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ABSTRACT
To survive reboots, 802.15.4 security normally requires an
802.15.4 node to store both its anti-replay data and its frame
counter in non-volatile memory. However, the only non-
volatile memory on most 802.15.4 nodes is flash memory,
which is energy consuming, slow, as well as prone to wear.
Establishing session keys frees 802.15.4 nodes from storing
anti-replay data and frame counters in non-volatile memory.
For establishing pairwise session keys for use in 802.15.4 se-
curity in particular, Krentz et al. proposed the Adaptable
Pairwise Key Establishment Scheme (APKES). Yet, APKES
neither supports reboots nor mobile nodes. In this paper, we
propose the Adaptive Key Establishment Scheme (AKES)
to overcome these limitations of APKES. Above all, AKES
makes 802.15.4 security survive reboots without storing data
in non-volatile memory. Also, we implemented AKES for
Contiki and demonstrate its memory and energy efficiency.
Of independent interest, we resolve the issue that 802.15.4
security stops to work if a node’s frame counter reaches its
maximum value, as well as propose a technique for reducing
the security-related per frame overhead.

Categories and Subject Descriptors
C.2.0. [General]: Security and protection; C.2.1. [Network
Architecture and Design]: Wireless communication

General Terms
Security, Design.

Keywords
Internet of things, link layer security, rejuvenation, self-
adaptiveness, 6LoWPAN.

1. INTRODUCTION
802.15.4 is a radio standard for wireless sensor and ac-

tuator networks [1]. Specially-designed protocols enable
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802.15.4 nodes to communicate with each other and remote
hosts using IPv6 [26, 18, 35, 32]. Such IPv6-enabled 802.15.4
networks are commonly referred to as 6LoWPAN networks,
where 6LoWPAN stands for “IPv6 over Low-Power Wireless
Personal Area Networks”. 6LoWPAN networks are suit-
able for diverse application areas, including smart cities,
industrial monitoring, and precision agriculture [20].

For wireless security, many 6LoWPAN protocols advocate
using 802.15.4 security [26, 18, 35, 32]. 802.15.4 security
filters out injected and replayed frames by adding both a
message integrity code (MIC) and an incrementing frame
counter to each outgoing frame. An incoming frame is only
accepted if it has an authentic MIC and if its frame counter is
greater than that of the last accepted frame from the frame’s
sender. Optionally, 802.15.4 security also encrypts the pay-
load of outgoing frames. Both the generation of MICs and
the encryption of payloads is done with a tweaked version of
Counter with CBC-MIC (CCM) that uses AES-128 as block
cipher [34].

Unfortunately, keeping track of every neighbor’s frame
counter is problematic since random-access memory (RAM)
on 802.15.4 nodes is severely limited. For example, TelosB
motes do only have 10KB of RAM [30]. Hence, in large
802.15.4 networks with mobile nodes, some anti-replay data
needs to be swapped to non-volatile memory over time [21].
As the only non-volatile memory on most 802.15.4 nodes is
flash memory, swapping usually is time and energy consum-
ing [33]. Swapping may also become necessary in stationary
802.15.4 networks if an attacker tunnels the traffic between
non-neighboring nodes verbatim. Such an attack is called
a hidden wormhole [22]. In effect, non-neighboring nodes
are tricked to believe they were neighbors and have to store
anti-replay data about each other forever [25].

However, when aiming to survive reboots, all anti-replay
data must be stored in non-volatile memory anyway. Re-
boots are, e.g., issued by the Contiki operating system when
a process gets stuck [12]. Reboots also happen when ex-
changing batteries. After a reboot, anti-replay data stored
in RAM get lost. Thus, to prevent replay attacks after re-
boots, anti-replay data must be stored across reboots. More-
over, two further issues arise if a node’s frame counter starts
over after a reboot. On the one hand, this causes a nonce
reuse in 802.15.4 security and, on the other hand, neighbors
consider the rebooted node’s frames as replayed. Therefore,
Sastry et al. considered storing a node’s frame counter in
non-volatile memory, too [31].

Session keys can not only obviate the need for swapping,
but also fix all three issues with reboots without storing



data in non-volatile memory. In fact, establishing session
keys invalidates MICs from previous sessions. This, thus,
allows nodes to securely delete anti-replay data about dis-
appeared neighbors, rather than swapping this data [21].
Also, establishing new session keys after reboots causes re-
played frames from previous sessions to be filtered out with-
out storing anti-replay data across reboots. Finally, when
establishing new session keys after reboots, a node’s frame
counter can start over without special treatment. This is
because reusing nonces with new session keys is secure and,
in the course of establishing new session keys, neighbors can
be informed of a reset frame counter.

