
HPISecure: Towards Data Confidentiality in Cloud
Applications

Eyad Saleh
Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

eyad.saleh@hpi.uni-potsdam.de

Christoph Meinel
Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

christoph.meinel@hpi.uni-potsdam.de

Abstract—Cloud computing has emerged over the last years
as a new model of delivering computation to consumers. Due
to the nature of the cloud, where the data and the computation
are beyond the control of the user, data privacy and security
becomes a vital factor in this new paradigm. Several research
studies reported that security and privacy is cited as the biggest
concern in adopting cloud computing. In this paper, we present
HPISecure, a software prototype designed to facilitate the process
of securing data stored on the cloud. HPISecure allows the
user to store an encrypted version of his data on the cloud
without breaking the functionality of the application. HPISecure
intercepts the HTTP request/response objects, encrypt data before
transmitting to the cloud, and decrypt data received back from
the server. We have successfully tested HPISecure with Google
Docs and Google Calender. Future work includes extending
HPISecure to work with enterprise applications.

I. INTRODUCTION

Software-as-a-Service (SaaS) has been growing rapidly
over the last years and seems to be a promising software
delivery model [1]. Gartner reported that SaaS is expected to
have a healthy growth through 2015, where worldwide revenue
is projected to reach $22 billion [2]. SaaS provides major
advantages to both service providers as well as consumers.
Service providers can provision a single set of hardware to host
their applications and manage hundreds of clients (tenants).
They can easily install and maintain their software. As for the
consumers, they can use the application anywhere and anytime,
they are relieved from maintaining and upgrading the software
(on-premises scenario), and benefit from cost reduction by
following the pay-as-you-go model [3].

Although SaaS offers several advantages to both service
providers and users, such as the reduction of Total Cost
of Ownership (TCO), better scalability, and better resource
utilization, the users are still concerned about the security
and privacy of their data. Privacy concerns exist wherever
information about individual or organizations is processed and
stored. Improper disclosure of information can be the cause
for privacy issues. In 2009, Forrester Research reported that
Privacy and Security has been selected by IT professionals
as the primary barrier for not widely adopting the cloud
computing.

Data encryption is a common approach to protect the
confidentiality of user’s data during transmission and storage
[6], [7]. As for computation, a fully homomorphic encryption
scheme has been introduced by [8] as a result of joint efforts

between Stanford and IBM. This scheme supports computation
over encrypted data. However, we believe that such a technique
is still in the early stages of development, and would require
huge extra cost. Another approach can be referred to as infor-
mation disassociation [18], where the information is separated
into parts, these parts are stored in geographically-distributed
locations, therefore any party involved can not benefit from
the data it hosts. In our work, we offer a hybrid-approach,
where we combine the usage of encryption and disassociation
to increase the level of confidentiality the user is looking for.
Recent approaches such as CloudProtect [19] and Silverline
[20] are closely related to HPISecure. Both of them support
keeping the data at the server-side confidential by encryption
in away that is transparent to the application. However, both of
them requires additional software or configuration to be made
on the client machine, which prevents the user from using
other computers to access his data (which we try to avoid),
and hence, violates the basic concept behind the cloud.

The contribution of this paper is threefold: First, we
introduce a hybrid-approach to achieve data confidentiality
without breaking the functionality of the application. Second,
we present a technique to distribute the data on multiple
storage providers to increase the level of security. Third, we
implement our approach as an HTTP proxy that could be
installed on the client’s machine, and evaluate it against Google
Docs and Google Calendar.

The rest of this paper is organized as the following: We
provide a background in Section II. An overview of HPISecure
and the details of its components is presented in Section
III. In Section IV, we present some experiments. Section V
outlines the limitations of our approach. Finally, we discusses
the related work and concludes the paper in Section VI and
VII respectively.

II. BACKGROUND

The definition of privacy varies widely among countries,
organizations, cultures, and even individuals. However, it
shares (to some extent) common basics. Privacy can be defined
as the ability or wish of an individual or group to remain
unidentified to the public society. Another definition that is
becoming popular is The rights and obligations of individuals
and organizations with respect to the collection, use, retention,
and disclosure of personal information. This definition has
been provided by the American Institute of Certified Public

2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing

978-0-7695-4996-5/13 $26.00 © 2013 IEEE

DOI 10.1109/CCGrid.2013.109

605

Accountants (AICPA) and the Canadian Institute of Chartered
Accountants (CICA) in the Generally Accepted Privacy Prin-
ciples (GAPP) standard [4].

