used to Update DNS 

DNS update [8] is the process of adding, changing, or 

removing a RR record in a zone’s master file. Dynamic DNS 

(DDNS) (RFC 2136) is a mechanism used to enable real-time, 

dynamic updates to entries in the DNS database. The clients or 

servers can automatically send updates to the authoritative 

name servers to modify the records they want to change.  

B. DNS Threats 

Originally DNS did not contain robust security features 

because scalability was an issue. The basic security 

mechanism of this protocol is to check whether or not the 

source and destination IP address and the query ID are the 

same as that which was sent by the resolver. If so, the query 

answer will be accepted. The use of this process makes it easy 

for an attacker to spoof this data and then send it to the client’s 

DNS resolver, or to update the node's records on the DNS 

server, in order to have the traffic forwarded to his desired 

nodes for the purpose of his gaining network access. This 

illustrates just how vulnerable this protocol is to several types 

of attack. These vulnerabilities can be classified into three 

categories; bugs in DNS implementations or other services, 

information leakage within the DNS configuration, and other 

attacks such as cache poisoning, man in the middle, DoS, and 

DDNS vulnerabilities [9, 10]. An example of how information 

leakage could occur would be when a zone transfer from a 

master to a slave server takes place. An attacker can sniff to 

obtain a copy of the entire DNS zone for a domain. He would 

thus not need to scan the entire network as he would have 

already obtained a complete listing of all the hosts in that 

domain. Moreover, when using DNS for a dynamic update in 

conjunction with other protocols, such as DHCP, the DNS 

server may become vulnerable to several other types of attack, 

such as IP spoofing, record deletion, redirection, and DoS. 

This could occur because the server is usually the master of a 

zone and the authentication for such updates is based solely on 

the source IP address 

C. Existing Security Mechanisms in DNS 

Mechanisms have been introduced in an attempt to make 
DNS more secure. . The problem with these mechanisms is that 
they only provided partial solutions to the vulnerability issues 
mentioned earlier. Therefore some extensions, such as the 
DNSSEC and TSIG, were implemented in the DNS protocol to 
try to further reduce its vulnerability. 

1) DNS Security Extension (DNSSEC) 
DNSSEC, introduced by the Internet Engineering Task 

Force (IETF), is an extension to DNS (RFC 4033) used to 
validate DNS query operations. It verifies the authenticity and 
integrity of query results from a signed zone. It uses 
asymmetrical cryptography meaning that separate keys are 
used to encrypt and decrypt data to provide security for certain 
name servers with their respective administrative domains. 
When DNSSEC is used, all responses include a digital 
signature. This prevents DNS spoofing attacks because the 
attacker does not have the same private key as the server and 
thus will be unable to sign his own response and send it to the 
victim. But a problem with using DNSSEC is that the 
signatures are not created on-the-fly because the DNS, itself, 
does not have access to the keys which would enable it to sign 
its own responses. Thus the administrator of that zone needs to 
sign each domain and sub domain manually, ahead of time, and 
then store those signatures in the SIG RRs of the DNS server. 
Also, the zone private key should be stored offline. This is the 
reason that Dynamic Update cannot be fully supported. It 
cannot generate the signature, on-the-fly, in order to respond to 
real-time queries. Also, the use of DNSSEC cannot guarantee 
the data's confidentiality because it does not encrypt the data 
but just signs it [9]. 

2) Transaction SIGnature (TSIG) 

TSIG (RFC 2845) is a protocol that provides endpoint 

authentication and data integrity using one-way hashing and 

shared secret keys to establish a trust relationship between two 

hosts that may be either a client and a server or two servers. 

The TSIG keys are manually exchanged between these two 

hosts and must be kept in a secure place. This protocol can be 

used to secure a Dynamic Update by verifying the signature 

with a cryptographic key shared with that of the receiver.  

The TSIG Resource Record (RR) has the same format as other 

records in a DDNS update request. Some fields contained in 

the TSIG RR are: Name, Class, Type, Time To Live Resource 

Data (TTL RDATA), etc. The RDATA field is used to specify 

the type of algorithm used in a one-way hashing function 

along with the other information normally included.  