To establish pairwise session keys for use in 802.15.4
security in particular, Krentz et al. proposed the Adapt-
able Pairwise Key Establishment Scheme (APKES) [21].
Yet, APKES has four limitations. First, while APKES
allows nodes to delete anti-replay data about disappeared
neighbors, APKES never does so. Second, in APKES,
nodes ignore so-called HELLOs from current neighbors. Since
HELLOs initiate pairwise session key establishment, ignoring
HELLOs from current neighbors causes a deadlock after re-
boots. Third, APKES only broadcasts HELLOs at startup
and makes no effort to discover new neighbors at runtime.
Forth, APKES focusses on deriving pairwise session keys
from predistributed pairwise keys and lacks efficient sup-
port for predistributed network-wide keys, which are more
manageable.

In this paper, we propose the Adaptive Key Establish-
ment Scheme (AKES), which overcomes these limitations of
APKES as follows:

• AKES pings neighbors that are incommunicado to
check if they are still in range. If a neighbor does not
reply, AKES deletes all data about that neighbor.

• AKES also processes HELLOs from current neighbors
and potentially starts a new session with them. This
change makes AKES survive reboots and thereby
solves all three issues with reboots in 802.15.4 secu-
rity.

• To discover new neighbors at runtime, AKES schedules
the broadcasting of HELLOs, using Trickle [23]. This
way, AKES self-adaptively reduces the rate of HELLOs if
the neighborhood is stable, yet quickly reacts to neigh-
borhood changes.

• Like APKES, AKES leaves its underlying key predis-
tribution scheme exchangeable to account for the cur-
rent dilemma that there is no one-size-fits-all pairwise
key predistribution scheme [21, 3]. However, unlike
APKES, AKES efficiently supports the network-wide
key scheme, too.

2. RELATED WORK
In this section, we discuss related work on establishing

pairwise session keys, avoiding swapping, and authenticating
broadcast frames.

2.1 Establishing Pairwise Session Keys
802.15.4 security itself leaves key establishment unspeci-

fied, which spawned a lot of research. The major advantage
of pairwise keys over a network-wide key is that they achieve
graceful degradation in case of node compromises, as well

as provide a basis for detecting compromised nodes [21].
However, establishing pairwise session keys using public-
key cryptography (PKC), as proposed in [29, 28], is heavy-
weight on 802.15.4 nodes. PKC consumes much energy and
has a high program memory footprint [17, 24]. Hardware-
accelerated PKC resolves these issues [28], but incurs higher
per unit costs. Key distribution centers (KDCs) avoid PKC
[27], but their messaging overhead increases with the number
of hops. Therefore, KDCs are even more energy consuming
than software-implemented PKC [17].

Pairwise key predistribution schemes, on the other hand,
are particularly lightweight. Such schemes neither in-
volve KDCs nor PKC. Instead, pairwise key predistribution
schemes use preloaded keying material to establish pairwise
keys. A basic pairwise key predistribution scheme is, e.g.,
the fully pairwise keys scheme, where each node is preloaded
with n − 1 pairwise keys, each of which is shared with one
of the n− 1 other nodes in the network. Unfortunately, the
memory consumption of the fully pairwise keys scheme is
very high, which gives rise to diverse more memory-efficient
pairwise key predistribution schemes, surveyed in [6]. There
is, however, no one-size-fits-all pairwise key predistribu-
tion scheme [3, 21]. In this context, APKES contributed
the workaround to hide diverse pairwise key predistribu-
tion schemes behind a common interface [21]. This enables
developers to reuse the bulk of their code across different
pairwise key predistribution schemes and users to choose
the most appropriate key predistribution scheme for their
use case.

2.2 Avoiding Swapping
Luk et al. considered storing anti-replay data in Bloom

filters, which saves RAM and hence avoids swapping [25].
Unfortunately, Bloom filters sometimes falsely report that a
frame was replayed and, disapprovingly, cause a high energy
consumption [19]. After all, Bloom filters cannot help sur-
vive reboots, whereas session keys help both to avoid swap-
ping and to survive reboots.

Another solution to avoid swapping appeared in the
802.15.4e amendment to 802.15.4 [2]. 802.15.4e contains
the timeslotted channel hopping (TSCH) media access con-
trol (MAC) protocol. When using TSCH, every node is time
synchronized and aware of the current absolute slot number
(ASN). By using ASNs in lieu of frame counters, TSCH can
avoid per neighbor anti-replay data altogether. As another
benefit, TSCH allows senders to elide their frame counter,
which saves energy. However, while TSCH avoids swap-
ping, it neglects situations where one or more clock sources
reboot or get compromised. Again, session keys can help
keep 802.15.4 security secure, but, in our implementation,
we use ContikiMAC [11]. ContikiMAC dispenses with time
synchronization, which saves communication overhead. In
addition, our implementation elides frame counters by tai-
loring the last bits (LB) optimization to 802.15.4 security
[25, 16], as will be discussed in Section 5.2.

