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Abstract—Public cloud storage services enable organizations
to manage data with low operational expenses. However, the
benefits come along with challenges and open issues such as
security and reliability. In our work, we presented a system
that improves availability, confidentiality and reliability of data
stored in the cloud. To achieve this objective, we encrypt user’s
data and make use of erasure codes to stripe data across cloud
storage providers.

In this paper we focus on the need to identify an algorithm
for encoding and reassembling the data from the clouds.
Erasure codes have been introduces more than three decades
ago. Due to new technology trends and powerful hardware,
new codes as well as improvements on classic codes have
been developed recently. Therefore, we provide an overview
of the current state of erasure codes. Further, we introduce
the relevant codes in detail and compare them on the basis
of identified criteria that are relevant to their application in a
cloud context. Furthermore, we take a look at the current open
source libraries, that support the discussed algorithms. The
comparative study will help us to identity the best algorithm
for our Cloud-RAID system.

I. INTRODUCTION

The usage of computing resources as pay-as-you-go
model enables service users to convert fixed IT cost into
a variable cost based on actual consumption. Therefore, nu-
merous researchers argue for the benefits of cloud computing
focusing on the economic value [1], [2].

However, despite of the non-contentious financial advan-
tages cloud computing raises questions about privacy, secu-
rity and reliability. Among available cloud offerings, storage
services reveal an increasing level of market competition.
According to iSuppli [3] global cloud storage revenue is set
to rise to $5 billion in 2013, up from $1.6 billion in 2009.
One reason is the ever increasing amount of data which is
supposed to outpace the growth of storage capacity.

For a customer (service) to depend solely on one cloud
storage provider has its limitations and risks. In general,
vendors do not provide far reaching security guarantees
regarding the data retention [4]. Placement of data in the
cloud removes the physical control that a data owner has
over data. So there is a risk that a service provider might
share corporate data with a marketing company or use the
data in a way the client never intended. Further, customers

of a particular provider might experience vendor lock-in. In
the context of cloud computing, it is a risk for a customer
to become dependent on a provider for its services.

In our previous work [5], [6] and [7] we presented an
approach that deals with the mentioned problems by sepa-
rating data into unrecognizable slices, that are distributed to
different providers. It is important to note, that only a subset
of the providers needs to be available in order to reconstruct
the original data.

To achieve this goal, we aim to utilize erasure codes.
In order to find the best algorithm for our application,
we conduct a comparative analysis on relevant algorithms.
Erasure codes have been around since the 1960s already and
originate in information theory rather than engineering [8].
In general, the algorithms have not been widely applied up
to some years ago. This is mainly due to the fact that the first
algorithms have been based on Galois field operations which
have not been well supported by CPUs and therefore were
not applicable for large data sets. However, recent hardware
and software development [9] enabled the support for fast
calculations of required operations and paved the way for
the usage of erasure codes.

In recent years, the number of new erasure coding tech-
niques has been rising fast. New codes have been created
out of the need for simpler erasure codes based on CPU-
supported operations in earlier years. Furthermore, new era-
sure codes adapted to the characteristics of new technology
trends like Multicore and Multinode Systems, Big Data,
and Cloud Computing. While some codes focus more on
better encoding and decoding performance compared to the
first erasure codes, others aim to reduce the repair traffic.
A comprehensive overview of the existing erasure codes
and their characteristics is needed. This paper provides an
overview of the status quo of relevant erasure codes and
helps us by the identification of an appropriate algorithm
for our system.

The contributions of this paper comprise:
• An overview of new and classic erasure codes. In

general, erasure algorithms can be distinguished by the
intention to reduce the so-called storage overhead and
by the intention to reduce the repair traffic. This paper



provides an introduction to a number of selected codes.
• A direct comparison of relevant erasure algorithms.

We have identified several criteria to enable a direct
comparison between listed codes (with regard to the
requirements of our system).

• An overview of available erasure implementations. Sev-
eral frameworks for erasure coding exist nowadays; this
paper introduces those that are widely used and freely
available while also highlighting the implemented era-
sure codes.

The remainder of this paper is structured as follows: in
sections III and IV we introduce the general architecture
of our application and describe the creteria needed for
the comparison of the presented algorithms. Section V
afterwards provides an overview of the selected erasure
codes and describes their characteristics. Then, in Section VI
we present a list of open source erasure code frameworks.
Finally, in Section VIII we conclude with a discussion of
the implications of the conducted survey to the Cloud-RAID
system.

II. RELATED WORK

Erasure codes have been evaluated on a variety of metrics
and criteria, such as the CPU impact of encoding and
decoding [10], [11]. The coding and decoding performance
of different erasure codes can vary significantly. Concerning
the performance of the codes, the overview presented in this
paper does not provide any formulas, experiment results or
calculations. Providing generic formulas is rather complex,
since the performance of the codes is highly dependent
on the specific configurations of the codes, the libraries
used for the experiments, and the specific scenarios for
encoding and decoding (e.g. the number of failed chunks
for decoding). Furthermore, several performance evaluations
have been already conducted [12], [13], [14] for all the codes
presented in this paper.

However, in our specific use case the performance of
individual algorithms plays a role that is certainly important,
but not decisive: in our tests presented in [6] and [5] we
observed, that the average performance overhead caused by
data encoding is less than 2% of the amount of time for data
transfer to a cloud provider. With this, encoding is dominated
by the transmission times and can be neglected. Here, the
storage overhead and the I/O traffic are more important, as
the values are associated with costs. There has been some
work lowering I/O costs in erasure-based systems. As stated
in chapter V, Rotated RD codes have been designed to lower
I/O costs on recovery. However, in this paper we do not
intend to improve a specific algorithm, but to undertake a
comparative analysis on relevant algorithms.

III. MOTIVATION

The ground of our approach is to find a balance between
benefiting from the cloud’s nature of pay-per-use and en-

suring the availability of the company’s data. As mentioned
above, the basic idea is not to depend on solely one storage
provider but to spread the data across multiple providers
using redundancy to tolerate possible failures. The approach
is similar to a service-oriented version of RAID. While
RAID manages sector redundancy dynamically across hard-
drives, our approach manages file distribution across cloud
storage providers. We carry the principle of the RAID-
technology to cloud infrastructure. In order to achieve our
goal we foster the usage of erasure coding techniques. The
system has a number of core components that contain the
logic and management layers required to encapsulate the
functionality of different storage providers. Our architecture
(see Figure 1) includes the following main components:
• User Interface Module. The interface presents the user

a cohesive view on his data and available features. Here
users can manage their data and specify requirements
regarding the data retention (quality of service param-
eters).

• Resource Management Module. This system com-
ponent is responsible for intelligent deployment of
data based on users’ requirements. The component is
supported by:

– a registry and matching service: assigns storage
repositories based on users requirements (for ex-
ample physical location of the service, costs and
performance expectations). Monitors the perfor-
mance of participating providers and ensures that
they are meeting the agreed SLAs

– a resource management service: takes operational
decisions regarding the content storage

– a task scheduler service: has the ability to schedule
the launch of operations at peak-off hours or after
specified time intervals.

• Data Management Module. This component handles
data management on behalf of the resource manage-
ment module and is mainly supported by:

– a data encoding service: this component is respon-
sible for striping and encoding of user’s content

– a data distribution service: spreads the encoded
data packages across multiple providers. Since
each storage service is only accessible through a
unique API, the service utilizes storage ”service-
connectors”, which provide an abstraction layer for
the communication to storage repositories

– a security service: manages the security function-
ality based on a user’s requirements (encryption,
secret key management).