IV. PROPOSED FLEXIBLE FRAMEWORK 

The current solution for automating the manual 
configuration process makes use of current security protocols, 
like TSIG or DNSSEC, which allows the use Active Directory 
(AD) or GSS-TSIG (RFC 3645). This means that the node has 
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already been authenticated and thus will be able to update the 
DNS records. To address this problem, and to offer a more 
general solution for minimizing the need for human 
intervention during the DNS authentication process, we 
propose a framework where asymmetric cryptography is used 
to provide nodes with a high level of security. There are two 
scenarios in play here. The authentication of a node (a client or 
another DNS server) to a DNS server during a DNS update, 
and the authentication of a DNS resolver with a client. In both 
scenarios we assume that the node is aware of the IP address of 
the DNS server and that of the DNS resolver. This is because 
they can get this address from the DHCPv6 server (that will not 
be secure) or from a router advertisement message after 
authenticating the router via a trusted authority. The IP 
addresses can be generated using CGA, Simple Secure 
Addressing Scheme (SASS) [11] or other mechanisms. In this 
scheme the lifetime of an IP address is not short. 

A. Authentication during the DNS Update 

There are two different scenarios in play here also. One 
pertains to the authentication of a node with a DNS server in 
order to update the DNS records, and the other pertains to the 
authentication of two DNS servers, such as a slave and a 
master. Our solution focuses primarily on the first scenario but 
it can also be used to resolve issues stated in the second 
scenario.   

When a client joins a new SeND-enabled network, it first 
generates its IP address and then must update its DNS RRs. To 
accomplish this a DNS request message is sent requesting the 
public key of the DNS server. The DNS server’s response to 
this client will include the public key contained in DNSKEY 
RR (RFC 3757) with SEP flag set to zero. This is because it is 
not the zone key. The client then verifies the public key of the 
DNS server. If the DNS server's IP address was set using 
SeND, then there will be a binding between its public key and 
its IP address. The client can then use the verification steps 
explained in [7, 11]. If the DNS server did not use SeND to set 
its IP address, it will need to provide the node with the name of 
the third party Trusted Authority (TA) where the node can 
verify the DNS server’s public key. In this case the public key 
verification process is the same as that used in Secure Socket 
Layer (SSL) processing, which is explained in RFC 6101. 
When the SSL protocol is used, the clients are provided with a 
list of TAs from which they can obtain the public keys of 
authorized nodes. After a successful verification, using either 
approach, the client saves the DNS server's public key in its 
memory, encrypts its hostname and other data using th DNS 
server’s public key and the same algorithm as is used by the 
DNS server for key pair generation, and signs this encrypted 
data, along with the DNS update message, using its own 
private key. A DNS update message is then sent to the DNS 
server. For sending this data to the DNS server, we propose an 
extension be added to the current TSIG RDATA field (this will 
be explained in more detail in the next sections). We chose to 
use the TSIG RDATA field because it has an Other Data 
section that can be used to insert the parameters necessary for 
our verification purposes. In this case we do not need to 
introduce any new RRs. 

In the case of multiple DNS servers (authentication of two 
DNS servers) there are again two possible scenarios with 
regard to the authentication process. The authentication process 
may differ from that of a node (client) with two DNS servers 
because of the need for human intervention. 

1. Manually exchange the public/private keys  

A DNS server administrator needs to manually save the 

public/private keys of a master DNS server within the 

slave DNS server. Any time any DNS server wants to 

change its IP address it needs to use these public/private 

keys for the authentication. 

2. Retrieve the public/private keys from a third party TA 

by using the SSL key verification process (explained 

earlier). 

1) Generation of a modified TSIG 
The public key and other required parameters used to 

generate a new IP address for a node can be used to create the 
TSIG RR. These values should thus be cached in the node's 
memory for later use.  

The following steps outline our proposed solution to the 
Update Request vulnerability issue.  

