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Abstract—The practice of rejecting injected and replayed
802.15.4 frames only after they were received leaves 802.15.4
nodes vulnerable to broadcast and droplet attacks. Basically,
in broadcast and droplet attacks, an attacker injects or
replays plenty of 802.15.4 frames. As a result, victim 802.15.4
nodes stay in receive mode for extended periods of time and
expend their limited energy. He et al. considered embed-
ding one-time passwords in the synchronization headers of
802.15.4 frames so as to avoid that 802.15.4 nodes detect
injected and replayed 802.15.4 frames in the first place.
However, He et al.’s, as well as similar proposals lack support
for broadcast frames and depend on special hardware. In this
paper, we propose Practical On-the-fly Rejection (POTR) to
reject injected and replayed 802.15.4 frames early during
receipt. Unlike previous proposals, POTR supports broadcast
frames and can be implemented with many off-the-shelf
802.15.4 transceivers. In fact, we implemented POTR with
CC2538 transceivers, as well as integrated POTR into the
Contiki operating system. Furthermore, we demonstrate that,
compared to using no defense, POTR reduces the time
that 802.15.4 nodes stay in receive mode upon receiving an
injected or replayed 802.15.4 frame by a factor of up to
16. Beyond that, POTR has a small processing and memory
overhead, and incurs no communication overhead.

Keywords-Broadcast attack, droplet attack, denial-of-sleep
attack, MAC security, ContikiMAC, 6LoWPAN.

I. INTRODUCTION

Among the most popular media access control (MAC)
protocols for 802.15.4 networks is ContikiMAC [1], [2].
In fact, ContikiMAC is the default MAC protocol of
Contiki - a widely-used operating system for Internet
of things (IoT) devices [3]. Conceptually, ContikiMAC
inherits various ideas from other MAC protocols. From
B-MAC [4], ContikiMAC inherits the idea of scanning
the channel for activity periodically. From WiseMAC
[5], ContikiMAC inherits the idea of learning the wake-
up times of neighboring nodes. From BoX-MACs [6],
ContikiMAC inherits the idea of using frames as wake-up
strobes. There are also numerous follow-up efforts, which
improve on various aspects of ContikiMAC [7]–[11].

The focus of this paper is on securing ContikiMAC
against specific denial-of-sleep attacks, namely broadcast
and droplet attacks [12]–[14]. In general, denial-of-sleep
attacks cause a high energy consumption by depriving
victim nodes of entering a low-power sleep mode [12]. Es-
pecially, MAC protocols should be secured against denial-
of-sleep attacks since receiving and transmitting are both
energy-consuming operations [12]. The way how denial-

of-sleep attacks on MAC protocols are carried out depends
on the MAC protocol under attack [13]. In ContikiMAC,
if a node does not detect any frame it can go back to
sleep rather soon, whereas, if a frame comes in, this frame
is to be received and processed. Thus, to cause higher
energy consumption, an attacker can, e.g., inject or replay
a broadcast frame. Such denial-of-sleep attacks are known
as broadcast attacks [12], [13]. Alternatively, an attacker
can also just inject a synchronization header (SHR) fol-
lowed by a length indication and then stop transmitting
[14]. Receivers will interpret the noise that follows as a
frame, just to conclude that the appended Frame Check
Sequence (FCS) is invalid. These so-called droplet attacks
are especially interesting for attackers that are energy
constrained as droplet attacks require transmitting less data
than broadcast attacks.

To avoid that 802.15.4 nodes detect injected and re-
played 802.15.4 frames in the first place, He et al. consid-
ered adopting a technique called frame masking [14], [15].
As per 802.15.4, SHRs of 802.15.4 frames are actually
fixed to 0x00000000a7. Nevertheless, CC2420 transceivers
support changing an SHR’s final two bytes to a custom
value [16]. Accordingly, the idea of frame masking is to
replace an SHR’s final two bytes with a pseudo-random
value that is derived from a pairwise key between sender
and receiver, as well as the index of the current timeslot. In
effect, 802.15.4 nodes solely detect 802.15.4 frames with
valid “one-time SHRs”.

However, owing to deriving one-time SHRs from pair-
wise keys, frame masking lacks support for broadcast
frames. Moreover, the straightforward solution of replac-
ing pairwise keys with group or network-wide keys does
not work out because attackers can then bypass frame
masking via a hidden wormhole, as we will detail in
Section III-C.

After all, newer CC2538 transceivers do not support
changing SHRs [17]. Nonetheless, CC2538, CC2420, as
well as virtually all other 802.15.4 transceivers from Texas
Instruments support parsing incoming 802.15.4 frames
already during receipt. This capability of parsing incoming
frames during receipt could be used to reject injected and
replayed 802.15.4 frames early during receipt.