With this, we consider a distributed multiple cloud storage
setting from user’s perspective, such as we stripe data
over multiple clouds. Interested readers will find more
background information in our previous work [5],[6]. In
the following, we will analyze existing erasure codes to
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Figure 1. A general architecture of the Cloud-RAID system.

decide on an appropriate algorithm to encode and repair the
outbound data.

IV. COMPARISON CRITERIA

Existing erasure codes follow different intentions. While
some strive to increase the encoding/decoding performance,
others focus on the reduction of recovery costs. In order to
provide a comprehensive overview of the existing codes, a
list of objective criteria is needed. Based on our specific use
case, we have identified the following criteria for a direct
comparison between different algorithms:
• The degree of fault tolerance. In general, the number

of possible coding chunks represents the fault tolerance
capability of an erasure algorithm. In our work, we use
the parameter m to define the total number of chunks
(clouds) that can be lost without losing data. If the value
of the attribute is not limited or predefined by an erasure
code, it is marked as ∞.

• The storage overhead. Due to the nature of era-
sure codes, encoding is associated with a certain data
overhead. This overhead is caused by redundant m
packages, which have to be created for data recovery.
The storage overhead can be expressed as follows:

coded data
original data .

• Data recovery preferences. When it comes to data
recovery, some algorithms define access patterns to
reduce recovery I/O and bandwidth. The according
recovery plan determines which data objects have to be
accessed for efficient data reconstruction. However, in
our use case, the selection of required chunks is based
on the performance capabilities of clouds (e.g. response
time, throughput etc.). Therefore, we favor algorithms
which do no distinguish between individual (encoded)
data packages when reassembling the data.

• The repair traffic. In compliance with [15] we define
the repair traffic as the amount of outbound data being
read from clouds in the event of a single-cloud failure.
With this, the repair traffic represents the number of
accesses required to reconstruct the original data. We

denote the value as the number of data fragments that
need to be read. In general, we are interested in fetching
the minimum number of chunks for data recovery. This
is due to the fact, that in the pay-per-use cloud models
it is not economical to read all data packages from all
clouds to recover original data.

• The recovery read access mode. The recovery of data
is done through accessing specific blocks within en-
coded data packages (chunks). Some algorithms require
read access to entire chunks or use all encoded chunks
when reassembling the data. Other codes require partial
read accesses to encoded data. Indeed, partial reads are
not allowed in clouds. The parameter denotes if partial
reads are required by an individual algorithm or not.

V. ERASURE CODES

This section will introduce several erasure codes and their
characteristics based on the criteria defined in section IV.
Will will start by introducing the basics of erasure codes
before presenting five specific codes in sections V-B to V-G
in detail. This list is based on the work of Plank et al. in [12]
extended by two recent erasure codes.

A. Basic Erasure Coding

Given a file object, erasure coding divides original data
into k equally sized chunks that hold data and m chunks that
hold coding information. The coding chunks are calculated
from the data chunks using an erasure algorithm. Each chunk
(data and coding) comprises a number of words of length
w. All chunks are thereby equivalently structured, meaning
that the word size is equally fixed for all data and coding
chunks.

Encoding then is an operation that combines all data
elements that are horizontally aligned (share the same offset
in the data chunks, often referred to as a stripe) and encodes
them into a coding element (fragment) of the same size with
the same offset on a coding chunk.

The operations used for encoding can differ between
bitwise exclusive-or (XOR) and Galois field arithmetic



(GF (2w)). While XOR operations can be executed fast on
CPUs, GF (2w) multiplications traditionally perform worse.
However, new libraries like the one provided by Plank et
al. [9] offer support for fast computations of these operations
with modern CPUs as well.

In summary, erasure algorithms map a data object broken
into k equal-size original chunks onto a larger set on n
chunks of the same size in such a way, that the original
chunks can be recovered from any n − k = m chunks.
Erasure codes that only need any arbitrary k out of n chunks
for the recovery of original data are called maximum distance
separable codes (MDS codes) [16]. Similar to Plank et
al. [12], we are only interested in MDS codes. Furthermore,
we focus only on horizontal codes where chunks hold either
original data or parity data. The so called vertical codes
are not considered in our work, as they allow chunks to
hold both kinds of data. This means vertical codes operate
on all encoded chunks to restore the original data, whereas
horizontal codes require the minimum number of k arbitrary
chunks to achieve the same goal.

B. Reed-Solomon

Reed-Solomon codes [8] (RS codes) have the longest
history among erasure codes. They originate in information
theory and operate on w-bit words. The used word size w is
only limited by the total number of chunks n which is not
allowed to be greater than 2w +1. Except for this restriction,
the word size can be freely determined by a user. Typically,
the chosen size corresponds to machine word boundaries
(8, 16, 32, 64) for good performance and w = 8 for best
performance.

Further, the total number of encoded chunks can be
defined arbitrarily. Each RS configuration is denoted as (k,m)
and increases the storage costs by a factor of m

k . Note
that m=1 represents a simple replication, and RAID level
6 can be described by (k=4, m=2). In the example, the
algorithm calculates n=6 chunks, any k=4 chunks of which
are sufficient to reconstruct the object, resulting in a total
overhead of 2

4 = 50%.
RS codes treat each word of length w as a number be-

tween 0 and 2w−1 and operate on these numbers with Galois
field arithmetic (GF (2w)). The algebraic structure defines
addition, multiplication and division on words and produces
a closed and well-behaved system [16]. Addition in GF (2w)
is equivalent to XOR operation, multiplication however is far
more complex. It is usually implemented with multiplication
tables or discrete logarithm tables and considered expensive
in terms of computation time. However, as mentioned in
Section V-A, new libraries enable the fast computation of
these operations nowadays.

Encoding with RS codes requires the multiplication of a
Generator matrix GT (derived from a Vandermonde matrix)
with individual data words of a single stripe. The operation
creates a codeword which comprises k data elements and m

coding elements. The latter are stored on dedicated coding
chunks. The procedure has to be executed for each stripe.
Figure 2 illustrates the encoding process of a single stripe.
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2 Nomenclature and Erasure Codes

It is an unfortunate consequence of the history of era-

sure coding research that there is no unified nomencla-

ture for erasure coding. We borrow terminology mostly

from Hafner et al [14], but try to conform to more classic

coding terminology (e.g. [5, 21]) when appropriate.

Our storage system is composed of an array of n
disks, each of which is the same size. Of these n disks, k
of them hold data and the remaining m hold coding in-

formation, often termed parity, which is calculated from

the data. We label the data disks D0, . . . , Dk−1 and the

parity disks C0, . . . , Cm−1. A typical system is pictured

in Figure 1.

Figure 1: A typical storage system with erasure coding.

We are concerned with Maximum Distance Separa-

ble (MDS) codes, which have the property that if any m
disks fail, the original data may be reconstructed [21].

When encoding, one partitions each disk into strips of

a fixed size. Each parity strip is encoded using one

strip from each data disk, and the collection of k + m
strips that encode together is called a stripe. Thus, as

in Figure 1, one may view each disk as a collection of

strips, and one may view the entire system as a collec-

tion of stripes. Stripes are each encoded independently,

and therefore if one desires to rotate the data and parity

among the n disks for load balancing, one may do so by

switching the disks’ identities for each stripe.

2.1 Reed-Solomon (RS) Codes

Reed-Solomon codes [28] have the longest history. The

strip unit is a w-bit word, where w must be large enough

that n ≤ 2w + 1. So that words may be manipulated

efficiently, w is typically constrained so that words fall

on machine word boundaries: w ∈ {8, 16, 32, 64}. How-

ever, as long as n ≤ 2w + 1, the value of w may be

chosen at the discretion of the user. Most implementa-

tions choose w = 8, since their systems contain fewer

than 256 disks, and w = 8 performs the best. Reed-

Solomon codes treat each word as a number between 0

and 2w − 1, and operate on these numbers with Galois

Field arithmetic (GF (2w)), which defines addition, mul-

tiplication and division on these words such that the sys-

tem is closed and well-behaved [21].