2.3 Authenticating Broadcast Frames
While pairwise session keys can serve for securing unicast

frames, they cannot directly be used for securing broad-
cast frames. One can resort to securing broadcast frames
using group session keys, but this solution sacrifices com-
promise resilience. To this end, Krentz et al. proposed
the Easy Broadcast Encryption and Authentication Proto-



col (EBEAP) [21]. The idea of EBEAP is as follows. Sup-
pose a node u wants to securely send a broadcast frame f .
Then, u adds a frame counter to f to obtain f ′ and sends
two broadcast frames. The first broadcast frame contains
MICs m0‖m1‖ . . . over f ′ for each of u’s neighbors v0, v1, . . ..
Thereby, mi is generated using the pairwise session key be-
tween u and vi. Upon receipt, neighbor vi extracts its cor-
responding MIC mi and buffers it in a ring buffer. For this,
vi has to have its index i = Ivi,u in the neighbor list of u.
These indices are distributed by APKES, as well as AKES.
The second broadcast is f ′ itself. Upon receipt, vi generates
a MIC over f ′ using the pairwise session key between vi and
u. If the generated MIC is buffered and if f ′ is fresh, f ′

will be accepted. On demand, EBEAP can also encrypt the
payload of f ′ using a group session key. Thus, a compro-
mised node can decrypt broadcast frames of its neighbors,
but can never impersonate its neighbors (provided that the
employed pairwise key establishment scheme is inoculated
and opaque [21, 9]).

3. AKES: ADAPTIVE KEY ESTABLISH-
MENT SCHEME

Building upon APKES, AKES leaves its underlying key
predistribution scheme exchangeable. The plugged-in key
predistribution scheme merely provides AKES with shared
secrets. Based on shared secrets, AKES establishes pair-
wise and, if needed, group session keys. Group session keys
can serve for securing both unicast and broadcast frames
if compromise resilience is not an issue. In particular, this
avoids the overhead of EBEAP when using the network-wide
key scheme. On the other hand, if compromise resilience is
needed, group session keys may still be required by EBEAP
to encrypt the payload of broadcast frames. In the following,
we detail the design of AKES, which is depicted in Figure
1. For a summary of our notations, see Appendix A.

3.1 Preloading Configuration Settings
An 802.15.4 node running AKES must be preloaded with

addressing information, as well as keying material.

3.1.1 Addressing Information
The addressing scheme of 802.15.4 is organized as follows.

Each node is assigned both a 2-byte personal area network
(PAN) identifier and a variable-sized address. A PAN iden-
tifier identifies a set of nodes that belong to the same PAN.
PAN identifiers can serve for separating co-located 802.15.4
networks, as well as for dividing 802.15.4 networks into sub-
networks. An address identifies a specific node in a PAN.
There are three kinds of addresses, namely 8-byte extended,
2-byte short, and 1-byte simple addresses. Extended ad-
dresses are globally unique, whereas short and simple ad-
dresses are just PAN unique.

AKES reuses the addressing scheme of 802.15.4 for re-
questing shared secrets from the plugged-in key predistribu-
tion scheme. Specifically, when requesting the shared secret
with a node v, AKES inputs both the PAN identifier (de-
noted by PANv) and the address of v (denoted by IDv) to
the plugged-in key predistribution scheme. The plugged-in
key predistribution scheme may raise an error if a specific
address is not supported or unknown.

We note that AKES imposes two restrictions on the use
of addresses. First, the addressing information that were
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Figure 1: Design of AKES

used for requesting a shared secret must be used unchanged
throughout a session. This is because AKES makes no effort
to check whether a node owns alternative addressing infor-
mation. Second, AKES is incompatible with current pro-
tocols for auto-configuring PAN identifiers, short addresses,
and simple addresses [32, 1, 2]. The reason is that these
protocols require 802.15.4 security to be up and running,
but AKES has to reach this state in the first place. There-
fore, AKES requires preloading a node with any addressing
information it needs at runtime.

3.1.2 Keying Material
Additionally, a node must be preloaded with keying ma-

terial. The preloaded keying material is specific to the
plugged-in key predistribution scheme. AKES explicitly
supports the network-wide key scheme [6], the fully pair-
wise keys scheme [6], Blom’s scheme [4, 10], as well as the
random pairwise keys scheme [5]. All of them provide shared
secrets at various trade-offs regarding inoculation, opaque-
ness, welcomingness, efficiency, and universality (IOWEU)
[21]. When using the network-wide key scheme, the shared
secret is always the network-wide key itself.

3.2 Establishing Session Keys
AKES uses a three-way handshake to establish session

keys. The three messages are sent as three newly defined
command frames, entitled HELLO, HELLOACK, and ACK. In con-
trast to data frames, command frames do not carry upper-
layer traffic, but carry payload that is processed by the link
layer.