Online inquiries about individuals and organizations have
grown dramatically over the last decade. Social-networking
websites have millions of users registered, the information
of those users are subject to privacy violation. For instance,
Microsoft reported that 75 percent of the US human resource
professionals are using the internet to inquire about their
candidates. In addition, 70 percent of the recruiters have
rejected candidates based on online resources [5].

Data privacy is a critical issue in several domains, such as
healthcare, financial records, criminal records, residence and
geographic records, etc. In addition to that, particularly in
SaaS, the storage of data and the computation is beyond the
control of the user, therefore the user needs to make sure that
high-level standards of security and privacy are implemented
to keep his data confidential.

Although service providers claim that their data centers
are secured by implementing complex security protocols and
enforcing privacy best-practices, actual deployment does not
really reflect this. For instance, Amazon’s S3 was interrupted
twice in 2009. Another issue in 2009 was with Google Mail,
where a security vulnerability led to serious leakage of user
private information. Microsoft fell into such issues also when
the Azure platform had an outage for 22 hours. And therefore,
our efforts in this paper try to propose a solution to such a
critical issue.

III. OVERVIEW OF HPISECURE

The overall goal of HPISecure is to improve the confiden-
tiality of users’ data stored on the cloud. We propose an end-
to-end encryption approach using public-key cryptography to
secure the data. Currently, we focus on the documents-based
applications, such as Google Docs. In our future work, we
will study the database-based applications, such as Customer-
Relationship Management (CRM) and Human Resource Man-
agement (HRM) applications. We implemented HPISecure on
top of Fiddler [11] as an HTTP proxy installed on the client
machine, where the Request/Response objects of the HTTP
protocol are intercepted, configured encryption/decryption al-
gorithms are applied, and existing exceptions (if there is any)
are enforced.

Currently, there are several applications that offer securing
the content on the cloud by utilizing cryptographic techniques
[9], [10]. However, such applications limit the user to use
his personal computer whenever he needs to access his data,
because the application, the encryption/decryption keys, as
well as other information is stored on his machine along with
the application. And hence, he can not use other computers to
access his data, which violates the basic concept behind the
cloud (access your date anywhere and anytime). Therefore, our
approach overcomes this limitation by introducing the concept
of the Facilitator as shown in Figure 1.

The Facilitator here could be the company that the user
works for, it could be another cloud provider, or it could be a
USB device. The idea of the Facilitator is simple, we need to
relieve the client machine from storing the cryptographic keys

and other related data, and move this stuff to the facilitator.
In this case, the client machine will be transparent to our
approach, i.e., the user can use any computer to securely access
his data, not only the machine that he used for the first time.

If the user works for a company, the Facilitator would
be the internal web server of the company, where HPISecure
will be installed. When the client try to create/save his data
on the cloud for the first time, the request will be routed
through the company’s internal server, where the request will
be intercepted, the data will be encrypt according to the
preferences configured in HPISecure for this user, then proceed
with the request to store the data securely in the cloud. For the
upcoming requests when the user browse his data, the request
for fetching the data will be also routed through the company’s
internal server, when the encrypted data retrieved, it will be
intercepted, decrypted according to the user preferences by
HPISecure, then sent to the user machine.

Individuals can use the same concept, but the Facilitator
in this case refers to a third-party cloud provider, where the
keys and related information will be stored. The same process
mentioned earlier will be applied here. Finally, if the user
doesn’t belong to an organization (i.e., individual) and does
not prefer to use third-party providers, the USB device is
the choice. Using the USB device allows the user to store
the cryptographic keys, configuration files, and any related
information on a USB device, whenever he needs to use a
new computer, all he requires is installing HPISecure, plug the
USB, retrieve the keys and configuration files, then securely
send/receive his data.

A. Archeticture of HPISecure

The architecture of HPISecure is shown in Figure 1. The
main components are: Encryption Manager, HTTP Parser,
Algorithms Manager, Keys Manager, Database, Exceptions
Handler, Distribution Manager, Controller, and Facilitator.
To better explain HPISecure, we will describe its components
using a use case as detailed below.