The act of encoding with Reed-Solomon codes is sim-

ple linear algebra. A Generator Matrix is constructed

from a Vandermonde matrix, and this matrix is multiplied

by the k data words to create a codeword composed of

the k data and m coding words. We picture the process

in Figure 2 (note, we draw the transpose of the Generator

Matrix to make the picture clearer).

Figure 2: Reed-Solomon coding for k = 4 and m = 2.

Each element is a number between 0 and 2w − 1.

When disks fail, one decodes by deleting rows of GT ,

inverting it, and multiplying the inverse by the surviving

words. This process is equivalent to solving a set of inde-

pendent linear equations. The construction of GT from

the Vandermonde matrix ensures that the matrix inver-

sion is always successful.

In GF (2w), addition is equivalent to bitwise

exclusive-or (XOR), and multiplication is more com-

plex, typically implemented with multiplication tables

or discrete logarithm tables [11]. For this reason, Reed-

Solomon codes are considered expensive. There are sev-

eral open-source implementations of RS coding, which

we detail in Section 3.

2.2 Cauchy Reed-Solomon (CRS) Codes

CRS codes [6] modify RS codes in two ways. First,

they employ a different construction of the Generator

matrix using Cauchy matrices instead of Vandermonde

matrices. Second, they eliminate the expensive multipli-

cations of RS codes by converting them to extra XOR

operations. Note, this second modification can apply to

Vandermonde-based RS codes as well. This modifica-

tion transforms GT from a n × k matrix of w-bit words

to a wn×wk matrix of bits. As with RS coding, w must

be selected so that n ≤ 2w + 1.

Instead of operating on single words, CRS coding op-

erates on entire strips. In particular, strips are partitioned

into w packets, and these packets may be large. The act

of coding now involves only XOR operations – a coding

packet is constructed as the XOR of all data packets that

Figure 2. Reed-Solomon Encoding with k=4 and m=2.

However, data recovery is comparable to the encoding
process and is realised by a stripe-by-stripe recalculation of
existing chunks. This requires the elimination of those strips
in the GT matrix that correspond to the lost data chunk.
Then, the resulting matrix has to be inverted and multiplied
by k arbitrarily chosen data fragments that have not been
lost.

The amount of data needed for the recovery of a single
chunk always equals k×chunk size, since k out of n chunks
are needed to reconstuct the data. In terms of data elements
that have to be read, RS codes always need to access k ×
d chunk size

word size e elements.
The use of a Vandermonde matrix for the construction of

GT ensures that the inversion of the latter is always possible.
The inversion, however, is a rather expensive operation in
terms of computation time.

Overall, the Reed-Solomon codes are the most flexible
erasure codes in terms of word size and coding chunks, with
a rather weak performance compared to other codes intro-
duced in the following sections. However, they describe the
most generic family of codes that can be used for a variety of
applications and have been employed in many fields such as
deep-space communication, consumer electronics (e.g. CDs,
DVDs, Blu-ray discs), in data transmission technologies (e.g.
DSL) and in RAID-6 storage systems.

C. Cauchy-Reed-Solomon

Cauchy Reed-Solomon (CRS) codes [17] differ from RS
algorithms in two ways: i) The GT matrix is created by the
usage of Cauchy matrices instead of Vandermonde matrices,
and ii) they employ XOR operations instead of expensive
GF (2w) multiplications. Similar to RS codes, the total
number of coding chunks (defined by the parameter m)
can be chosen freely. The produced storage overhead is
equivalent to RS codes.

To eliminate multiplications, CRS codes transform the
GT matrix from a n × k matrix of w-bit words to a
wn×wk matrix of bits. This new matrix is then multiplied
not by single data words of w-bit size but strips of w data



fragments. For performance reasons, the size of a fragment
should be a multiple of the machine’s word size. Each of
the k data chunks now consists of several strips, each strip
containing w fragments. The w is not constrained to the
machine’s word size and can be defined freely (as long as
n ≤ 2w). Encoding and decoding still happens stripe-by-
stripe - whereby each stripe consists now not of single data
words but strips. Note, the modification of the matrix is also
possible for Vandermonde matrices.

Encoding needs only XOR operations in order to compute
coding data. A coding fragment is created as the XORed
result of all data fragments that have a one-bit in the coding
chunk’s line of GT . Figure 3 illustrates how the last coding
fragment is created by XORing all data fragments that have
a one bit in the last line of GT .
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have a one bit in the coding packet’s row of GT . The

process is depicted in Figure 3, which illustrates how the

last coding packet is created as the XOR of the six data

packets identified by the last row of GT .

Figure 3: CRS example for k = 4 and m = 2.

To make XORs efficient, the packet size must be a

multiple of the machine’s word size. The strip size is

therefore equal to w times the packet size. Since w no

longer relates to the machine word sizes, w is not con-

strained to [8, 16, 32, 64]; instead, any value of w may be

selected as long as n ≤ 2w.

Decoding in CRS is analogous to RS coding — all

rows of GT corresponding to failed packets are deleted,

and the matrix is inverted and employed to recalculate

the lost data.

Since the performance of CRS coding is directly re-

lated to the number of ones in GT , there has been re-

search on constructing Cauchy matrices that have fewer

ones than the original CRS constructions [27]. The Jera-

sure library [26] uses additional matrix transformations

to improve these matrices further. Additionally, in the

restricted case when m = 2, the Jerasure library uses re-

sults of a previous enumeration of all Cauchy matrices to

employ provably optimal matrices for all w ≤ 32 [26].

2.3 EVENODD and RDP

EVENODD [4] and RDP [8] are two codes developed for

the special case of RAID-6, which is when m = 2. Con-

ventionally in RAID-6, the first parity drive is labeled P ,

and the second is labeled Q. The P drive is equivalent to

the parity drive in a RAID-4 system, and the Q drive is

defined by parity equations that have distinct patterns.

Although their original specifications use different

terms, EVENODD and RDP fit the same paradigm as

CRS coding, with strips being composed of w packets.

In EVENODD, w is constrained such that k + 1 ≤ w
and w+1 is a prime number. In RDP, w+1 must be prime

and k ≤ w. Both codes perform the best when (w−k) is

minimized. In particular, RDP achieves optimal encod-

ing and decoding performance of (k−1) XOR operations

per coding word when k = w or k +1 = w. Both codes’

performance decreases as (w − k) increases.

2.4 Minimal Density RAID-6 Codes

If we encode using a Generator bit-matrix for RAID-

6, the matrix is quite constrained. In particular, the

first kw rows of GT compose an identity matrix, and in

order for the P drive to be straight parity, the next w
rows must contain k identity matrices. The only flex-

ibility in a RAID-6 specification is the composition of

the last w rows. In [5], Blaum and Roth demonstrate

that when k ≤ w, these remaining w rows must have

at least kw + k − 1 ones for the code to be MDS. We

term MDS matrices that achieve this lower bound Mini-

mal Density codes.

There are three different constructions of Minimal

Density codes for different values of w:

• Blaum-Roth codes when w + 1 is prime [5].

• Liberation codes when w is prime [25].

• The Liber8tion code when w = 8 [24].

These codes share the same performance characteris-

tics. They encode with (k − 1) + k−1
2w XOR operations

per coding word. Thus, they perform better when w
is large, achieving asymptotic optimality as w → ∞.

Their decoding performance is slightly worse, and re-

quires a technique called Code-Specific Hybrid Recon-

struction [14] to achieve near-optimal performance [25].