Indeed, in this paper, we propose a method that uses this
capability to reject injected and replayed 802.15.4 frames
early during receipt, named Practical On-the-fly Rejection
(POTR). The basic approach of POTR is to embed one-
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time passwords (OTPs) in the headers of 802.15.4 frames
and to validate them during receipt. Compared to frame
masking, POTR has four advantages:

• First, POTR supports broadcast frames while avoid-
ing vulnerabilities posed by hidden wormholes.

• Second, POTR is more interoperable since parsing
incoming 802.15.4 frames during receipt is a more
common capability of 802.15.4 transceivers than
changing the SHRs of 802.15.4 frames.

• Third, in POTR, OTPs need not be configured in
advance, thereby freeing receivers from configuring
OTPs regardless of whether a frame will come in or
not.

• Forth, POTR obviates the need for time synchroniza-
tion by using frame counters instead. This makes
POTR particularly lightweight in terms of processing,
memory, and communication overhead.

II. RELATED WORK

Originally, frame masking was intended to prevent
reactive jamming attacks [15]. Later, He et al. found that
frame masking also prevents droplet attacks [14]. Similar
concepts appeared in the context of wake-up receivers
[18], [19]. Falk et al. designed a wake-up receiver, which
only wakes up upon receiving an OTP that is contained
in a list of acceptable OTPs [18]. Yet, in Falk et al.’s
design, nodes have to run an energy-consuming initial-
ization protocol and senders and receivers can get out of
sync [19]. Aljareh et al. solved both problems via time-
synchronized OTPs [19]. POTR expands on these efforts in
four directions. First, as opposed to all previous proposals
[14], [15], [18], [19], POTR supports broadcast frames.
Second, rather than depending on special hardware [14],
[15], [18], [19], POTR leverages a common capability
of off-the-shelf 802.15.4 transceivers. Third, unlike all
previous proposals [14], [15], [18], [19], POTR obviates
the need for configuring OTPs in advance. Finally, POTR
uses frame counters in lieu of time synchronization. Using
frame counters was also conceived by Falk et al. [18],
but they take the implicit assumption that senders and
receivers are always in sync and neglect, e.g., frame loss.
By contrast, POTR tolerates frame loss to a great extent
and resynchronizes if a sender and a receiver get out of
sync anyway.

More recently, Hsueh et al. secured two other MAC
protocols against denial-of-sleep attacks [20], namely X-
MAC and A-MAC [21], [22]. In X-MAC, receivers wake
up periodically and scan the channel for activity like
in ContikiMAC. However, while senders in ContikiMAC
repeatedly send a frame until they receive an acknowl-
edgement frame, senders in X-MAC transmit short strobes
to wake up receivers. If a receiver detects a strobe, it
replies with an acknowledgement frame, whereupon the
sender transmits the actual frame. In A-MAC, receivers
regularly transmit beacons. Senders wait until they receive
a beacon from the intended receiver and thereupon trans-
mit an acknowledgement frame followed by the actual
frame. To secure X-MAC and A-MAC against denial-of-
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Figure 1: 802.15.4 frame format

sleep attacks, Hsueh et al. suggest exchanging random
numbers during the strobe-acknowledgement and beacon-
acknowledgement negotiation, respectively. These random
numbers are used to derive an OTP, which is then prefixed
to the actual frame. During receipt of the actual frame,
receivers check if the prefixed OTP is valid and other-
wise disable the receive mode immediately. Unfortunately,
Hsueh et al.’s method is inapplicable to ContikiMAC
since, in ContikiMAC, frames are sent without prior
negotiation. Besides, Hsueh et al. only explain the securing
of unicast frames and only provide simulation results.

Another paradigm of defending against denial-of-sleep
attacks is to adaptively react to such attacks. For example,
Ren et al. use various statistics to detect different kinds
of denial-of-sleep attacks [23]. They suggest switching to
a low-power sleep mode in the face of denial-of-sleep
attacks for a while. Similarly, Raymond et al. proposed
decelerating the wake-up frequency when multiple con-
secutive inauthentic or replayed broadcast frames come
in [24]. A problem with these reactive defenses is that
senders are sometimes unaware that a receiver is cur-
rently counteracting denial-of-sleep attacks, thus causing
an increased energy consumption due to retransmissions.
Moreover, intermittently launched broadcast and droplet
attacks are hard to detect, whereas proactive defenses, such
as POTR, mitigate broadcast and droplet attacks reliably.

III. BACKGROUND

Since POTR adapts the 802.15.4 frame format and
integrates with 802.15.4 security, this section provides a
brief introduction to these subjects. Also, we review the
motivation behind and vulnerabilities of frame masking.