The basic three-way handshake is shown in Figure 2.
There, a node u establishes a pairwise session key with a
neighbor v. Initially, u generates a cryptographic random
number Ru and broadcasts a HELLO containing Ru. HELLOs
are authenticated using either EBEAP or a group session
key. As will be detailed shortly, authentic and unauthentic
HELLOs are processed differently. Upon receipt, v requests
the secret Kv,u between v and u, and also generates a cryp-
tographic random number Rv. Then, v derives the pairwise
session key K′v,u as AES-128(Kv,u, Ru‖Rv), thus reusing
AES-128 as a key derivation function (KDF) [7]. Lastly,
v sends a HELLOACK to u including Rv. The HELLOACK is
authenticated by adding a MIC that is generated with K′v,u.
Upon receipt, u checks if the added MIC is authentic by
deriving the pairwise session key K′u,v analogously. If suc-



u : Generate Ru ∈ {0, 1}64 randomly

u→ ∗ : 〈HELLO, PANu, IDu, Ru, Cu〉
v : Request shared secret Kv,u from the plugged-in key predistribution scheme

v : Generate Rv ∈ {0, 1}64 randomly

v : K′v,u = AES-128(Kv,u, Ru‖Rv) ∈ {0, 1}128

v → u : 〈HELLOACK, PANu, IDu, PANv, IDv, Rv, ({Kv,∗}), [(Iu,v), Cv|Iu,v, Cv,u, Cv,∗], Pu〉
u : Request shared secret Ku,v from the plugged-in key predistribution scheme

u : K′u,v = AES-128(Ku,v, Ru‖Rv) ∈ {0, 1}128

u→ v : 〈ACK, PANv, IDv, PANu, IDu, ({Ku,∗}), [(Iv,u), Cu|Iv,u, Cu,v, Cu,∗]〉
u : Generate Ru ∈ {0, 1}64 randomly

Figure 2: Basic three-way handshake for establishing session keys
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cessful, u sends an ACK to v. The ACK also contains a MIC
that is generated with K′u,v. Upon receipt, v checks if the
contained MIC is authentic. If so, u and v have agreed
on their pairwise session key K′v,u = K′u,v. Eventually, u
changes Ru to prepare for broadcasting the next HELLO.

During the three-way handshake, u and v can piggyback
their group session keys Ku,∗ and Kv,∗ on ACKs and HEL-

LOACKs, respectively. Thereby, Ku,∗ and Kv,∗ are encrypted
using K′u,v and K′v,u, respectively. Additionally, EBEAP re-
quires piggybacking the indices Iu,v and Iv,u on HELLOACKs
and ACKs, respectively (see Section 2.3). These indices are
also required by our optional LB optimization (to be ex-
plained in Section 5.2). Without LB optimization, each node
adds its frame counter to outgoing frames and keeps track of
its neighbors’ frame counters, as usual. Table 1 summarizes
all per neighbor data.

Detailed instructions for processing HELLOs, HELLOACKs,
and ACKs are given in Figure 3. Thereby, AKES distin-
guishes between tentative and permanent neighbors. While
tentative neighbors are potentially created upon receipt of
HELLOs, permanent neighbors are potentially created upon
receipt of HELLOACKs and ACKs. The main difference between
tentative and permanent neighbors is that data frames may
only be sent from and to permanent neighbors.

A crucial change to APKES is that a node v also han-
dles HELLOs from a permanent neighbor u. For example, if
u reboots, v will receive an unauthentic HELLO from u. This
causes v to store u as a tentative neighbor, but, at the same
time, to keep u as a permanent neighbor. As the ACK from
u arrives, v deletes the permanent neighbor u and turns the
tentative neighbor u into a permanent one. This effectively
starts a new session between u and v. The more common
case is that v receives fresh authentic HELLOs from u, which
are silently discarded. However, a subtlety arises in con-
junction with EBEAP. If EBEAP’s first broadcast frame
containing the MICs is missed, a HELLO from u is considered
unauthentic by v. In this case, v will send a HELLOACK to
u, but with the Pu flag set, which indicates that u is cur-
rently stored as a permanent neighbor by v. Upon receipt,
u discards HELLOACKs from permanent neighbors with the
Pu flag set right away, which avoids starting a new session
unnecessarily.

3.3 Handling Mobility
Owing to mobility or changing surroundings, neighbors

can get out of range and new ones can come into range. Be-
low, we detail how AKES self-adapts to such neighborhood
changes by deleting disappeared permanent neighbors and
“Trickling” HELLOs to discover new neighbors.