The Minimal Density codes also achieve near-optimal

updating performance when individual pieces of data are

modified [27]. This performance is significantly better

than EVENODD and RDP, which are worse by a factor

of roughly 1.5 [25].

2.5 Anvin’s RAID-6 Optimization

In 2007, Anvin posted an optimization of RS encoding

for RAID-6 [2]. For this optimization, the row of GT

corresponding to the P drive contains all ones, so that

the P drive may be parity. The row corresponding to

the Q drive contains the number 2 i in GF (2w) in col-

umn i (zero-indexed), so that the contents of the Q drive

may be calculated by successively XOR-ing drive i’s
data into the Q drive and multiplying that sum by two.

Since multiplication by two may be implemented much

faster than general multiplication in GF (2w), this op-

timizes the performance of encoding over standard RS

implementations. Decoding remains unoptimized.

3 Open Source Libraries

We test five open source erasure coding libraries. These

are all freely available libraries from various sources

on the Internet, and range from brief proofs of concept

Figure 3. Cauchy Reed-Solomon Encoding with n=4 and m=2.

The recovery of lost data with CRS codes is handled
analogously to RS codes: all rows of GT corresponding to
failed chunks have to be deleted, then the matrix needs to be
inverted and multiplied by k existing data chunks. With this,
the recovery process requires the same data fragments as RS
codes. The total number of read operations on fragment level
can be smaller due to possibly larger CRS fragment sizes
(in comparison to RS word sizes).

Despite the potential performance gain through the elimi-
nation of GF (2w) multiplications, the performance of CRS
codes is highly dependent on the number of ones in GT .
The more one-bits the generator matrix consists of, the more
data fragments have to be XORed, which results in a weaker
encoding performance. Research on the creation of optimal
matrices for CRS codes [18] yielded matrices with fewer
ones than the original Cauchy matrices. Some libraries (e.g
the Jerasure library, see Section VI) optimize these matrices
even further to achieve better performance for en-/decoding.

D. EVEN/ODD and RDP
EVEN/ODD [19] and RDP[20] are special-purpose

RAID-6 erasure codes. Therefore, the number of coding
chunks always equals to m = 2. The coding chunks are
called parity chunks P and Q. The storage overhead of both
codes is only dependent on the number of data chunks, since
m is fixed. Therefore, the caused storage overhead can be
calculated as follows: 2

k .
Analogously to CRS codes, EVEN/ODD and RDP operate

on strips with w packets. While EVEN/ODD constraints w

so that n + 1 ≤ w, RDP expects n ≤ w. Both algorithms
define w + 1 to be a prime number.

The P-drive is calculated by XORing all strips of one
stripe in order to create a parity strip. The Q-drive, however,
is constructed differently with specific parity equations for
both codes (see Figure 4). While RDP reuses the P-drive to
calculate the Q-drive, EVEN/ODD employs a special pattern
with an intermediate result.

When restoring lost data, EVEN/ODD and RDP work
with one parity drive (restoring one failed data chunk) or
a combination of parity drives and special patterns similar
to the ones shown in Figure 4. The amount of data needed
for the recovery is comparable to CRS, since RDP and
EVEN/ODD work with similar strip and fragment defini-
tions. Further, the algorithms belong to MDS codes family,
which means that the recovery process requires any arbitrary
k out of k + 2 encoded data chunks.

Figure 4. The Q-drive calculation patterns of EVEN/ODD (left) and RDP
(right).

According to [19] the total number of operations needed
to encode and decode data is provably lower for RDP and
EVEN/ODD compared to standard RS and CRS codes.
However, in contrast to RS and CRS codes EVEN/ODD
and RDP are under patent protection, which means that
the implementation of the algorithms is not available to the
public (see Section VI).

E. Minimal Density
In case of RAID-6 specifications, the used GT bit-matrix

(see CRS codes) is quite constrained. The number of coding
chunks is fixed to m = 2, which results in a w(k + 2) ×
wk matrix. The first wn rows of this matrix form a fixed
identity matrix and represent the original data in the resulting
codeword when encoding this data (see Figure 3).

The next w rows comprise the k identity matrices that
build the P-drive and are therefore fixed either. The com-
position of the last w rows of GT is the only flexible part
for a RAID-6 specification. In case of k ≤ w, the minimal
number of ones in these rows is given by kw + k − 1 [21].
Minimal Density (MD) codes are using matrices that achieve
this lower bound for RAID-6 configurations.

MD codes can therefore be seen as an optimized code
family of CRS codes for RAID-6 specifications. Thus, MD
codes share basic characteristics (e.g. storage overhead) with
other RAID-6 codes like EVEN/ODD and RDP.

Three different constructions of MD codes exist, depend-
ing on the size of the parameter w:



• Blaum-Roth codes for w + 1 being a prime num-
ber [21],

• Liberation codes for w being a prime number [22] and
• Liber8tion codes for w = 8 [23].
As Plank et al. [12] state, MD codes encode with

k − 1 + k−1
2w XOR operations per coding word. Thus,

the algorithms perform better with a higher value of the
parameter w. For decoding, MD codes require Code-Specific
Hybrid Reconstruction in order to achieve a near-optimal
performance. Overall, as shown in [12], these code perform
better than CRS codes for RAID-6 specifications.

F. Rotated Reed-Solomon

Rotated RS codes [13] have been designed to reduce
bandwidth and I/O needed for the recovery of lost data.
In particular, these codes optimize the performance of de-
graded reads in single chunk failure scenarios. Since 99.75%
of recovery scenarios deal with single chunk failures, as
Schroeder et al. [24] discovered, Khan et al. [13] optimized
their codes for this particular use case. The authors build
on classic RS codes and modify the way of encoding data
to allow faster recovery by reusing and therefore accessing
less data fragments. Beyond that the algiorithms share all
characteristics (namely storage overhead, performance, and
configurability) with classic RS codes.

However, Rotated RS codes are not generally MDS codes.
In [13] Khan et al. present several constraints that are
necessary for these codes to belong to the family of MDS
codes. These limitations comprise m ∈ {2, 3}, k ≤ 36 and
w ∈ {4, 8, 16}. Research on general MDS constructions of
Rotated RS codes is still ongoing.

As depicted in Figure 5, encoding with rotated RS codes
modifies classic RS coding in two ways: i) single-row stripes
of w-bit sized data words are transformed into r multi-row
stripes of bit-words (r and w may be different), and ii)
XORing the encoded data fragments (symbols) is not done
within one row but across adjacent rows.

different disks in the storage system. In other words, if
one is reading three symbols starting with symbol d0,0,
then those three symbols are d0,0, d1,0 and d2,0, coming
from three different disk drives.

To evaluate degraded reads, we assume that an appli-
cation desires to read B symbols starting at symbol dx,y ,
and that data disk f has failed. We determine the penalty
of the failure to be the number of symbols required to
perform the read, minus B.

There are many cases that can arise from the differ-
ing values of B, f , x and y. To illustrate, first suppose
that B < k (which is a partial read case) and that none of
the symbols to be read reside on disk f . Then the failure
does not impact the read operation — it takes exactly B
symbols to complete the read, and the penalty is zero.

As a second case, consider when B = kr and dx,y =
d0,0. Then we are reading exactly one stripe in its en-
tirety. In this case, we have to read the (k−1)r non-failed
data symbols to fulfill the read request. Therefore, we
may recover very easily from the P drive by reading all
of its symbols and decoding. The read requires kr = B
symbols. Once again, the penalty is zero.