HPISecure

Database

Encryption
Manager

Keys
Manager HTTP Parser

Algorithms
Manager

Exceptions
Handler

Controller

Server

Client

Distribution
Manager

Facilitator

Fig. 1. HPISecure Architecture

1) Encryption Manager: Google Docs is widely used to
create new documents or modify existing ones. That is why
we select it to be our main use case. HPISecure intercept the
Request/Response HTTP objects to encrypt/decrypt the content
before sending/receiving it from the server. For example, when

606

the user creates a new document, the following steps are
accomplished before saving the document to the server:

• HPISecure calls the HTTP Parser to read the content
of the Request object (i.e., the content of the docu-
ment)

• In case of Google Docs, we split the content into
two parts according to the index of the characters. All
characters that have odd index are stored in part one,
while the others (i.e., characters of even indexes) are
stored in part two.

• The Algorithms Manager randomly select one of the
standard encryption algorithms that the user configure
to use by HPISecure, such as RSA or AES256.

• Two different keys are selected from a pre-defined
group of keys by the Keys Manager. Each one is
assigned to the newly created parts that have been
shown in Figure 2.

• If there are exceptions created by the user, the Excep-
tions Handler is responsible for applying them.

• The Distribution Manager is used to handle how
the storage of the document after encryption looks
like. For instance, is it going to be stored only on
Google’s servers, or each part of the document (the
newly created parts) should be stored in two different
locations, e.g., one on Google’s servers while the other
on Amazon S3.

• Finally, the Encryption Manager combine all the
above steps, store these details in the database for
future use, and then issues an encrypted content, then
post it to the server(s) according to the specifications
of the Distribution Manager.

• When the user request to read the document, the
Encryption Manager follows the same steps above,
but to decrypt the content (instead of encrypt) and
displays it on the user’s screen.

2) HTTP Parser: The main role of the HTTP Parser is
intercepting the Request/Response objects between the client
and the server, extract the required information from the
headers and the body of the object, then pass these information
to the Controller. In some cases, additional headers might be
added, such as the date. The Controller will also pass the
encrypted data back to the HTTP Parser to post it to the server.

Fiddler [11] offers the possibility of intercepting requests
before and after sending them to the server. It also offers
the same for the response objects. Thus, by utilizing Fiddler,
we are able to intercept and manipulate request/response
objects when required. Furthermore, Fiddler offers the entire
request/response objects and their data as a .NET objects,
that is accessible to any application that extends Fiddler, so
extending Fiddler allows us to read all headers and body
content of the request/response objects, add new content,
change exiting content, and delete unwanted data.

3) Algorithms Manager: This component is simply respon-
sible for selecting randomly one of the encryption algorithms
from the user’s pre-defined list. Encryption algorithms here

refer to any standard algorithm, such as RSA or AES256. Since
encryption itself is not a focus-point in this paper, we will
not discuss the details of implementing them. This selected
algorithm is used to encrypt the current document. This
indicates that the same document might be encrypted using
different algorithms, and therefore, storing these information
in an internal database for further usage is necessary, and this
is the role of the Database component.

When an encryption algorithm is selected to be used,
HPISecure stores all related information in the database, such
as document title, creation date, modification date, user-id,
algorithm name, encryption key, etc. This information will be
called back to decrypt the document when the user browse it
again. Worth to mention that the database is neither stored on
the client machine, nor on the provider side, the Facilitator
is used to achieve this goal. The details of the Facilitator has
been described in Section III.

4) Keys Manager: Two major types of encryption could
be used to protect data, symmetric-key cryptography and
public-key cryptography. symmetric-key uses the same key for
encrypting and decrypting the data, while the public-key uses
two keys, a public one for encrypting, and a private key for
decrypting the data. HPISecure uses public-key cryptography.
However, to make it very hard for malicious users to uncover
the private key of the user, the Key Manager randomly select a
key among a group of private keys that the user use, thus, the
same document might be encrypted using different keys. As
a result, if a malicious user suddenly get access to the user’s
private key, this does not explicitly means that he can access his
documents, because every document may be encrypted using
different keys.

Unfortunately, our approach limits the sharing and collab-
oration of encrypted documents. However, the most obvious
solution for this limitation is to use symmetric-key cryptogra-
phy, and share the encryption key with all parties. Although
this sound applicable, it does not reflect a high-level of security.
Therefore, one of our extensions to HPISecure would focus on
what we call the group signature, where we use one encryption
key for a group of users whom sharing a certain document.
Consequently, the encryption will be group-based instead of
document-based, which increases the level of security and
reduces the number of keys, and hence, reduces the complexity
of managing them.