3.3.1 Deletion of Disappeared Permanent Neigh-
bors

When a permanent neighbor expires, AKES checks if
that neighbor is still in range by exchanging two command
frames, as shown in Figure 4. Specifically, to check if a

u→ v : 〈UPDATE, PANu, IDu, PANv, IDv, [Cu|Cu,v, Cu,∗]〉
v → u : 〈UPDATEACK, PANu, IDu, PANv, IDv, [Cv|Cv,u, Cv,∗]〉

Figure 4: Interaction for checking if a permanent neighbor
is still in range

Table 1: Data stored by u per neighbor v

Variable Description
status Stores if v is either permanent or tentative

and, if tentative, whether a HELLOACK was al-
ready sent to v

PANv v’s PAN identifier
IDv v’s extended, short, or simple address
Ev v’s expiration time
K′u,v u and v’s pairwise session key - can be freed

after the three-way handshake when using
group session keys only

Kv,∗ v’s optional group session key
Iu,v Part of EBEAP - u’s index in the neighbor

list of v
Cv If LB optimization is off, Cv stores the frame

counter of the last accepted frame from v
Cv,u Part of the LB optimization - frame counter

of the last accepted unicast frame from v
Cu,v Part of the LB optimization - frame counter

of the last outgoing unicast frame to v
Cv,∗ Part of the LB optimization - frame counter

of the last accepted broadcast frame from v
Bv Part of the LB optimization - flag that stores

if the last accepted frame from v was a broad-
cast frame or not

Hv Part of Trickle - flag that stores if v sent a
fresh authentic HELLO since the last time u
broadcasted a HELLO

permanent neighbor v is still in range, a node u sends an
authenticated UPDATE to v. Upon receipt of a fresh authentic
UPDATE, v replies with an authenticated UPDATEACK. Finally,
as u receives v’s fresh authentic UPDATEACK, u prolongs v’s
expiration time. If, on the other hand, no authentic UP-

DATEACK returns after resending the UPDATE a few times, u
eventually gives up and deletes v. Note that when v re-
ceives an authentic UPDATE from u, v prolongs u’s expiration
time, too. Prolonging a permanent neighbor’s expiration
time is also done implicitly upon receiving any fresh au-
thentic frame, which reduces explicit UPDATE/UPDATEACK
interactions.

3.3.2 Trickle-Based Broadcasting of HELLOs
Establishing session keys with new neighbors requires

broadcasting a HELLO. Thereby, the challenge is to broad-
cast as few HELLOs as possible, while quickly reacting to
neighborhood changes. AKES adopts Trickle to achieve
exactly this [23]. Trickle is an algorithm for disseminating
information in wireless sensor networks. Though Trickle
does not lend itself to the problem of scheduling the broad-
casting of HELLOs, it can be tailored for this problem.

Trickle’s parameters and variables are given in Table 2
and 3, respectively. Initially, Trickle sets c = 0 and I =
Imin. Furthermore, Trickle selects a random instant t ∈
[ I
2
, I). Every time Trickle receives a consistent transmission,

c is incremented. The notion of “consistent transmission”
is application specific. At time t, Trickle transmits if c <
k. What is being transmitted is also application specific.
Finally, at time I, the end of the current interval, Trickle
sets c = 0, I = min{I × 2, Imax}, and selects a random
instant t ∈ [ I

2
, I). Subsequently, proceeds with transmitting



Table 2: Trickle’s parameters

Parameter Description
Imin Minimum interval size
Imax Maximum interval size
k Redundancy constant

Table 3: Trickle’s variables

Variable Description
c Counter
I Current interval size
t Instant within the current interval

at time t if c < k and so on. Whenever an inconsistency is
observed, Trickle can be reset by starting over with c = 0,
I = Imin, and some t ∈ [ I

2
, I).

AKES configures Trickle to schedule the broadcasting of
HELLOs as follows. AKES defaults to Imin = 30s and Imax =
Imin × 28 = 128min. In general, Imin should be greater
than Mbac to avoid broadcasting another HELLO while still
waiting for HELLOACKs. k defaults to 2, which emerged as
a sensible default [23]. As consistent transmissions, AKES
counts fresh authentic HELLOs. More specifically, upon re-
ceipt of a fresh authentic HELLO from v, u increments c if
and only if v sent no fresh authentic HELLO since the last
time u broadcasted a HELLO. For this, AKES maintains the
Hv flag per permanent neighbor v, as shown in Table 1.
Altogether, this configuration dramatically lowers the fre-
quency of HELLOs if the neighborhood is stable. To quickly
react to neighborhood changes, AKES resets Trickle when
having added max{bn

4
c, 1} permanent neighbors during the

current interval, where n is the current total number of per-
manent neighbors. New permanent neighbors turned out to
be a good indicator of far-reaching neighborhood changes.

4. SECURITY ANALYSIS
Observe that AKES does not consider unauthentic HELLOs

to be consistent transmissions. This is to prevent attacks
where an attacker suppresses HELLOs so as to prevent nodes
from discovering each other. By counting only fresh authen-
tic HELLOs, such attacks are complicated. Still, an attacker
could have compromised nodes and broadcast large numbers
of fresh authentic HELLOs. To also withstand such situations,
AKES only increments c upon receipt of a fresh authentic
HELLO from v if Hv is unset and thereupon sets the Hv flag.
These flags are unset when broadcasting a HELLO. In effect,
each node definitely broadcasts a HELLO at some point.