A. 802.15.4 Frame Format

Figure 1 shows the format of 802.15.4 frames. To
indicate the start of an 802.15.4 frame, the physical layer
prefixes both an SHR and a Frame Length field to 802.15.4
frames. In addition, the MAC layer adds various other
fields to the upper-layer payload. Most importantly for our
purposes, each 802.15.4 frame potentially has a destination
and a source address. There are three addressing modes
available, namely 1-byte simple, 2-byte short, and 8-byte
extended addresses. Destination and source addresses are
accompanied by a destination and a source personal area
network (PAN) identifier, respectively. While simple and
short addresses are just PAN unique, extended addresses



are globally unique. The PAN identifier 0xffff is reserved
for broadcasting as is the short address 0xffff.

B. 802.15.4 Security

To filter out injected and replayed 802.15.4 frames,
802.15.4 security adds a message integrity code (MIC) and
a frame counter to the Frame Payload and the Auxiliary
Security Header field, respectively. Receivers shall only
accept a frame with an authentic MIC and a frame counter
that is greater than that of the last accepted frame from
the sender.

However, 802.15.4 security leaves two important mech-
anisms unspecified, namely session key establishment
and the deletion of anti-replay data about neighbors that
got out of range. Krentz et al. proposed the Adaptive
Key Establishment Scheme (AKES) to fill these gaps
[25]. AKES optionally establishes pairwise session keys,
group session keys, or both. The session key establish-
ment protocol of AKES is a three-way handshake, as
shown in Figure 2. AKES self-adaptively schedules the
broadcasting of HELLOs. Receivers that wish to establish
session key(s) with a HELLO sender store the sender as
a tentative neighbor and, after a random backoff period,
reply with a HELLOACK. Upon receipt of a HELLOACK,
the HELLO sender checks the validity and authenticity of
the HELLOACK and, if successful, stores the HELLOACK
sender as a permanent neighbor along with its session
key(s) and anti-replay data. Next, the HELLO sender
acknowledges with an ACK. As a HELLOACK sender
receives an ACK, the HELLOACK sender ensures (i) that
the ACK sender is currently stored as a tentative neighbor
and (ii) that the ACK is valid and authentic. If both are
fulfilled, the HELLOACK sender stores the ACK sender as
a permanent neighbor along with its session key(s) and
anti-replay data, too. If a permanent neighbor is incom-
municado for a certain time, AKES sends an UPDATE
to that neighbor. Unless that neighbor replies with an
UPDATEACK after a few retransmissions, it will be deleted
along with its session key(s) and anti-replay data.

Furthermore, to shorten 802.15.4 frames, Krentz et al.
tailored the last bits (LB) optimization to 802.15.4 security
[25]–[27]. When using the LB optimization, frames do
not carry the entire frame counter. Instead, only the least
significant bits are being transmitted and receivers estimate
the higher order bits. To make this work, each node has
to use a separate per neighbor frame counters for unicast
frames and a separate frame counter for broadcast frames.
If a node loses track of a permanent neighbor’s unicast
or broadcast frame counter, AKES triggers an UPDATE-
UPDATEACK negotiation for resynchronization.

C. Frame Masking

802.15.4 security does, however, not protect against
broadcast and droplet attacks [12]–[14]. The vulnerability
that such attacks exploit is that 802.15.4 nodes usually
stay in receive mode as long as is indicated by the Frame
Length field once they detected an SHR. A mitigation
technique is to enable the in-built frame filtering provided

Figure 2: AKES’s three-way handshake for session key
establishment, and AKES’s UPDATE-UPDATEACK nego-
tiation for checking if a node is still in range, as well as
for resynchronizing frame counters

one-time SHR one-time SHR
one-time SHR

Figure 3: The hidden wormhole W wakes up C

by many 802.15.4 transceivers [14]. For example, the in-
built frame filtering of CC2420 and CC2538 transceivers
filters out frames that are destined to other nodes by
inspecting the Destination PAN and Destination Address
field [16], [17]. Yet, attackers can easily bypass such
checks via spoofing [14].

As mentioned in the introduction, frame masking avoids
the detection of injected and replayed 802.15.4 frames
by replacing the final two bytes of SHRs with a pseudo-
random value that is derived from a pairwise key between
sender and receiver, as well as the index of the current
timeslot [14], [15]. That is, instead of scanning the channel
for a static SHR, receivers scan the channel for a specific
one-time SHR. However, CC2420 transceivers can only
scan the channel for a single SHR at a time. This restric-
tion raises three vulnerabilities when trying to add support
for broadcast frames to frame masking:

1) Indefinite broadcast frames: First, assume that the
receivers of a broadcast frame are indefinite, e.g. dur-
ing neighbor discovery. Then, the one-time SHR of the
broadcast frame should also be derived from a network-
wide key. Furthermore, all nodes that currently listen for
indefinite broadcast frames should be ready to accept that
SHR. Attackers can exploit this by replaying the one-
time SHR of the broadcast frame in the same timeslot
elsewhere. For example, in Figure 3, the one-time SHR
sent from A to B is replayed by W to wake up C. Such
attacks are often referred to as hidden wormholes [28].