5) Exceptions Handler: It is obvious that protecting data
using cryptography involving extra overhead that grows with
the desired level of security. Thus, allowing the user to trade-
off the level of security for performance is useful. Exceptions
Handler facilitate this purpose by allowing the users to define
exceptions and actions. Actions might vary from no encryption
to strong encryption. For instance, an exception might be (if the
document contains the word ’price’) then the action should be
’strong encryption’. While another exception might be (if the
title of the document has the word ’John’) then no encryption
is needed. Strong encryption means that the document is
splitted into two parts, encrypted using a complex encryption
algorithm, and then distributed on different locations. These
exceptions are stored in the database and can be modified as
needed.

607

Fig. 2. An Example of a Calendar Event Before and After Encryption

IV. EXPERIMENTS

We develop HPISecure as a proof-of-concept to validate
our approach. We tested our approach against Google Docs
and Google Calendar. Figure 3 shows an example of a Google
Calender’s event before and after encryption.

Google Calendar. The user opens Google Calender and
create a new event, HPISecure intercept the event and encrypt
the data, then send it to the server. Thus, the data will be
securely stored at the server. When the user browse the event
again, the encrypted data will be retrieved by the browser,
HPISecure decrypt the data (on the user’s machine) according
to the private-key that matches the public-key that is used
to encrypt the data, then displays the plain text to the user.
Required meta-data to handle the encryption/decryption is
stored in the database, such as IDs of the events, the ID of
the key used for encryption, etc.

Google Docs. There are basically two options to work with
Google Docs, either you create new file on the fly, or upload
a file from your local drive. As a proof-of-concept, we focus
only on the first option (on the fly). As with Google Calendar,
HPISecure reads the content of the file, split it into two parts
(as detailed in section II), then encrypt them. A call to the
distribution manager to decide how to store the encrypted parts.
We incorporate Amazon’s .NET SDK for S3 in HPISecure to
create, manage, and delete objects in Amazon S3.

V. LIMITATIONS OF HPISECURE

Enterprise Applications. The main target of HPISecure
is the document-based applications. Encrypting documents is
much easier than structured data, such as database records.
Therefore, we started with it, and part of our future work is
to extend HPISecure to work on enterprise applications, such
as Customer Relationship Management (CRM) and Human
Resource Management (HRM).

Availability. Securing data on the cloud involve several
factors, such as cost, availability, performance, etc. Although
we provide a distribution technique to achieve higher level
of security and performance, availability concerns remains in
question.

Desktop Implementation. HPISecure is currently imple-
mented as a desktop application, which violates the concept

of mobility available in the cloud. Thus, a web-based imple-
mentation of HPISecure is needed. We will consider this also
in our future work.

VI. RELATED WORK

Protecting users’ data is an essential task in current sys-
tems. Researchers are proposing approaches and solutions to
maximize the confidentiality of users’ data. Social networks
is considered as an interesting area to study the impact of
privacy issues on. FlyByNight[12] and Persona[13] are mainly
designed to work with social networks, such as Facebook.
They propose to store an encrypted version of the messages
on Facebook’s servers in away that is transparent to Facebook
functionality. Thus, users will continue to use Facebook as
usual while maximizing the level of their privacy. The main is-
sue with such approaches is that they are designed specifically
for social networks and cannot be applied to other domains.
Several researchers [13], [14], [16], [17] propose solutions to
perform some sort of processing on encrypted data, such as
search and information sharing. However, all these approaches
involves modifying the database layer as well as the application
code, which is not the focus of our work, where we try to
maximize the data confidentiality without changing/breaking
the functionality of the application. Trusted cloud computing
platform (TCCP) has been proposed by [15]. The idea is to
provide a closed-box execution environment for the consumers,
guaranteeing that the cloud provider cannot tamper with the
users data. Moreover, it allows the consumers to remotely
check whether the server is running a TCCP implementation or
not. The main limitation of this approach is the infrastructure
provider, since they need to adopt TCCP first, then consumers
are capable of using it. CloudProtect [19] and Silverline
[20] are closely related to HPISecure. Both of them support
keeping the data at the server-side confidential by encryption in
away that is transparent to the application. However, Silveline
proposed to dynamically analyze the application to determine
which parts of the data can be functionally encryptable. It
divides the users into groups, and assign a single encryption
key to this group, facilitating encryption and information
sharing at the same time. It assumes that any data is accessed
by functions initiated by the user cannot be encrypted. In
contrast to Silverline, CloudProtect encrypt all users’ data
and route users request to operate on it, if certain operations

608

requires data to be in plain text, it implements a protocol to
expose this data for a short period of time. This would require
an extra overhead, and so they introduced a relaxation policy
to allow the user to trade-off security for performance.