A related issue are HELLO flood attacks, where an attacker
aims to expend energy and memory of receivers. AKES mit-
igates HELLO flood attacks by limiting the number of tenta-
tive neighbors. As soon as the maximum number of tenta-
tive neighbors is reached, AKES sheds HELLOs. To reinforce
this mitigation technique, the maximum number of tenta-
tive neighbors Mten should be low, the maximum random
backoff period Mbac should be long, and the waiting period
for ACKs Tack should be long, too.

Furthermore, AKES prevents the replay of HELLOACKs and
ACKs. The replay of HELLOACKs from permanent neighbors is
directly prevented through frame counters. Also the replay
of HELLOACKs from deleted neighbors is impossible since the
random number Ru will have changed, which affects the
derived pairwise session key and hence the expected MIC.

The replay of ACKs is pointless since a tentative neighbor is
turned into a permanent neighbor just once. The situation
is different when a permanent neighbor was deleted. Then,
an attacker could try becoming a permanent neighbor by
first injecting a HELLO and second replaying a corresponding
ACK. However, the random number Rv will have changed
and therefore the derived pairwise session key, too. Thus,
the MIC of the replayed ACK will be unauthentic.

Another attack on AKES is a hidden wormhole, where an
attacker tunnels the traffic between non-neighboring nodes
verbatim. A hidden wormhole enables an attacker to switch
a link on and off, as well as to deny to forward selected
frames. These two incarnations of hidden wormholes are
referred to as transient and selective hidden wormholes,
respectively. AKES establishes session keys through hid-
den wormholes unobstructed. Fortunately, transient hidden
wormholes do not cause AKES to constantly add and re-
move permanent neighbors because the expiration time of
a permanent neighbor acts as a hysteresis. To counter
selective hidden wormholes, we suggest authenticating ac-
knowledgement frames. This way, senders can ensure that a
frame was received. However, this solution is only suitable
for unicast frames, but not for broadcast frames. Avoiding
hidden wormholes in the first place is a subject of current
research [22].

5. IMPLEMENTATION
This section details our implementation of AKES for the

Contiki operating system [12]. In Section 5.1, we first de-
scribe how we integrated AKES into Contiki’s 6LoWPAN
stack. In Section 5.2, we propose a technique for reducing
the security-related per frame overhead. Finally, in Section
5.3, we explain how we prevent 802.15.4 security from crash-
ing when a frame counter reaches its maximum value.

5.1 Integrating AKES into Contiki
Contiki’s 6LoWPAN stack follows the Chameleon archi-

tecture [13], which enables developers to exchange the im-
plementation of each of its layers at compilation time. Also,
the implementation of link layer security can be exchanged
by configuring a different llsec_driver. Accordingly, our
implementation of AKES is part of a new llsec_driver

named adaptivesec_driver.
The adaptivesec_driver provides many configuration

options. At the highest level, the user can choose between
a non-compromise-resilient and a compromise-resilient con-
figuration. In a non-compromise-resilient configuration,
the adaptivesec_driver secures both unicast and broad-
cast frames using group session keys. Conversely, in a
compromise-resilient configuration, the adaptivesec_driver
secures unicast frames using pairwise session keys and broad-
cast frames using EBEAP.

The underlying key predistribution scheme of AKES is
implemented by an exchangeable akes_scheme, as shown in
Figure 5. The init function is called at startup and used for
initialization purposes. The functions get_secret_with_-

hello_sender and get_secret_with_helloack_sender are
used for requesting shared secrets from the plugged-in key
predistribution scheme. Thereby, the pointer addr points
either to an extended or short address. Currently, we ignore
PAN identifiers and do not support simple addresses since
Contiki only supports network-wide PAN identifiers, as well
as lacks support for simple addresses anyway. As akes_-



struct akes_scheme {

void (* init)(void);

uint8_t* (* get_secret_with_hello_sender)

(const linkaddr_t *addr);

uint8_t* (* get_secret_with_helloack_sender)

(const linkaddr_t *addr);

};

Figure 5: Structure of a pluggable key predistribution
scheme
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Figure 6: Format of a secured 802.15.4 frame.

schemes, we implemented the network-wide key scheme and
the fully pairwise keys scheme. While the network-wide key
scheme should go with a non-compromise-resilient config-
uration, the fully pairwise keys scheme should go with a
compromise-resilient configuration.

5.2 Reducing the Security-Related Per Frame
Overhead

The format of a secured 802.15.4 frame is depicted in Fig-
ure 6. The security-related fields are Frame Control, Auxil-
iary Security Header, and Frame Payload. The Frame Con-
trol field contains a flag that signals the presence of the Aux-
iliary Security Header field. The Auxiliary Security Header
field is subdivided into the Security Control, Frame Counter,
as well as Key Identifier fields. The Security Control field
encodes the length of the Frame Counter field, the length
of the Key Identifier field, as well as the employed security
level. The optional Key Identifier field carries a reference to
the employed key. The security level implies if the Frame
Payload is encrypted, as well as the length of the added
MIC. MICs are carried within the Frame Payload field.