2) Targeted broadcast frames: Second, if a broadcast
frame is only destined to known neighbors B1, . . . , Bn,
one can derive its one-time SHR from a group key so
as to limit the scope of the one-time SHR. However,
B1, . . . , Bn may also wish to accept broadcast frames
from their neighbors in the same timeslot and so on. In this
case, one-time SHRs of targeted broadcast frames are to
be derived from a network-wide key, too. This can, again,



be exploited via a hidden wormhole.
3) Unicast frames: Third, if a node accepts both unicast

and broadcast frames in a single timeslot, unicast frames
have to have the same one-time SHRs as broadcast frames.
Consequently, in Figure 3, an eavesdropped one-time SHR
of a unicast frame from A to B can also be misused to
wake up C if both C and B accept broadcast frames in
this timeslot.

IV. POTR: PRACTICAL ON-THE-FLY REJECTION

While CC2420 transceivers can only scan the channel
for a single SHR at a time, theirs and other 802.15.4 trans-
ceivers’ capability of parsing incoming 802.15.4 frames
during receipt enables performing arbitrary checks. POTR
uses this flexibility to avoid all of the above vulnerabilities.
Below, we first specify how POTR adapts the 802.15.4
frame format. Subsequently, we explain how POTR in-
tegrates with 802.15.4 security, and what POTR does to
reject unwanted 802.15.4 frames early during receipt.

A. Adaptation of the 802.15.4 Frame Format

POTR makes six changes to the 802.15.4 frame format,
as shown in Figure 4:

• First, POTR replaces the Frame Control field with the
Frame Type field. Possible frame types are listed in
Table I. The frame type implies which fields follow.

• Second, POTR assumes a network-wide agreement
on whether simple, short, or extended addresses are
used.

• Third, POTR moves the Source Address field to the
beginning of frames.

• Forth, POTR reduces the Auxiliary Security Header
field to the Frame Counter field. This works because
the Auxiliary Security Header field is unnecessary
except for the Frame Counter field therein [25]. Fur-
thermore, when using the LB optimization, it suffices
to send the 8 least significant bits of the respective
unicast or broadcast frame counter [25].

• Fifth, POTR adds the l-bit OTP field for embedding
OTPs in 802.15.4 frames. Actually, the OTP field
replaces the Destination Address field since POTR’s
OTPs encode the intended receiver(s).

• Sixth, POTR renders PAN identifiers redundant, too.
This is because the main practical use of PAN
identifiers is to reject overheard frames from co-
located 802.15.4 networks. However, POTR filters
out any unwanted frames early during receipt, includ-
ing frames from co-located 802.15.4 networks.

Altogether, despite adding the OTP field, POTR incurs no
communication overhead by shortening the Frame Control
field, as well as removing the Destination PAN, the Source
PAN, and the Destination Address field in exchange.

B. Integration with 802.15.4 Security

Besides avoiding communication overhead, POTR also
keeps its random-access memory (RAM) overhead low.
This is achieved through the integration of POTR with
802.15.4 security. Specifically, POTR reuses the group
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Figure 4: Format of 802.15.4 frames as adapted by POTR

session keys that AKES establishes for use in 802.15.4
security. Yet, POTR does not use these group session keys
“as is”, but XORs them with a predistributed network-wide
key Kn so as to prevent related-key attacks. Furthermore,
POTR takes over the task of checking the freshness of
incoming frames from 802.15.4 security and manages all
anti-replay data. Hence, 802.15.4 security must disable its
own anti-replay protection when using POTR.

C. On-the-fly Rejection of Unwanted 802.15.4 Frames

In the following, we explain the checks that POTR per-
forms while receiving a frame for every single frame type.
Throughout, if a check fails, POTR rejects the incoming
frame by disabling the receive mode immediately.

1) Unicast Data Frames: Upon receipt of a unicast
data frame, POTR first ensures that the sender is currently
stored as a permanent neighbor by inspecting the Source
Address field. If so, POTR generates the corresponding
OTP and checks if it matches the one in the frame. The
OTP of a unicast data frame is generated as

KDF(Ksrc,∗ ⊕Kn, IDdst‖C) ∈ {0, 1}l (1)

where KDF is a key derivation function, ⊕ denotes XOR,
Ksrc,∗ is the group session key of the sender, Kn is the
predistributed network-wide key, IDdst is the receiver’s
address, ‖ denotes concatenation, and C is either the
sender’s respective unicast frame counter in full when
using the LB optimization or the sender’s overall frame
counter in full when not using the LB optimization.
Finally, POTR makes sure that C was not replayed and,
if so, updates the anti-replay data about the sender.