However, consider the case when B = k, f = 0, and
dx,y = d1,0. Symbols d1,0 through dk−1,0 are non-failed
and must be read. Symbol d0,1 must also be read and it
is failed. If we use the P drive to recover, then we need
to read d1,1 through dk−1,0 and c0,1. The total symbols
read is 2k− 1: the failure has induced a penalty of k− 1
symbols.

In all of these cases, the degraded read is contained
by one stripe. If the read spans two stripes, then we
can calculate the penalty as the sum of the penalties of
the read in each stripe. If the read spans more than two
stripes, then we only need to calculate the penalties in the
first and last stripe. This is because, as described above,
whole-stripe degraded reads incur no penalty.

When we perform a degraded read within a stripe, we
modify our algorithm slightly. For each non-failed data
symbol that must be read, we set its bit in the state of the
starting node Z to one. For example, in Figure 4, sup-
pose we are performing a degraded read where B = 2,
f = 0 and dx,y = d0,0. There is one failed bit: F = d0,0.
Since d1,0 = R2 must be read, the starting state Z of the
shortest path graph is labeled 00100000. The algorithm
correctly identifies that only c0,0 needs to be read to re-
cover d0,0 and complete the read.

5 Rotated Reed-Solomon Codes

Before performing analyses of failed disk reconstruction
and degraded reads, we present two instances of a new
erasure code, called the Rotated Reed-Solomon code.
These codes have been designed to be MDS codes that
optimize the performance of degraded reads for single

disk failures. The general formulation and theoretical
evaluation of these codes is beyond the scope of this pa-
per; instead, we present instances for m ∈ {2, 3}.

Figure 6: A Reed-Solomon code for k = 6 and m =
3. Symbols must be w-bit words such that w ≥ 4, and
arithmetic is over GF (2w).

The most intuitive way to present a Rotated Reed-
Solomon code is as a modification to a standard Reed-
Solomon code. We present such a code for m ≤ 3 in
Equation 1. As with all Reed-Solomon codes, r = 1.

for 0 ≤ j < 3, cj,0 =
k−1∑

i=0

(
2j

)i
di,0 (1)

This is an MDS code so long as k, m, r and w adhere
to some constraints, which we detail at the end of this
section. This code is attractive because one may imple-
ment encoding with XOR and multiplication by two and
four in GF (2w), which are all very fast operations. For
example, the m = 2 version of this code lies at the heart
of the Linux RAID-6 coding engine [1].

We present the code pictorally in Figure 6. A chain
of circles denotes taking the XOR of di,0; a chain of tri-
angles denotes taking the XOR of 2idi,0, and a chain of
squares denotes taking the XOR of 4idi,0. To convert this
code into a Rotated Reed-Solomon code, we allow r to
take on any positive value, and define the coding symbols
with Equation 2.

cj,b =

kj
m −1∑

i=0

(2j)idi,(b+1)%r +
k−1∑

i= kj
m

(2j)idi,b. (2)

Intuitively, the Rotated Reed-Solomon code converts
the one-row code in Figure 6 into a multi-row code,
and then the equations for coding disks 1 and 2 are
split across adjacent rows. We draw the Rotated Reed-
Solomon codes for k = 6 and m = {2, 3} and r = 3 in
Figures 7 and 8.

These codes have been designed to improve the
penalty of degraded reads. Consider a RAID-6 system
that performs a degraded read of four symbols starting
at d5,0 when disk 5 has failed. If we reconstruct from
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Figure 7: A Rotated Reed-Solomon code for k = 6, m =
2 and r = 3.

the P drive, we need to read d0,0 through d4,0 plus c0,0

to reconstruct d5,0. Then we read the non-failed sym-
bols d0,1, d1,1 and d2,1. The penalty is 5 symbols. With
Rotated Reed-Solomon coding, d5,0, d0,1, d1,1 and d2,1

all participate in the equation for c1,0. Therefore, by
reading c1,0, d0,1, d1,1, d2,1, d3,0 and d4,0, one both de-
codes d5,0 and reads the symbols that were required to
be read. The penalty is only two symbols.

Figure 8: A Rotated Reed-Solomon code for k = 6, m =
3 and r = 3.

With whole disk reconstruction, when r is an even
number, one can reconstruct any failed data disk by read-
ing r

2 (k + d k
me) symbols. The process is exemplified

for k = 6, m = 3 and r = 4 in Figure 9. The first data
disk has failed, and the symbols required to reconstruct
each of the failed symbols is darkened and annotated
with the equation that is used for reconstruction. Each
pair of reconstructed symbols in this example shares four
data symbols for reconstruction. Thus, the whole recon-
struction process requires a total of 16 symbols, as op-
posed to 24 when reading from the P Drive.

The process is similar for the other data drives. Re-
constructing failed coding drives, however does not have

Figure 9: Reconstructing disk 0 when it fails, using Ro-
tated Reed-Solomon coding for k = 6, m = 3, r = 4.

the same benefits. We are unaware at present of how
to reconstruct a coding drive with fewer than the maxi-
mum kr symbols.

As an aside, when more than one disk fails, Rotated
Reed-Solomon codes may require much more computa-
tion to recover than other codes, due to the use of matrix
inversion for recovery. We view this property as less im-
portant, since multiple disk failures are rare occurrences
in practical storage systems, and computational overhead
is less important than the I/O impact of recovery.

5.1 MDS Constraints
The Rotated Reed-Solomon code specified above in Sec-
tion 5 is not MDS in general. In other words, there are
settings of k, m, w and r which cannot tolerate the fail-
ure of any m disks. Below, we detail ways to constrain
these variables so that the Rotated Reed-Solomon code
is MDS. Each of these settings has been verified by test-
ing all combinations of m failures to make sure that they
may be tolerated. They cover a wide variety of system
sizes, certainly much larger than those in use today.

The constraints are as follows:

m ∈ {2, 3}
k ≤ 36, and k + m ≤ 2w + 1

w ∈ {4, 8, 16}
r ∈ {2, 4, 8, 16, 32}

Moreover, when w = 16, r may be any value less
than or equal to 48, except 15, 30 and 45. It is a matter of
future research to derive general-purpose MDS construc-
tions of Rotated Reed-Solomon codes.

6 Analysis of Reconstruction

We evaluate the minimum number of symbols required to
recover a failed disk in erasure coding systems with a va-
riety of erasure codes. We restrict our attention to MDS
codes, and systems with six data disks and either two or
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Figure 5. Encoding of classic RS (left) and Rotated RS (right) codes with
n = 6 and m = 3

Except these two modifications, the encoding operation
shares all characteristics with classic RS encoding (e.g.
performance, storage overhead). As shown in Figure 6, the
decoding operation benefits from the rotated encoding in
terms of read accesses. With this, the recovery of single
chunk failures gains in performance. The number of data
symbols that have to be accessed is reduced by a particular

pattern of XORing between adjacent rows. In the provided
example, the behavior leads to three different recovery paths
through the original data for each data bit. The procedure
would correspond to one path in classic RS codes (repeated
three times).

Figure 7: A Rotated Reed-Solomon code for k = 6, m =
2 and r = 3.
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codes d5,0 and reads the symbols that were required to
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With whole disk reconstruction, when r is an even
number, one can reconstruct any failed data disk by read-
ing r
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me) symbols. The process is exemplified

for k = 6, m = 3 and r = 4 in Figure 9. The first data
disk has failed, and the symbols required to reconstruct
each of the failed symbols is darkened and annotated
with the equation that is used for reconstruction. Each
pair of reconstructed symbols in this example shares four
data symbols for reconstruction. Thus, the whole recon-
struction process requires a total of 16 symbols, as op-
posed to 24 when reading from the P Drive.