To save energy, the adaptivesec_driver optionally elides
the Auxiliary Security Header field of data frames com-
pletely. This works as follows. The security level defaults to
a preloaded one. Alternatively, a default security level could
be negotiated during session key establishment, just as well.
Key identifiers are redundant since the adaptivesec_driver
looks up session keys based on the addressing information
of the sender. Finally, the Frame Counter field is elided by
tailoring the LB optimization to 802.15.4 security [25, 16].

The idea of the LB optimization is to just send the x least
significant bits of the frame counter. Receivers can esti-
mate the higher order bits based on the last accepted frame
counter. Similarly, what our adaptivesec_driver does is to
set the Sequence Number field to the least significant byte of
the frame counter. Since the Sequence Number field is sent
anyway, the Frame Counter field becomes obsolete. How-
ever, making the LB optimization work flawlessly involves
three intricacies.

‘s addressing information if unicast to
if broadast

8 bytes 4 bytes

0xFF if unicast to
0xFF if broadcast

1 byte

Figure 7: 13-byte CCM nonce of a sender u

First, each node has to maintain a number of separate
counters. Specifically, each node u has to have both an over-
all counter for outgoing unicast frames (denoted by Cu,•)
and an overall counter for outgoing broadcast frames (de-
noted by Cu,∗). Additionally, each node u has to maintain
a separate counter for outgoing unicast frames per neighbor
v (denoted by Cu,v). Cu,v is initialized to Cu,•, which is the
only purpose of Cu,•.

Second, replay protection and CCM nonces need adjust-
ments. A unicast frame from v to u must contain a higher
frame counter Cv,u than was previously accepted. Likewise,
a broadcast frame from v to u must contain a higher frame
counter Cv,∗ than was previously accepted. To avoid nonce
reuses, the adaptivesec_driver creates nonces, as shown in
Figure 7. The first 8 bytes contain the addressing informa-
tion of the sender u. Thereafter, either Cu,v or Cu,∗ follows,
depending on whether u sends a unicast frame to a neigh-
bor v or a broadcast frame, respectively. Lastly, Iv,u or, in
case of a broadcast frame, 0xFF follows. Since 0xFF is not
allowed as an index, unicast frames and broadcast frames
always use distinct nonces. Including Iv,u is necessary be-
cause a single group session key is used to secure unicast
frames destined to different permanent neighbors.

Third, a node u may lose track of the counters Cv,u or
Cv,∗ of a permanent neighbor v. In effect, u no longer re-
ceives fresh authentic unicast or broadcast frames from v.
To recover from this, we tweak the deletion of permanent
neighbors. When LB optimization is enabled, v’s lifetime
is only prolonged upon receipt of a fresh authentic unicast
frame from v if the last accepted frame from v was a broad-
cast frame. Likewise, v’s lifetime is only prolonged upon
receipt of a fresh authentic broadcast frame from v if the
last accepted frame from v was a unicast frame. Thus, if
any of u’s counters gets out of sync with v’s counters, u
will send an UPDATE as v’s lifetime expires. Since the cor-
responding UPDATEACK from v contains both Cv,u and Cv,∗
in whole, u can then resynchronize with v’s counters. For-
tunately, getting out of sync is unlikely since a node has
to miss 28 consecutive unicast or broadcast frames [25, 16].
Still, an attacker may provoke such an occasion by launching
a jamming attack.

5.3 Dealing with Used Up Frame Counters
Currently, 802.15.4 security stops to work when a frame

counter reaches its maximum value, e.g., 232 in case of 4-byte
frame counters. Although this limitation does not seem to be
of practical relevance since 232 is large, a node’s lifetime may
exceed expectations and should not be limited. Since AKES
survives reboots, the adaptivesec_driver simply issues a
reboot when a frame counter reaches its maximum value.
This effectively resets all frame counters and causes AKES
to establish new session keys.

6. EVALUATION
In this section, we demonstrate the memory and energy ef-

ficiency of our adaptivesec_driver. Furthermore, we show-
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Figure 8: Memory footprint of the adaptivesec_driver on TelosB motes: (a) Program memory footprint (b) RAM footprint
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case the efficacy of the Trickle-based scheduling of HELLOs.

6.1 Methods
The program memory and RAM footprint of the adaptive-

sec_driver was determined with the tools msp430-size and
msp430-ram-usage, respectively. Thereby, three configura-
tions were considered. First, in the nullsec configuration,
link layer security was disabled as a baseline for determin-
ing the overhead of the adaptivesec_driver. Second, in
the noncoresec configuration, the adaptivesec_driver was
configured for non-compromise resilience. Third, in the
coresec configuration, the adaptivesec_driver was con-
figured for compromise resilience. More specifically, three
modes of noncoresec and coresec were looked at. In the auth
mode, both encryption and the eliding of Auxiliary Secu-
rity Header fields was disabled. In the auth+elide mode,
the eliding of Auxiliary Security Header fields was enabled.
Finally, in the auth+elide+encrypt mode, encryption was
enabled, too. Throughout, 128-bit keys, 4-byte frame coun-
ters, 8-byte MICs, short addresses, and TelosB motes were
used.