2) Broadcast Data Frames: As for broadcast data
frames, POTR proceeds in the same way except that IDdst
is set to 0xff . . . ff and that C is either the sender’s broad-
cast frame counter in full when using the LB optimization
or the sender’s overall frame counter in full when not using
the LB optimization.

3) Acknowledgement Frames: Acknowledgement
frames consist of the Frame Type field, the 8 least
significant bits of the frame counter of the unicast
frame whose receipt is being acknowledged, and the
FCS field. To protect from denial-of-sleep attacks with
acknowledgement frames, POTR simply ensures that
their length is 4 bytes by inspecting the Frame Length
field. Future work should authenticate acknowledgement
frames by, e.g., adding OTPs or MICs to them.

4) HELLOs: The OTPs of HELLOs are generated like
the ones of broadcast data frames, but POTR only rejects
OTPs of HELLOs if they are replayed. In particular, if



Table I: Frame Types Supported by POTR

Scope Frame Type Description Source
Address

Frame
Counter

OTP

unicast unicast data carries unicast data of upper layers (e.g. 6LoWPAN [29])
√ √ √

broadcast broadcast data carries broadcast data of upper layers (e.g. 6LoWPAN [29])
√ √ √

N/A acknowledgement part of ContikiMAC ×
√

×
broadcast HELLO part of AKES

√ √ √

unicast HELLOACK part of AKES
√ √ √

unicast ACK part of AKES
√ √ √

unicast unicast command unicasts processed by the link layer (e.g. UPDATEs and UPDATEACKs)
√ √ √

broadcast broadcast command broadcasts processed by the link layer (e.g. ANNOUNCEs [30])
√ √ √

a HELLO originates from a sender that is not currently
stored as a permanent neighbor, the HELLO still needs
to be processed to enable session key establishment with
new neighbors. Also, even if a sender is stored as a
permanent neighbor, it may send an invalid OTP because
the sender may have rebooted and therefore generated a
new group session key. To protect from denial-of-sleep
attacks with HELLOs anyway, POTR employs four further
checks. First, POTR ascertains that the length of incoming
HELLOs is allowed. Second, POTR makes sure that there
is space for storing another neighbor. Third, POTR ignores
HELLOs from senders that are stored as tentative neighbors
already. Forth, like AKES, POTR ignores HELLOs if the
number of tentative neighbors exceeds a threshold [25].

5) HELLOACKs: Since session keys are not yet estab-
lished when sending HELLOACKs, HELLOACKs contain
special OTPs that are generated as

KDF(Kn, IDsrc‖Rdst) ∈ {0, 1}l (2)

where Kn is the predistributed network-wide key, IDsrc
is the sender’s address, and Rdst is the 64-bit random
number that AKES adds to the corresponding HELLO for
different purposes anyway, as depicted in Figure 2. To
prevent the replay of HELLOACK OTPs, POTR caches
accepted OTPs of HELLOACKs and rejects HELLOACKs
with cached OTPs. Once the cache is full, POTR rejects
every HELLOACK right away. POTR clears the cache as
soon as AKES broadcasts the next HELLO.

6) ACKs: OTPs of ACKs are generated like the ones
of HELLOACKs, but using the 64-bit random number that
AKES adds to the corresponding HELLOACK, as shown
in Figure 2. To prevent the replay of ACK OTPs, POTR
rejects ACKs from senders that are not stored as tentative
neighbors. Furthermore, if POTR accepts an ACK while
AKES rejects it, AKES also deletes the ACK sender from
the list of tentative neighbors such that further ACKs from
that sender are being ignored.

7) Unicast and Broadcast Command Frames: Finally,
POTR treats unicast and broadcast command frames like
unicast and broadcast data frames, respectively.

In this regard, we note that UPDATEs and
UPDATEACKs, originally, contained unicast frame
counters in full, irrespective of using the LB optimization
or not. This allowed nodes to resynchronize each other’s
unicast frame counters. In our context, this would,

however, defer the reception of the OTP field and hence
the rejection of injected and replayed UPDATEs and
UPDATEACKs. Therefore, we opted to add only the
8 least significant bits of the respective unicast frame
counter to UPDATEs and UPDATEACKs when using the
LB optimization. Thus, when using the LB optimization
together with POTR, UPDATEs and UPDATEACKs only
serve for (i) checking if a node is still in range and (ii)
resynchronizing broadcast frame counters. Nevertheless,
if a node loses track of a permanent neighbor’s unicast
frame counter, AKES will eventually delete that neighbor.
Then, both nodes will start a new session as soon as any
of them broadcasts a HELLO. After all, getting out of
sync is very unlikely since a node has to miss 28 = 256
unicast or broadcast frames in a row [25].