The process is similar for the other data drives. Re-
constructing failed coding drives, however does not have

Figure 9: Reconstructing disk 0 when it fails, using Ro-
tated Reed-Solomon coding for k = 6, m = 3, r = 4.

the same benefits. We are unaware at present of how
to reconstruct a coding drive with fewer than the maxi-
mum kr symbols.

As an aside, when more than one disk fails, Rotated
Reed-Solomon codes may require much more computa-
tion to recover than other codes, due to the use of matrix
inversion for recovery. We view this property as less im-
portant, since multiple disk failures are rare occurrences
in practical storage systems, and computational overhead
is less important than the I/O impact of recovery.

5.1 MDS Constraints
The Rotated Reed-Solomon code specified above in Sec-
tion 5 is not MDS in general. In other words, there are
settings of k, m, w and r which cannot tolerate the fail-
ure of any m disks. Below, we detail ways to constrain
these variables so that the Rotated Reed-Solomon code
is MDS. Each of these settings has been verified by test-
ing all combinations of m failures to make sure that they
may be tolerated. They cover a wide variety of system
sizes, certainly much larger than those in use today.

The constraints are as follows:

m ∈ {2, 3}
k ≤ 36, and k + m ≤ 2w + 1

w ∈ {4, 8, 16}
r ∈ {2, 4, 8, 16, 32}

Moreover, when w = 16, r may be any value less
than or equal to 48, except 15, 30 and 45. It is a matter of
future research to derive general-purpose MDS construc-
tions of Rotated Reed-Solomon codes.

6 Analysis of Reconstruction

We evaluate the minimum number of symbols required to
recover a failed disk in erasure coding systems with a va-
riety of erasure codes. We restrict our attention to MDS
codes, and systems with six data disks and either two or
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Figure 6. Recovery of first data chunk with Rotated RS codes with n = 6
and m = 3

In [13] Khan et al. state that the reconstruction of a whole
chunk, when r is even, requires exactly r

2 (k + d k
me) data

fragments to be read, in comparison to rk data fragments
that RS codes need to access. In the example provided in
Figure 6, Rotated RS codes need to read 16 fragmetns, while
RS codes would need to access 24. Note, the Rotated RS
codes are the only codes presented so far that perform partial
reads on encoded chunks to improve the performance of the
algorithm. The improvement is based on the ability to access
chunks more specifically data objects on bit-level without
reading the remaining bits of the proper data word. However,
this might not be applicable in a context of cloud storage,
where partial reads (or writes) are not allowed.

Concerning the number of reads, Rotated RS access seven
chunks in the recovery scenario presented in Figure 6 and
therefore perform more accesses than classic RS codes.
Furthermore, encoded chunks can not be selected arbitrary
but provided by the code. This means, the individual chunks
can not be considered to be equal.

G. Local Reconstruction

Local Reconstruction Codes (LRC)[14] have been created
to reduce the bandwidth in I/O for data recovery processes.
The algorithms are build on classic RS codes and introduce
local parities that serve as additional coding chunks for
specific data groups. These parities reduce the average
number of data fragments which have to be accessed in the
event of a recovery.

Encoding with LRC differs from RS encoding in three
ways: i) the original data chunks are divided into a specified
number of l groups, ii) coding chunks are divided into global
and local parities, and iii) data chunks are encoded onto all
global and one local parity. An exemplary configuration of
LRC(6,2,2) is shown in Figure 7.

However, LRC is not MDS in general. Huang et al.
[14] prove, that LRC is nonetheless Maximally Recoverable
(MR). In comparison to MDS, MR code compensates up



of the data fragments. In addition, we want to reduce
storage costs down to 1.33x of the original data using
erasure coding. This could be accomplished using the
standard approach of Reed-Solomon codes [13] where
we would have (12, 4), which is 12 data fragments and
4 code fragments. This means that to do the reconstruc-
tion we would need to read from a set of 12 fragments.
This i) greatly increases the chance of hitting a hot stor-
age node, andii) increases the network costs and I/Os
and adds latency to read that many fragments to do the
reconstruction. Therefore, we want to design a new fam-
ily of codes to use for WAS that provides the following
characteristics:

1. Reduce the minimal number of fragments that need
to be read from to reconstruct a data fragment. This
provides the following benefits:i) reduces the net-
work overhead and number of I/Os to perform a re-
construction;ii) reduces the time it takes to perform
the reconstruction since fewer fragments need to be
read. We have found the time to perform the re-
construction is often dominated by the slowest frag-
ments (the stragglers) to be read from.

2. Provide significant reduction in storage overhead
to 1.33x while maintaining higher durability than a
system that keeps 3 replicas for the data.

In this paper, we introduce Local Reconstruction Codes
(LRC) that provide the above properties. In addition, we
describe our erasure coding implementation and impor-
tant design decisions.

2 Local Reconstruction Codes
In this section, we illustrate LRC and its properties

through small examples, which are shorter codes (thus
higher overhead) than what we use in production, in or-
der to simplify the description of LRC .

2.1 Definition
We start with a Reed-Solomon code example to ex-

plain the concept ofreconstruction cost. A (6, 3) Reed-
Solomon code contains 6 data fragments and 3 parity
fragments, where each parity is computed from all the
6 data fragments. When any data fragment becomes un-
available, no matter which data and parity fragments are
used for reconstruction, 6 fragments are always required.
We definereconstruction cost as the number of frag-
ments required to reconstruct an unavailabledata frag-
ment. Here, the reconstruction cost equals to 6.

The goal of LRC is to reduce the reconstruction cost.
It achieves this by computing some of the parities from
a subset of the data fragments. Continuing the example
with 6 data fragments, LRC generates 4 (instead of 3)
parities. The first two parities (denoted asp0 andp1) are
global parities and are computed fromall the data frag-
ments. But, for the other two parities, LRC divides the

x0 y0x1 x2 y2y1

p0

p1

pypx

Figure 1:A (6, 2, 2) LRC Example. (k = 6 data frag-
ments,l = 2 local parities andr = 2 global parities.)

data fragments into two equal size groups and computes
one local parity for each group. For convenience, we
name the 6 data fragments (x0, x1 andx2) and (y0, y1

andy2). Then, local paritypx is computed from the 3
data fragments in one group (x0, x1 andx2), and local
paritypy from the 3 data fragments in another group (y0,
y1 andy2).

Now, let’s walk through reconstructingx0. Instead of
readingp0 (or p1) and the other 5 data fragments (x1,
x2, y0, y1 andy2), it is more efficient to readpx and two
data fragments (x1 andx2) to computex0. It is easy to
verify that the reconstruction ofany single data fragment
requires only 3 fragments, half the number required by
the Reed-Solomon code.

This LRC example adds one more parity than the
Reed-Solomon one, so it might appear that LRC reduces
reconstruction cost at the expense of higher storage over-
head. In practice, however, these two examples achieve
completely different trade-off points in the design space,
as described in Section 3.3. In addition, LRC provides
more options than Reed-Solomon code, in terms of trad-
ing off storage overhead and reconstruction cost.

We now formally define Local Reconstruction Codes.
A (k, l, r) LRC dividesk data fragments intol groups,
with k/l data fragments in each group. It computes one
local parity within each group. In addition, it computes
r global parities from all the data fragments. Letn be
the total number of fragments (data + parity). Thenn =
k + l + r. Hence, the normalized storage overhead is
n/k = 1 + (l + r)/k. The LRC in our example is a
(6, 2, 2) LRC with storage cost of1 + 4/6 = 1.67x, as
illustrated in Figure 1.

2.2 Fault Tolerance
Thus far, we have only defined which data fragments

are used to compute each parity in LRC. To complete
the code definition, we also need to determinecoding
equations, that is, how the parities are computed from
the data fragments. We choose the coding equations such
that LRC can achieve theMaximally Recoverable (MR)
property [14], which means it can decode any failure pat-
tern which is information-theoretically decodable.