 Step 1. Retrieve the public/private keys and other 

parameters from cache 

The key pairs are generated using a RSA algorithm, or 

other CGA/SSAS supported algorithms, during IP address 

generation using SeND. In this step all required CGA/SSAS 

parameters are obtained from cache. If the node cannot find 

these values in cache, it will generate key pairs using ECC 

[12] or RSA algorithms. 

 Step 2. Encrypt the data using the DNS server’s 

public key 
A DNS update message consists of a header, a zone, a 

prerequisite, an update, and additional data. The header 
contains the control information (RFC 2136). The zone 
identifies the zones to which this update should be applied 
(Section 4.1.2 RFC 1035). The prerequisite prescribes the RRs 
that must be in the DNS database. The update contains the RR 
that needs to be modified or added. When our framework is 
used, the update and prerequisite sections should be encrypted 
using the DNS server’s public key and should not be sent 
unencrypted. The additional data is that data which is not a part 
of the DNS update, but is necessary in order to process this 
update. The node first encrypts the prerequisite data and the 
update section containing RRs separately using the DNS 
server’s public key and the same algorithm that the DNS server 
uses for its keypair generation, which can be RSA, ECC or any 
other future algorithm. Then it places them in the update and 
prerequisite sections of the DNS message.  To improve this, it 
is possible to encrypt the update and prerequisite sections using 
a symmetric algorithm and encrypt the shared secret using the 
DNS server’s public key. In this case the overhead for using 
public/private key encryption will be mitigated.  

 Step 3. Generate the  signature  
To generate the signature, all CGA parameters (modifier, 

collision count and subnet prefix excluding the public key) that 
were concatenated with the encrypted DNS update message 
(such as the prerequisite and the update sections) and the Time 
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Signed field, are signed using an ECC algorithm and the 
private key which was generated in the initial step for the IP 
address generation. This signature can be added, as an option, 
to the Other Data section of TSIG RDATA field. Figure 1 
shows the format of the data in this signature. Time Signed is 
the same timestamp as is used in RDATA. This value is the 
number of seconds since 1 January 1970, in UTC date and time 
format, obtained from the signature’s generator system. This 
approach will prevent replay attacks by changing the content of 
the signature each time a node wants to send a DNS Update 
Request.  

As explained in section III (Part C), the TSIG RR contains 

fields such as Name, Class, etc. We added our option to Other 

Data section of the TSIG RDATA field to accommodate the 

addition of a signature and public keys. Figure 2 shows our 

proposed options to the TSIG RDATA field. The algorithm 

type refers to CGA-TSIG. Other Len defines the overall length 

of the Other Data which contains the algorithm type used to 

generate key pairs and sign the message which, by default, 

would be ECC. Type indicates the Interface ID generation 

algorithm that was used by SeND. This field allows for the use 

of future algorithms in place of CGA. The assigned default 

value for CGA is 1. Other algorithms would be assigned 

numerical values sequentially. For example, SSAS could be 

assigned a value of 2.  If the node does not use SeND, and it 

generates its public/private key by itself, with no association 

to its IP address, then this value will be set to 0. Other fields in 

Other Data are the parameters, public keys and the signature 

(the format of this signature was explained in the prior 

section), and fields for the length of each of them. The length 

of the parameters is variable and depends on the Type. If the 

node generates a new public/private key, it needs to include 

the old public key, signed by the old private key, and add it to 

the old signature section of the CGA-TSIG data structure (see 

figure 2). The old pubkey len field contains the length of the 

old public key. It is set to zero when the public key of the node 

does not exist in the DNS server. If the node only wants to 

change its hostname, and the DNS server already has its public 

key, then the node will set both the old public key len and new 

public key len to zero. A client's public key can be associated 

with several IP addresses on a server. This allows the client to 

update his own RRs using multiple IP addresses, while at the 

same time, allowing him to change IP addresses. When a host 

sends a DNS Update message to a DNS server for the first 

time, the DNS server must save the public key and hostname 

of this node in the CGATSIGkeys table. The DNS server 

assigns the validation time to the public key and stores in 

CGATSIGkeys. If it does not receive an update request from 

the node, using this public key, during this allotted time, 

which depends on the privacy policy of the network, the DNS 

server sets a status flag, in its database for this public key, to 

inactive. These inactive records can be removed automatically 

or by the DNS administrators. 