V. SECURITY ANALYSIS

In this section, we analyze four ways to bypass POTR’s
checks, namely local replay attacks, hidden wormholes,
guessing attacks, and node compromises.

A. Local Replay Attacks

While attackers can use hidden wormholes to replay
captured frames in another part of the victim network,
attackers can also just capture and replay frames locally.
However, POTR prevents the local replay of OTPs that
are generated as per (1) by comparing frame counters,
as described in Section IV-C1. Furthermore, OTPs that
are generated as per (2) are protected against local replay
attacks using special mechanisms, as explained in Section
IV-C5 and IV-C6. On the other hand, if a node misses
a frame, an attacker can inject a frame with the same
frame header, but a different payload. Such a frame passes
POTR’s on-the-fly rejection once, but never the validation
of MICs of 802.15.4 security (unless an attacker guesses
a valid MIC). Thus, POTR does not obviate the need for
adding MICs to frames.

B. Hidden Wormholes

As opposed to frame masking, POTR also resists hidden
wormholes:

1) Indefinite broadcast frames: When using POTR,
only HELLOs are destined to nodes that are not currently
stored as neighbors. Replaying HELLOs elsewhere causes
only a small energy consumption since the length of
HELLOs is restricted. Additionally, POTR immediately



reject a HELLO (i) if its OTP was replayed, (ii) if there is
no space for storing another neighbor, (iii) if the sender
of the HELLO is already stored as a tentative neighbor,
and (iv) if the number of tentative neighbors exceeds
a threshold. These additional checks keep the energy
consumption of multiple consecutive HELLOs low, as well.

2) Targeted broadcast frames: Replaying OTPs of
other broadcast frames elsewhere will not wake up any
node. On the one hand, this is because receivers ascertain
that senders of broadcast data and command frames are
stored as permanent neighbors. On the other hand, if an
attacker spoofs the Source Address field, receivers will
consider replayed OTPs of broadcast data and command
frames as invalid since each node has its own group
session key.

3) Unicast frames: Analogously, unicast data and com-
mand frames only wake up the intended receiver. Also,
HELLOACKs and ACKs only wake up the intended receiver
due to entangling the receiver’s random number in their
OTPs. Nevertheless, what an attacker can do is, instead
of replaying single ACKs and HELLOACKs elsewhere,
tunneling the whole three-way handshake of AKES be-
tween a pair of distant nodes, such that they become
permanent neighbors [25]. In effect, the routing topology
may get reorganized, which is very energy consuming, too
[31]. Fortunately, the Routing Protocol for Low-Power and
Lossy Networks (RPL) [32], which is also implemented
by Contiki, at least mitigates such attacks by reorganizing
the routing topology only after a hysteresis [33].

C. Guessing Attacks

Since OTPs have a length of l bits, the probability of
guessing an OTP right is 2−l. Of course, longer OTPs
are harder to guess, while shorter OTPs incur less per
frame overhead. Another advantage of shorter OTPs is
that they reduce the time spent in interrupt service routines
(ISRs), as we will discuss in Section VII-B. On the other
hand, if an attacker manages to guess an OTP right, the
respective anti-replay data is updated. As a consequence,
legitimate frames may be considered as replayed and,
in the worst case, nodes have to start a new session so
as to resynchronize each other’s unicast frame counters.
But, even if an attacker guesses an OTP right, 802.15.4
security will eventually reject any injected frames, thereby
rendering successful guessing attacks relatively harmless.
We suggest setting l = 24 to trade off against all these
aspects.

D. Node Compromises

Unfortunately, POTR does not resist node compromises.
Once a group session key and the network-wide key
Kn leaks, denial-of-sleep attacks become possible. Future
work should address this vulnerability, but, for the scope
of this paper, we assume that node compromises are an
acceptable risk.

VI. IMPLEMENTATION

We implemented POTR with CC2538 transceivers
and integrated POTR into the Contiki operating system.

Presently, CC2538 transceivers are very popular and are,
e.g., built into Zolertia Re-Motes and OpenMotes [34],
both of which are prototyping platforms for IoT devices.
Likewise, Contiki is a popular operating system for IoT
devices.

CC2538 transceivers provide three interrupts for parsing
incoming frames during receipt. First, the SFD interrupt
issues when an SHR was detected. Second, the FIFOP
interrupt issues as soon as FIFOP_THR bytes can be
parsed or when a frame was completely received, whatever
comes first. (The FIFOP interrupt has a different behavior
when enabling the in-built frame filtering of the CC2538
transceiver. However, since the in-built frame filtering
of CC2538 transceivers validates against the original
802.15.4 frame format and not POTR’s frame format,
our implementation disables the in-built frame filtering of
CC2538 transceivers.) Third, the RXPKTDONE interrupt
issues when a frame was completely received.