Using the same configurations, modes, and hardware, the
energy consumption of securing and unsecuring data frames
was determined with Contiki’s Energest tool [14]. Energest
measures the durations of individual hardware activities and
converts each duration t to an energy consumption E. For
this, Energest employs the formulae E = U × I× t, where U
is voltage and I is the current consumption of the respective
hardware activity. As voltage, 2.2V was assumed. As cur-
rent consumption, datasheet values of TelosB motes were as-
sumed, i.e., 1.32mA when the MCU is active, 18.8mA when
receiving, and 17.4mA when transmitting. The experimen-
tal setup was compromised of two TelosB motes - a sender
and a receiver. On the sender side, the energy consumption
was measured between sending a data frame and getting
notified that the data frame was sent. On the receiver side,
the energy consumption was measured between the receipt
of the data frame and its arrival at the upper layer. All data
frames carried 50 bytes of payload. The energy consump-
tion of EBEAP’s additional broadcast frame was included
and ContikiMAC’s burst support was disabled.

Finally, to showcase the efficacy of the Trickle-based
scheduling of HELLOs, Contiki’s network emulator Cooja
was used [15]. The emulated network topology is shown in
Figure 10a. It was emulated for 12 virtual hours.

6.2 Results
As shown in Figure 8, the program memory and RAM

overhead of the adaptivesec_driver is significant. How-
ever, recall that the adaptivesec_driver not only im-
plements AKES, but also the securing and unsecuring of
frames. Furthermore, we left key lengths, the number of
neighbor slots, etc. configurable. This enables users to trade
off security against memory footprint. For example, Figure
10 shows that tuning the number of neighbor slots has a
great effect on the RAM footprint. Also, a small amount
of program memory and RAM can be saved by disabling
encryption or the eliding of Auxiliary Security Header fields.
Intriguingly, our adaptivesec_driver outperforms the “as
is” implementation of 802.15.4 security by Daidone et al. in
terms of program memory and RAM consumption [8].

The overhead in energy consumption for securing and un-
securing data frames is shown in Figure 9. The reason why

broadcast frames consume much more energy than unicast
frames is due to ContikiMAC [11]. Basically, ContikiMAC
repeatedly sends a unicast frame until the intended receiver
wakes up and sends an acknowledgement frame. By con-
trast, ContikiMAC repeatedly sends a broadcast frame for
a whole wake-up interval. The difference in energy con-
sumption between nullsec and noncoresec is insignificant.
An exception to this is coresec since it requires sending an
additional broadcast frame. We can also observe that elid-
ing Auxiliary Security Header fields saves a small amount
of energy. Surprisingly, eliding Auxiliary Security Header
fields mainly saves processing overhead, presumably be-
cause all layers have to cope with less data. Lastly, since
our adaptivesec_driver leverages a hardware-accelerated
AES-128 implementation, which is a common feature of
802.15.4 transceivers, its processing overhead is small.

Especially when using coresec, broadcasting a secured
frame, such as a HELLO, consumes a considerable amount
of energy. This is why we put special emphasis on reduc-
ing the number of HELLOs in the design of AKES. Figure
10b shows the number of HELLOs after 6 hours. Once the
network is stabilized every node only sends 1-3 HELLOs in
6 hours, as shown in Figure 10c. Of course, even more
energy-efficient configurations are possible, but at the cost
of slower response to neighborhood changes.

7. CONCLUSIONS AND FUTURE WORK
Normally, 802.15.4 security requires swapping and cannot

survive reboots without storing data in non-volatile memory.
Moreover, 802.15.4 security crashes when a frame counter
reaches its maximum value. We have proposed AKES to
overcome all these problems at once. AKES obviates the
need for swapping and makes 802.15.4 security survive re-
boots without storing data in non-volatile memory. In par-
ticular, AKES enables a node to reboot when any of its
frame counters reaches its maximum value. On the other
hand, the more dynamic an 802.15.4 network is, the more
energy is consumed by AKES for establishing session keys.
That said, future work might improve on the mobility sup-
port of AKES. Besides, future work should address key re-
vocation and rekeying.
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APPENDIX
A. NOTATIONS

Symbol Meaning

‖ Concatenation

u→ v u sends a unicast frame to v

u→ ∗ u sends a broadcast frame

〈X〉 Authenticated content X

{X} Encrypted content X

(X) Optional content X

[X|Y ] Either X or Y

AES-128(K,P ) AES encryption of a 16-byte plain text
P with a 128-bit key K

B. RAW DATA OF FIGURE 10B AND 10C

8 7 8 8 8
9 7 7 6 8
11 7 7 9 9
8 6 6 7 9
9 8 9 8 9

2 2 1 3 3
2 1 1 2 2
1 1 2 2 2
2 2 1 2 1
2 2 2 2 3