DNS update requests/responses sent to the DNS server, or 

vice versa, should contain our modified TSIG RR to give the 

other communicating nodes the ability to validate the sender. 

These update requests/responses will contain all the required 

information needed to process the DNS Update Request. 

Whenever a client, or a DNS server, generates a DNS update 

request (it should include our proposed TSIG RR), and uses 

either TCP or UDP as the transport layer to send this Update 

Request message to one DNS server, the DNS server should 

verify this message and, according to the verification result, 

discard it without further action or process the message. When 

the process is successful, the DNS server will send a DNS 

response message back to the sender informing the sender that 

the update process was completed successfully.  

2) Modified TSIG Verification 
It is very important to authenticate senders to prevent 

attackers from making unauthorized DNS update 
modifications. Since we propose to use the CGA or SSAS 
algorithm in our approach, the first steps of the verification 
process are almost identical to those used in the CGA standard 
RFC [6] or SSAS, i.e., there will be only a few modifications. 
This is because, in CGA, there is no need to add the signature 
as it already exists in the SeND [5]. This is why the signature 
verification is considered as a part of SeND and not as part of 
the current CGA verification process. In our proposed 
approach, when a receiver (DNS server or a client) receives a 
DNS update message, it executes the following verification 
steps in sequence to authenticate the sender: 

 Step 1. Process the CGA/SSAS verifications 

The receiver will obtain all the CGA parameters from the 
TSIG RDATA field. Then Hash1 is calculated by executing 
SHA1 against these CGA parameters to obtain the 64 leftmost 
bits of the result. Hash1 is then compared to the 64 rightmost 
bits of the sender’s IP address known as the Interface ID (IID).  
Any difference in the first three leftmost bits of the IID (Sec 
value) is ignored along with the u and the g bits. u and g are 
bits 7 and 8 of the first leftmost byte of the IID. If there is no 
match, the source is considered a spoofed source IP address 
and the message is discarded without further action. 

When they match, the receiver obtains the CGA 
parameters. It sets the collision count and the subnet prefix to 
zero and executes SHA1 on the resulting data. The 112 
leftmost bits of the result is called Hash2. The 16×sec leftmost 
bits of Hash2 are compared to zero. When the condition is met, 
execute the next step. When the condition is not met, the CGA 
parameters are considered spoofed CGA parameters and the 
message is discarded without further action. When SSAS is 
used, the node follows the SSAS verification process as 
explained in [11]. If the node generates its public/private key 
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Figure 1. Modified TSIG Signature Content 
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itself, and sets its Type in the modified TSIG RR (Other Data 
field) to zero (see figure 2), then skip this step. 

 Step 2. Check the Time Signed 

The Time Signed value is obtained from TSIG RDATA and 
is called t1. The current system time is obtained and converted 
to UTC time in seconds and this value is called t2.  If t1 is in 
the range of t2 and t2 minus x seconds (see formula 1), then go 
to step 3, otherwise the source is considered a spoofed message 
and the message is discarded without further action. The range 
of x seconds is used because the update message may 
experience a delay during the transmission over TCP or UDP. 
This time value is dependent on network policy and 
transmission delay, so both times will use UTC time to avoid 
any differences in time based on different geographical 
locations.  

               (1) 

 Step 3. Verify the signature 

The signature contained in the TSIG RDATA field of the 
DNS update message needs verification. This can be done by 
retrieving the public key from the DNS server’s database or 
from the Other Data in TSIG RDATA and using this to verify 
the signature. If the verification process is successful, and the 
node does not want to update another node’s RR, then the 
Update Message is processed. If the signature verification is 
successful and the node wants to update another node’s RRs, 
then the process continues with step 4. If the verification is not 
successful, the message is discarded without further action.  