Our implementation configures the FIFOP interrupt
to issue when the Frame Counter field is received. For
this, we set FIFOP_THR to the appropriate value, which
depends on the employed addressing mode and on whether
the LB optimization is enabled. All this information is
available at compilation time. Within the FIFOP ISR,
POTR performs its checks. Many unwanted frames can
be filtered out without waiting for the OTP field to arrive.
Otherwise, if it is necessary to validate an OTP, we (i)
generate the expected OTP, (ii) wait for the OTP field
to arrive, and (iii) check if both OTPs match. Thus, the
validation and reception of an OTP happens in parallel. As
key derivation function, we use the hardware-accelerated
Advanced Encryption Standard (AES) block cipher of
the CC2538 transceiver and truncate its output to l bits.
Finally, we use the RXPKTDONE ISR to send acknowl-
edgement frames instantly.

The main difficulty with integrating POTR into Contiki
was concurrency. This is because the bulk of Contiki’s
code can not be called from within an interrupt context. To
resolve this problem, we added four locks, which protect
code regions that should not be interrupted by POTR. For
example, if another module currently uses the hardware-
accelerated AES block cipher of the CC2538 transceiver,
POTR will not call AES. Instead, if any of these locks is
set as the FIFOP interrupt issues, we switch off the receive
mode, i.e., ignore the incoming frame. In addition, we
adapted Contiki’s packetbuf module to support parsing
incoming frames within an interrupt context.

VII. EVALUATION

Using our implementation, we now demonstrate that,
in comparison to using no denial-of-sleep defense, POTR
reduces the time that 802.15.4 nodes spend in receive
mode upon receiving an injected or replayed 802.15.4
frame by a factor of up to 16. Furthermore, we argue
that the rejection speed of POTR is comparable with the
rejection speed of the in-built frame filtering of CC2538
transceivers. Lastly, we determine that the processing and
memory overhead of POTR is small.
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Figure 5: Rejection speed (a) when validating OTPs and (b) when skipping over the validation of OTPs (means over
1000 samples)
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Figure 6: Comparison between the rejection speed of the in-built frame filtering of CC2538 transceivers and the rejection
speed of POTR

A. Rejection Speed

As a baseline for comparison, an OpenMote A injected
127-byte frames. Another OpenMote B, which had both
POTR and its in-built frame filtering disabled, received
these frames and logged the time between SFD and
RXPKTDONE interrupts. It turned out that the mean time
between SFD and RXPKTDONE interrupts is 4.105ms. This
value meets our expectations since, in the 2.4GHz band,
802.15.4 has a data rate of 250kbit/s. Furthermore, the
Frame Length field has to be added to the 127 bytes and
hence the time between SFD and RXPKTDONE interrupts
should theoretically be (127+1)×8bit

250kbit/s = 4.096ms.
To measure the time until POTR rejects an injected

or replayed 802.15.4 frame, an OpenMote A injected
127-byte unicast data frames, each of which contained
the source address of a permanent neighbor of another
OpenMote B, as well as an invalid OTP. The OpenMote
B, which had POTR enabled, received these frames and
logged the time between SFD interrupts and the moment
when the frame reception aborts, which is signaled by
RXABO interrupts. This experiment was repeated with
and without the LB optimization, for simple, short, and

extended addresses, as well as with the OTP lengths
l ∈ {8, 16, 24, 32, 40}. Also, this experiment was repeated
using frames that did not contain a source address of a
permanent neighbor of B, such that B skipped over the
validation (and reception) of OTPs.

Figure 5 shows how quick B rejects the injected 127-
byte frames. The employed addressing mode has a sig-
nificant effect on the rejection speed. This is because
the FIFOP interrupt issues earlier or later, depending on
the employed addressing mode. Thus, it is advisable to
minimize the length of addresses. Likewise, using the LB
optimization accelerates the rejection speed because the
Frame Counter field gets 3 bytes shorter. For instance, as
for simple addresses, with LB optimization, and l = 24, it
takes 0.253ms to reject the injected 127-byte frames. This
amounts to an improvement by a factor of 4.105

0.253 = 16.23.
As shown in Figure 5b, B rejects frames even faster when
skipping over the validation of OTPs, but attackers usually
provoke the worst case.