Let’s first explain the Maximally Recoverable prop-
erty. Given the (6, 2, 2) LRC example, it contains 4 par-
ity fragments and can tolerateup to 4 failures. However,
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Figure 7. A LRC(6,2,2) configuration with six data nodes, divided into
two groups and encoded onto two global parities (p0 and p1). Each group is
additionaly encoded onto one local parity (px and py). Thus, this algorithm
procudes a total of four coding chunks.

to m chunk losses. More specifically, all those chunks that
are information-theoretically decodable, but not an arbitrary
set of m chunks. The recovery of a single (failed) chunk
per data group, requires reading of all survived chunks. In
case of LRC(6,2,2), a single data chunk can be recovered
by reading three other chunks. In comparison to six chunks
needed by classic RS codes, which is an improvement of
50%. In general, single chunk failures require n

l data chunks
to be read.

Figure 8 illustrates the loss of three and four chunks, both
example scenarios are information-theoretically decodable
and can be repaired by LRC. In fact, the LRC code is
able to decode all three failure cases as well as 86% of all
four failure scenarios [14]. However, the chunks can not be
considered to be equal, since local parity chunks are more
important to specific data chunks than to others.

x0 y0x1 x2 y2y1

p0

p1

pypx

(a) 3 Failures

x0 y0x1 x2 y2y1

p0

p1

pypx

(b) 4 Failures

Figure 2: Decoding 3 and 4 Failures in LRC.

LRC is not Maximum Distance Separable [12] and there-
fore cannot toleratearbitrary 4 failures. For instance, say
the 4 failures arex1, x2, x3 andpx. This failure pattern
is non-decodable because there are only two parities -
the global parities - that can help to decode the 3 miss-
ing data fragments. The other local paritypy is useless
in this example. It isimpossible to decode 3 data frag-
ments from merely 2 parity fragments, regardless of cod-
ing equations. These types of failure patterns are called
information-theoretically non-decodable.

Failure patterns that are possible to reconstruct are
calledinformation-theoretically decodable. For instance,
the 3-failure pattern in Figure 2(a) and the 4-failure pat-
tern in Figure 2(b) are both information-theoretically de-
codable. For these two failure patterns, it is possible to
construct coding equations such that it is equivalent to
solving 3 unknowns using 3 linearly independent equa-
tions in Figure 2(a) and 4 unknowns using 4 linearly in-
dependent equations in Figure 2(b).

Conceivably, it is not difficult to construct a set of cod-
ing equations that can decode a specific failure pattern.
However, the real challenge is to construct asingle set of
coding equations that achieves theMaximally Recover-
able (MR) property [14], or being able to decode all the
information-theoretically decodable failure patterns – the
exact goal of LRC.

2.2.1 Constructing Coding Equations
It turns out that the LRC can tolerate arbitrary 3 fail-

ures by choosing the following two sets of coding coeffi-
cients (α’s andβ’s) for groupx and groupy, respectively.
We skip the proofs due to space limitation. Let

qx,0 = α0x0 + α1x1 + α2x2 (1)

qx,1 = α2
0x0 + α2

1x1 + α2
2x2 (2)

qx,2 = x0 + x1 + x2 (3)

and

qy,0 = β0y0 + β1y1 + β2y2 (4)

qy,1 = β2
0y0 + β2

1y1 + β2
2y2 (5)

qy,2 = y0 + y1 + y2. (6)

Then, the LRC coding equations are as follows:

p0 = qx,0 + qy,0, p1 = qx,1 + qy,1, (7)

px = qx,2, py = qy,2. (8)

Next, we determine the values ofα’s andβ’s so that
the LRC can decode all information-theoretically decod-
able 4 failures. We focus on non-trivial cases as follows:

1. None of the four parities fails. The four failures
are equally divided between groupx and groupy.
Hence, we have four equations whose coefficients
are given by the matrix, which result in the follow-
ing determinant:

G =




1 1 0 0
0 0 1 1
αi αj βs βt

α2
i α2

j β2
s β2

t




Det(G) = (αj − αi)(βt − βs)(αi + αj − βs − βt).

2. Only one of px and py fails. Assumepy fails. For
the remaining three failures, two are in groupx and
the third one in groupy. We now have three equa-
tions with coefficients given by

G′ =




1 1 0
αi αj βs

α2
i α2

j β2
s




Det(G′) = βs(αj − αi)(βs − αj − αi).

3. Both px and py fail. In addition, the remaining two
failures are divided between groupx and groupy.
We have two equations with coefficients given by

G′′ =
(

αi βs

α2
i β2

s

)

Det(G′′) = αiβs(βs − αi).

To ensure all the cases are decodable, all the matrices
G, G′ andG′′ should be non-singular, which leads to the
following conditions:

αi, αj , βs, βt 6= 0 (9)

αi, αj 6= βs, βt (10)

αi + αj 6= βs + βt (11)

One way to fulfill these conditions is to assign toα’s
and β’s the elements from a finite field GF(24) [12],
where every element in the field is represented by 4 bits.
α’s are chosen among the elements whose lower order 2
bits are zero. Similarly,β’s are chosen among the ele-
ments whose higher order 2 bits are zero. That way, the
lower order 2 bits ofα’s (and the sum ofα’s) are always
zero, and the higher order 2 bits ofβ’s (and the sum of
β’s) are always zero. Hence, they will never be equal and
all the above conditions are satisfied.

This way of constructing coding equations requires a
very small finite field and makes implementation practi-
cal. It is a critical improvement over our own Pyramid
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Figure 8. Recovery of first data chunk with Rotated RS codes with n = 6
and m = 3

To provide the same level of fault tolerance LRC produces
more storage overhead than RS codes. The LRC code creates
a storage overhead of n+l

k . In our example, the LRC(6,2,2)
code corresponds to an RS(9,6) code with k = 6 and
m = 3 (resulting in n = 9). The storage overhead results
in 1.67-times of the original data size for LRC(6,2,2). In
a direct comparison to LRC RS(9,6) code consumes only
1.5-times of original space. However, in contrast to the
RS code, the LRC code is able to compensate all three
failure scenarios (like RS) as well as 86% of all four failure
scenarios. Hence, the algorithm trades storage capacity for
reconstruction costs.

VI. ERASURE LIBRARIES

Standard RS codes and CRS codes have been around
for more than 30 years. Several libraries and frameworks

support erasure codes with different optimizations and ad-
justments. In this section we provide an overview of some
popular libraries for erasure coding.

A. Open Source Libraries

Besides proprietary implementations of erasure codes,
several open source implementations for different erasure
codes are freely available [25], [26], [27], [28]. Most of
these projects intent to provide developers with free high
quality tools:

Luby: The ICSI lab in Berkeley developed CRS coding in
the 1990’s [17]. In 1997, the original authors of CRS
coding released a C version of their code. It is available
from the ICSI’s website [25]. All specifications of n,
m, w and packet sizes are supported. The used matrices
are the original constructions [17] which do not feature
a minimized number of ones.

Zfec: The Zfec [26] library enables RS erasure coding since
its creation in 2007. The widely used library operates
on Vandermonde matrices with w = 8. The current
version 1.4.24 was published in April 2012. The library
is programmable, portable and actively supported by the
authors. It includes command-line tools and APIs in C,
Python and Haskell.