VII. CONCLUSION

Data confidentiality is one of the key concerns in cloud
computing. Organizations are not widely adopting the cloud
because of issues related to security and privacy of their data.
In this paper, we present HPISecure, a software prototype
designed to facilitate the process of securing data stored on
the cloud. HPISecure allows the user to store an encrypted
version of his data on the cloud without breaking the func-
tionality of the application. HPISecure intercepts the HTTP
request/response objects, encrypt data before transmitting to
the cloud, and decrypt data received back from the server.
We have successfully tested HPISecure with Google Docs and
Google Calender. There are still open challenges that we plan
to cover in the future work, such as extending HPISecure
to work with enterprise applications. Implement HPISecure
as a web-based applications instead of desktop application.
Trading off availability for security is a critical point that is
not deeply covered by this work, we plan to include it in the
next extension of HPISecure.

ACKNOWLEDGMENT

The authors would like to thank Mohammad AbuJarour
from SAP for his valuable insights and feedback.

REFERENCES

[1] A. Konary, S. Graham, and L. Seymour: The future of software licensing:
Software licensing under siege. International Data Corporation, White
Paper, 2004.

[2] Gartner website: Software-as-a-Service Revenue. [Online]. Available:
http://www.gartner.com/newsroom/id/1963815 [retrieved: Mar, 2013]

[3] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, and M. Zaharia: Above the Clouds:
A Berkeley View of Cloud Computing. Technical Report, University of
California, Berkeley, USA, 2009.

[4] The AICPA website. Generally accepted privacy principles. [Online].
Available: http://www.aicpa.org/InterestAreas/InformationTechnology/
Resources/Privacy/GenerallyAcceptedPrivacyPrinciples [retrieved: Jan,
2013]

[5] Cross-Tab Marketing Services. (Jan, 2010). Online Reputation
in a Connected World. [Online]. Available: http://www.job-
hunt.org/guides/DPD Online-Reputation-Research overview.pdf
[retrieved: Jan, 2013]

[6] C. Wang, Q. Wang, K. Ren, and W. Lou: Ensuring data storage security
in cloud computing. In Proc. IWQoS 09, Charleston, South Carolina,
USA, 2009.

[7] A. Saha: Computing on encrypted data. In Proc. ICISS 2008, Hyderabad,
India, 2008.

[8] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford,
2009.

[9] BoxCryptor website. [Online]. Available: http://www.boxcryptor.com [re-
trieved: April, 2013]

[10] TrueCrypt website. [Online]. Available: http://www.truecrypt.org [re-
trieved: April, 2013]

[11] Fiddler website. [Online]. Available: http://www.fiddler2.com [re-
trieved: April, 2013]

[12] M. M. Lucas and N. Borisov. Flybynight: mitigating the privacy risks
of social networking. In Proc. of ACM WPES, Virginia, USA, 2008.

[13] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Strain.
Persona: An online social network with user-defined privacy. In Proc.
of ACM SIGCOMM, Barcelona, Spain, 2009.

[14] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. Public
key encryption with keyword search. In proc. of Eurocrypt, Interlaken,
Switzerland, 2004.

[15] N. Santos, K. P. Gummadi, and R. Rodrigues. Towards trusted cloud
computing. In Proc. of HotCloud, San Diego, USA, 2009.

[16] H. Haclgümüs, B. Lyer, C. Li, and S. Mehrotra. Executing SQL over
encrypted data in the database-service-provider model. In Proc. of ACM
SIGMOD, Wisconsin, USA, 2002.

[17] H. Wang and L. V.S. Lakshmanan. Efcient secure query evaluation over
encrypted XML databases. In Proc. of VLDB, Seoul, Korea, 2006.

[18] K. Zhang, Y. Shi, Q. Li, and J. Bian. Data Privacy Preserving
Mechanism based on Tenant Customization for SaaS. In Proc. IEEE
MINES, Wuhan, China, 2009.

[19] M. H. Diallo, B. Hore, E. C. Chang, S. Mehrotra, and N. Venkatasub-
ramanian. CloudProtect: Managing Data Privacy in Cloud Applications.
In Proc. IEEE Cloud, Hawaii, USA, 2012.

[20] K. P. N. Puttaswamy, C. Kruegel, and B. Y. Zhao. Silverline: toward
data confidentiality in storage-intensive cloud applications. In Proc. of
ACM SOCC, Cascais, Portugal, 2011.

609