 Step 4. Verify the public key 

If a node’s public key is the same as that present in the 
CGATSIGKeys table, then process this update message. If the 
node’s public key and hostname do not exist in the 
CGATSIGKeys table, and the node does not want to update 
other nodes’ RRs (that exists in DNS database or on other DNS 
servers on the Internet), add this public key and hostname to 
the CGATSIGKeys table and process this update message. 
This is done because it is a new node that is joining this 
network. If a node wants to update a/many RR(s) on another 
DNS server, like a master DNS server wanting to update RRs 
on the slave DNS server, then the DNS server checks whether 
or not the public key retrieved from the TSIG RDATA is the 
same as what was saved manually by the administrator. If it is 
the same, then the update message is processed. Otherwise the 
message is discarded without further action. 

B. Authentication during query resolving 

The query response that is sent by the resolver back to the 

client needs to include the modified TSIG RR. However, the 

client does not need to request the resolver’s public key in a 

separate message because the resolver can include its public 

key in the same message that is sent to the client in the 

CGA/SSAS parameters field of the modified TSIG RR. 

Because a resolver responds to anonymous queries sent from 

any host, client query requests need not contain this option. 

Clients can thus authenticate resolvers and can discard 

responses that contain spoofed source IP addresses. In this 

case, when the resolver wants to generate the modified TSIG 

RR, it skips step 2 of the modified TSIG generation and does 

not include the DNS update message in the signature. The 

verification steps are the same except for step 4. 

 There are two scenarios in play here. In the first, the 

resolver generates its public/private key, itself, and does not 

associate this with its IP address. In this case, when the client 

first receives a message from the resolver, after successful 

verification, it stores the resolver’s public key in a file. For all 

further DNS queries, the client will accept the DNS response 

from the resolver with this public key.  

In the second scenario, the resolver generates its IP address 

using SeND, which makes use of the SSAS or CGA 

algorithm. This approach is more secure because the client is 

able to check the address ownership of the resolver the first 

time it receives a message from him. This way an attacker 

does not have a chance to spoof the resolver’s IP address and 

then send its own public key to the client. 

In both scenarios the client can obtain the public key from 

the CGA/SSAS parameters.  

I. EVALUATION 

A. Security Analysis 

1) Analyzing the RSA algorithm 

The security of our proposed approach relies on the degree 

of difficulty needed to break the chosen asymmetric 

algorithms. To start generating key pairs, in a RSA algorithm, 

two prime numbers called p and q are chosen [13]. Then 

     is calculated. n is used as a module for public/private 

keys and the size of that module is usually the size of 

public/private keys. The public/private keys used in the RSA 

algorithm are chosen to be the same length for security 

reasons. Then the Euler Totient Function is calculated where 

the   function is the number of prime numbers smaller than 

value n. This value is calculated using formula 1. 

 
  ( )   ( ) ( )  (   )(   )                      (  

 

The Public key consists of two values, an exponential called   

and a module called  . These two values are sent to the 

receiver of the message as a public key. The private key 

consists of      as a module, and a secret exponential called    
where        (   )(   ) . There is an attack used 

against RSA that is related to the size of the module. If the 

length of the module, known as the key size, is not enough, 

then an attacker can easily break the RSA by using a brute 
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Figure 2. Modified TSIG RR Format 
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force attack in the hope of finding the secret module. He does 

this by using the public key and the encrypted message as an 

input to the brute force function.  

There is another attack used against a factor large integer 

(factorization). A sieve prime algorithm is an efficient 

algorithm that is used to find the prime numbers smaller than a 

certain value x. The attacker can use this function to find all 

possible prime numbers less than n. Then he tries them, 

looking for a value of x to use in the brute force equation.  

2) Possible attacks against our approach 

When a node generates its public/private key by itself (not 

using SSAS/CGA), then that key is not bound to his IP 

address. During the authentication of the resolver for the first 

time, with a probability of 0.5, the attacker will be able to send 

a message with the spoofed source IP address and sign it with 

his own public key. As the node accepts the first response to 

its query from the legitimate or illegitimate resolver, this gives 

the attacker a chance to poison the client’s cache. To prevent 

this attack we propose to use a monitoring system which will 

sniff all messages sent from the resolver’s source IP address. 