Since POTR requires disabling the in-built frame filter-
ing of CC2538 transceivers, a comparison with the rejec-
tion speed of the in-built frame filtering of CC2538 trans-
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Figure 7: Workload of the FIFOP ISR (a) when validating OTPs and (b) when skipping over the validation of OTPs
(means over 1000 samples)
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Figure 8: Static RAM overhead of POTR

ceivers is in order. The in-built frame filtering of CC2538
transceivers has three levels. First, the format validation of
CC2538 transceivers validates incoming frames against the
802.15.4 frame format. Second, address recognition filters
out incoming frames that are destined to other nodes by
inspecting the Destination PAN and Destination Address
fields. Third, source address matching (SAM) optionally
checks if the source address of an incoming frame is
contained in a list of acceptable source addresses.

In order to estimate the rejection speed of the in-
built frame filtering of CC2538 transceivers, recall that,
in the 2.4GHz band, 802.15.4 has a data rate of 250kbit/s.
Furthermore, note that CC2538 transceivers do neither
support suppressing the Sequence Number field nor simple
addresses. Therefore, prior to rejecting a frame with an
invalid PAN identifier, the Frame Length field, the Frame
Control field, the Sequence Number field, as well as the
Destination PAN Identifier field need to be received. This
takes 0.192ms. Moreover, if a frame contains an invalid

short or extended destination address, it takes additional
0.064ms or 0.256ms to reject that frame, respectively.
SAM recognizes that a frame originates from an unwanted
sender even later. If the source PAN identifier is sup-
pressed, which is possible if it matches the destination
PAN identifier, SAM rejects frames with unwanted source
addresses only after 0.32ms and 0.704ms when using short
and extended addresses, respectively.

Figure 6 compares the rejection speed of POTR with
that of the in-built frame filtering of CC2538 trans-
ceivers. Both techniques constitute a huge improvement
over rejecting unwanted 802.15.4 frames only after they
were received since receiving a maximum-length 802.15.4
frame of 127 bytes takes 4.105ms. However, attackers can
easily bypass the in-built frame filtering of CC2538 via
spoofing, whereas bypassing POTR’s checks is, according
to our security analysis, impossible.

Another interesting observation from Figure 6 is that the
rejection speed of the in-built frame filtering of CC2538
transceivers is comparable with the rejection speed of
POTR. Further, since POTR rejects any unwanted frames
during receipt, including frames that the in-built frame
filtering of CC2538 transceivers would reject, there is no
disadvantage in disabling the in-built frame filtering of
CC2538 transceivers when using POTR.

B. Processing and Memory Overhead

To determine the processing overhead of POTR, the ex-
periment of Figure 5 was repeated with the only difference
being that B logged the time that POTR spends in the
FIFOP ISR. Figure 7 shows the results. When validat-
ing OTPs (Figure 7a), the workload of the FIFOP ISR
increases as l exceeds 24. This is because, at this point,
the reception of OTPs takes longer than their validation,
thus necessitating busy-waiting within the FIFOP ISR.
When skipping over the validation of OTPs (Figure 7b),
the FIFOP ISR just parses until the Frame Counter field



and concludes that the sender is not stored as a permanent
neighbor. If a sender is not stored as a permanent neighbor,
the FIFOP ISR also skips over restoring the LB-optimized
frame counter, which is why the workload of the FIFOP
ISR gets lower when enabling the LB optimization. A
general observation is that shorter addresses reduce the
workload of the FIFOP ISR, which can be attributed to
the fact that less bytes are being processed.

The memory overhead of POTR was determined using
the tool arm-none-eabi-size. It turned out that
POTR’s overhead in terms of program memory is 956
bytes and 820 bytes with and without the LB optimization,
respectively. POTR’s static RAM overhead is shown in
Figure 8. The results in Figure 8 are irrespective of using
the LB optimization or not. The jump at l = 32 comes
down to an alignment change in a struct.

VIII. CONCLUSIONS AND FUTURE WORK

Injected and replayed 802.15.4 frames expend the lim-
ited energy of 802.15.4 nodes. We have proposed POTR to
reject injected and replayed 802.15.4 frames early during
receipt. Overall, the processing and memory overhead of
POTR is small. Beyond that, POTR incurs no communica-
tion overhead. Concerning rejection speed, POTR can not
catch up with frame masking since frame masking avoids
that 802.15.4 nodes detect injected and replayed 802.15.4
frames in the first place. On the other hand, frame masking
can be bypassed and can not be implemented with CC2538
transceivers. Thus, POTR is a more effective and more
practical solution. Unfortunately, broadcast and droplet
attacks are by no means the only denial-of-sleep attacks on
ContikiMAC. In fact, we suspect ContikiMAC’s mecha-
nism for learning the wake-up times of neighboring nodes
to be vulnerable to pulse-delay attacks [35]. Moreover,
by emitting noise, attackers can trick nodes into staying
awake for extended periods of time [7]. For future work,
we plan to devise countermeasures against these kinds of
denial-of-sleep attacks on ContikiMAC, too.
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