Jerasure: The C library Jerasure was released in 2007.
It supports a wide range of erasure codes, including
RS coding, CRS coding, general Generator matrix
and bit-matrix coding, and Minimal Density RAID-6
coding [27]. RS coding supports Vandermonde as well
as Cauchy matrices, w can be set to 8, 16 or 32. For
RAID-6 RS coding, the library features a specific per-
formance optimization. It employs a multiplication by
two rather than implementing a general multiplication
in GF (2w) for the calculation of the Q-drive. CRS is
implemented with provably optimal encoding matrices
for RAID-6 and optimized matrices for higher values of
the parameter m. Jerasure supports also the three Min-
imal Density RAID-6 codes. The implemented Code-
Specific Hybrid Reconstruction optimization improves
the performance of the bit-matrix codes (especially for
decoding). The latest release of the library appeared in
August 2008 [27].

Cleversafe: Cleversafe’s dispersed storage system was re-
leased in an open source version in May 2008 [28]. It
is written entirely in Java and supports all API func-
tionality of the proprietary version. The latter is one of
the first commercial systems to implement availability
beyond RAID-6. The erasure coding part is based on
Luby’s original CRS implementation [25] with w = 8.

This list provides only an excerpt of all available open
source libraries for erasure codes. New libraries appear
constantly and could be viable alternatives to the men-
tioned implementations. Furthermore, erasure coding is also



included in frameworks like the Hadoop Distributed File
System (HDFS)1 that is publicly available and extendible.

B. Erasure Codes Coverage

As stated above, there is a wide range of proprietary
and open source libraries for erasure codes. However, the
libraries implement different algrithms and are optimized
for different use cases. Proof of concept frameworks as
for example Luby implements only CRS codes in a basic
manner, whereas current and actively supported libraries like
Jerasure and zfec support a higher number of codes and
enable individual configurations.

Table I provides an overview of the codes presented in
Section V and the libraries that implement them. Codes
implemented by other libraries are supported by at least one
open source application that is publicly available, including
the libraries introduced before.

Jerasure zfec Luby other

RS X X – X
CRS X – X X
EVEN/ODD & RDP – – – –
Minimal Density X – – X
Rotated RS – – – X
Locally Repairable – – – X

Table I
OVERVIEW OF ERASURE CODES AND THE LIBRARIES IMPLEMENTING

THEM.

The overview clearly shows that classic RS codes are
well supported by various libraries. According to [12] zfec
outperforms all presented libraries when it comes to classic
RS coding. CRS codes are by all open source libraries.
However, Jerasure operates on optimized matrices for CRS
codes and is one of the most sophisticated libraries for CRS
coding. Besides, Jerasure is one of the few implementations
for Minimal Density codes. Rotated RS codes as well as
LRC are not supported by major libraries so far.

VII. COMPARISON

This section summarizes the characteristics of the pre-
sented erasure codes and enables a direct comparison among
the examined algorithms. The basis for the comparison is
given by the criteria described in Section IV.

Concerning the flexibility of the codes, Table II clearly
shows that the RAID-6 specific EVEN/ODD, RDP and
Minimal Density codes are more constrained when it comes
to the number of coding chunks and therefore the level
of fault-tolerance. The storage overhead produced by these
codes equals to the more flexible codes (e.g. RS, CRS) for
the same level of fault tolerance. Nevertheless, they can only
tolerate a failure of two arbitrarily chunks at best.

1see http://hadoop.apache.org/docs/stable/file system shell.html

The RAID-6 as well as the RS and CRS codes are more
flexible than Rotated RS and LRC codes concerning the
choice of chunks needed for data recovery. While LRC and
Rotated RS somehow predefine the particular chunks for
the data recovery to reduce bandwidth and I/Os, all other
codes work with arbitrarily selected chunks and consider all
chunks to be equal.

To reduce time and cost, the recovery process should
consicer as few unique data chunks as possible. However,
RS codes have not been designed for efficiency in recovery
scenarios but rather for an improvement of the availability
of data at low storage overhead. Therefore, the recovery
performance of the algorithms is rather weak compared to
almost all other codes presented in this paper. The number
of fragments needed to be accessed for the recovery of a
single chunk can be calculated with the following equation:
n ∗ d chunk size

word size e. Other algorithms focus on the reduction
of the total number of chunks that have to be accessed.
For example, the recovery of a single chunk with LRC
requires a total of n

l ∗d chunk size
word size e read accesses. Rotated RS

codes reduce the number of reads by reusing the accessed
fragments and require only r

2 (n+d n
me)∗ d chunk size

word size e reads
for the recovery of a single chunk (if r is even). The total
number of reads with CRS and the RAID-6 codes depends
on the number and the type (data or parity) of failed chunks.
In general, they use less fragments than RS codes but more
than Rotated RS and LRC algorithms.

Specific to Rotated RS codes is the access pattern used for
data recovery: these codes rely on the ability to access data
(partially) on bit-level to improve encoding performance. As
stated in Section V-F, this is not necessarily desirable.

coding
chunks

storage
overhead

equal
chunks

partial
read

open
source

RS ∞ n \ k X – X
CRS ∞ n \ k X – X
EVEN/ODD & RDP 2 n \ k X – –
Minimal Density 2 n \ k X – X
Rotated RS ∞ n \ k – X X
Local Reconstruction ∞ n + l \ k – – X

Table II
OVERVIEW OF ERASURE CODES AND THEIR CHARACTERISTICS.

However, the major findings can be summarized as fol-
lows: i) RAID-6 specific codes perform best in encoding and
decoding in RAID-6 scenarios, ii) CRS codes perform better
in encoding and decoding than RS codes in most cases, iii)
Rotated RS codes use significantly less fragments for data
recovery than most presented codes for m ≥ 3, and iv) LRC
can achieve up to 50% savings in terms of read accesses
and traffic consumption for recovery compared to RS codes.
Despite all encoding and decoding experiments, Huang et
al.[14] state that in modern data-centered applications that
operate on Exabytes of data, the speed of encoding and

http://hadoop.apache.org/docs/stable/file_system_shell.html


decoding can somehow be neglected compared to the time
and cost of the transmission of data itself. These statements
are consistent with the results of our experiments presented
in [6] and [5]

VIII. CONCLUSION

In this paper, we conducted a survey on the existing
erasure codes and libraries to identify the best algorithm
for the Cloud-RAID application. To this end we identified
determining criteria with reference to our use case.

EVEN/ODD and RDP codes can not be applied in our
implementation. On the one hand, there is no publicly
available implementation of the algorithms, as the codes are
under patent protection. On the other hand, we want the
number of coding chunks to be freely selectable. This is
due to fact, that Cloud-RAID assigns the coding parameters
based on user’s requirements on the availability of hosted
data. With this constraint, Minimal Density codes are not
applicable for our specific use case. We also can not benefit
from the advantages of Rotated Reed-Solomon codes, as
cloud storage services do not allow partial reads on data
objects in general.

To assert the feasibility of the remaining algorithms
we have to consider the cost structure of cloud storage
services. Vendors differ in pricing scheme and performance
characteristics. Some providers charge a flat monthly fee,
others negotiate contracts with individual clients. However,
in general pricing depends on the amount of data stored
and bandwidth consumed in transfers. Higher consumption
results in increased costs. Therefore we prefer algorithms
causing only minimal overhead in terms of storage and
traffic I/O. Hence, Cauchy Reed-Solomon (CRS) and classic
Reed-Solomon (RS) codes seem to be the optimal choice, as
they cause less storage overhead than Local Reconstruction
Codes (LRC). Due to the better encoding and decoding
performance of CRS in comparison to RS, we decided to
use CRS codes in our application. However, in case of rather
read- than than write-oriented usage scenarios, LRC might
be the superior choice to CRS codes as they are able to
reduce the volume of transferred data by 50%. Therefore,
the implementation of LRC also be considered within the
scope of future work and enhancement of Cloud-RAID.
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