If the monitoring system finds two messages at the same time, 

having two different public keys, then log the event and notify 

the network administrator. This attack will not be possible if 

the resolver generates its IP address using CGA or SSAS. 

During the DNS update, this attack cannot occur because the 

important values will be encrypted using the DNS server’s 

public key. Thus, the attacker will not know the content of the 

data sent from the node to the DNS server thereby preventing 

him from proceeding with his attacks.  

There is another attack that can be perpetrated against 

DNS servers. Attackers can send thousands of DNS update 

message using different hostnames which will deplete the 

DNS server’s resources by making it perform countless 

verification processes along with adding the public key to the 

CGATSIGKeys. Denial of Service attacks are the type of 

attacks that cannot be easily prevented unless a monitoring 

system is used. Another possibility for preventing these 

attacks would be to not allow the DNS server to accept any 

requests from nodes with unknown subnet prefixes. This 

configuration can be added to the firewall or also to the DNS 

server itself.   

3)   Implementation and Testing 
The data that we evaluated after our implementation 

consisted of generation and verification times and the packet 
from our proposed TSIG modification. For example, the 
average time needed to generate a key pair using a RSA key of 
1024-bits for 10 samples on a computer with a 2.6 GHz CPU 
processor and 2 GB RAM was less than 200 milliseconds. This 
value constitutes about 10% of the total process time for the 
CGA generation. The main problem with using the CGA 
algorithm is the effect that the computational process will have 
on performance, i.e., the computational cost involved in 
creating the CGA. SSAS is the solution to this problem. Its 
compute times are much shorter than those for CGA and it also 
provides the node with proof of IP address ownership. Another 
solution is to improve the CGA algorithm. In spite of the 
sequential nature of CGA, it is possible to improve the 
performance time for CGA generation by applying 

parallelization techniques [14]. This speeds up the process, thus 
reducing the total time spent, by a node, in generating its own 
IP address and then sending the DNS Update Message.  

Moreover, when a node once generates a CGA it does not 
need to re-generate it in order to send the DNS update message. 
As was explained in previous sections, it can cache that value 
and fetch it from memory whenever it is needed. This means 
that once it is generated, CGA will be available for different 
uses until it is time for the generation of another IP address.  

The use of the ECC algorithm, as the default algorithm, is 
preferable in solution to sign the message, but it is not practicle 
for message encryption. This is because currently the ECC 
algorithm is only available for digitally signing the message 
and for symmetric encryption using a shared secret. This 
shared secret should be exchanged manually or it should be 
encrypted using an assymetric encryption like RSA. Elliptic 
Curve Integrated Encryption Scheme (ECIES) [15] is an 
assymetric encryption based on Diffie-Hellman Integrated 
Encryption Scheme (DHIES) proposed by Victor Shoup in 
2001, but, It is not widely used for encryption purposes. Table 
1 shows that an ECC with a 192 bit key size can be used for 
digitally sign the data. This is equivalent to a 7680 bit RSA key 
size. In this case, the packet size would be decreased by a 
factor 11 times smaller than when using RSA. RSA key 
generation and signature generation and verification times, 
using a higher key size than what is shown in this table, are 
really slower than those for ECC. But using the current key 
sizes, i.e., 1280 key size, RSA performs better than ECC. We 
also evaluated the encryption and decryption times of messages 
of 50 bytes and 100 bytes. Our results showed that decryption 
consumed more time than encryption, but with this size of 
message, the total time was a small value, less than a 15000 
microseconds.  

A. Threat Analysis 

Allowing more flexibility in the authentication process, i.e., 
letting the host generate the public/private key itself, alleviates 
the host's dependency on other network services, such as 
SeND. Even though this high flexibility will work well for the 
authentication of a node during a DNS update, it might allow 
an attacker to spoof the IP address of the resolver the first time 
the node asks for a DNS query from a resolver during the DNS 
resolver to client authentication process. There are both 
advantages and disadvantages concerning the generation of key 
pairs using the DNS service or of the use of cached data. For 
example, CGA-TSIG uses the cached values available in the 
node after the generation of the IP address in a secure manner. 
But if the node does not use SeND, the key pairs must be 
generated the first time the node wants to send a DNS update 
message. However, it is possible to use the same key pairs for a 
certain period of time, which is dependent on network policy. 
On the other hand, CGA-TSIG does not depend on SeND.  

There are several types of attacks that our proposed 
approach may prevent. Here we evaluate some of those attacks. 

1) IP Spoofing  
During the DNS Update process it is important that both 

communicating parties know the one they are communicating 
with is the real owner of that IP address and that messages have  
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                                                        Table 1. Comparison of ECC and RSA  

Algorithm type Key size 

Average Key 

Generation 

(microseconds) 

Average Signature 

Generation 

(microseconds) 

Average Signature 

Verification 

(microseconds) 

Message Encryption 

<= 100 bytes data 

(microseconds) 

Message Decryption  

<= 100 bytes data 

(microseconds) 

RSA 1280 bits 350651 45527 34347 1000 12701 

ECC 192 bits 95544 66877 104332 - - 
not been sent from a spoofed IP address. In the CGA-TSIG 

approach, this can be fulfilled by the use of the CGA/SSAS 
algorithm which utilizes the node for the IP address ownership 
verification. In this case the node generates a public/private key 
itself, and then uses the signature and the public key to prevent 
this type of attack. However, it is recommended that the DNS 
servers (a slave, a master or a DHCP server that wants to 
update DNS records on behalf of other nodes) do a manual 
exchange of the public keys or use Third Parties in order to 
retrieve the proper certificates from them.  

2) DNS Dynamic Update Spoofing 
Because the signature contains both CGA/SSAS parameters 

and the DNS update message, proof is offered of the data 
integrity of the message and the validity of the update message. 

3) Resolver Configuration Attack 
Regardless of whether TSIG or DNSSEC is used, when our 

proposed extension is implemented onto a DNS server and into 
a client application, the DNS server or the client will not need 
further configuration. This reduces the possibility for the 
introduction of human errors in the DNS configuration file. 
Since this type of attack is predicated on human error, it will be 
minimized with the use of our proposed extension. For clients, 
DNS clients only need to support CGA-TSIG Data fields so the 
update is completely automatic. In servers, only for first time 
configuration is human intervention required. In this case a 
Third Party Trusted Authority is used to obtain the public key 
without a need for human intervention. 

4) Replay attack 

Using Time Signed in the signature modifies the contents 

of the signature each time the node generates it and sends it to 

the DNS server. This value is the current time of the node, in 

UTC. As explained in prior sections, this prevents the attacker 

from copying the content from the original message. 

II. CONCLUSION 

DNS Update gives nodes the ability to update their DNS 

records dynamically. Unfortunately, security issues exist for 

DNS servers trying to authenticate nodes whose Resource 

Records (RRs) need updating. Two different protocols were 

introduced to secure DNS Updates: TSIG and DNSSEC. In 

IPv6, when stateless autoconfiguration is used, these secure 

protocols fail because in stateless autoconfiguration there is no 

control over the nodes that join the network. The secure DNS 

Update will thus fail the authentication process. Moreover, 

when using TSIG or DNSSEC, not all processing is done 

automatically. We thus propose a flexible solution where we 

offer the use of asymmetric cryptography for the DNS Update 

authentication process of a node within a DNS server 

(extension CGA-TSIG). We also offer the same solution for 

the authentication of a DNS resolver with a client. We showed 

how these processes improve and automate the authentication 

process. Our evaluation showed that our approaches could 

prevent several types of attacks -- DNS Update spoofing, etc. 

We also explained how to authenticate without needing to use 

a TA, except when we want to eliminate the manual step 

necessary for key exchange when authenticating two DNS 

servers, 
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