
Advanced Techniques for Analyzing Web Server Logs∗

∗ In Proc. „International Conference on Internet Computing”, CSREA, IC00, Las Vegas, Nevada, 2000, pp. 71-78

Ernst-Georg Haffner, Uwe Roth, Andreas Heuer, Thomas Engel, Christoph Meinel
Institute of Telematics
Bahnhofstraße 30-32

D-54292 Trier, Germany

Abstract This paper gives an account of the
practical experiences made in generating special
statistical information of web server logs. It
emphasizes the problem of combining different
data sources to retrieve acceptable working
results. Several critical aspects in analyzing
logfiles are discussed and solutions are
described. The structural capacities of
multilingual online authoring systems, especially
DAPHNE, have to be combined with the
flexibility of an information server, here the SDS,
in order to improve functionality and efficiency
of the World Wide Web.

Keywords: Web Server Logs, DAPHNE, SDS

1. Introduction

The World Wide Web (WWW) is growing very
fast and the need for tools to efficiently analyze
web server logs is immense. There are many
standard tools to analyze the logged information
of common web servers. According to the survey
of Netcraft, the Apache web server [1] reached a
share of more than 50 percent on the web server
market in January 2000 [2]. This server produces
- as most of the others - access logfiles in the
common logfile format [3]. Logging into a
database is also possible.
There are lots of tools to analyze, summarize or
split logfiles in CLF-format. For instance, Roy
Fieldings perl [4] script wwwstat [5] is able to
read logs and produce access statistics for
several categories as summaries of requests by
date, by hour or transfers by URL.

Other popular logfile analyzing tools are
Analog [6], Wusage [7] and Tabulate [8] with
similar functionality (see also [9] for a list of

web analyzing tools).
The statistical information mentioned above can

be achieved by analyzing only the web server logs.
Things are getting much more complicated,
though, if additional requirements come up. Meta
information about the documents like the title, the
author or the creation date can only be retrieved
when access to a data source where all of this data
is stored is possible.

Another problem occurs when statistical
summaries also have to be done by grouping
together documents on the web server side (for
instance, departmental pages of a company) or
when the grouping of request IP’s according to
their logical or structural dependencies is required
(e.g. requests by companies of the same branch).

There are, undoubtedly, a lot of additional
possibilities for statistical analysis, but in this
paper we will describe a practical type of work
where several different requirements (as they will
be described in section 2.1) have to be fulfilled
according to the wishes of a customer, a great
European bank. Furthermore, it was clear from the
very beginning that future requirements should be
treated adequately as well.

2. The Problem

2.1 Customer requirements

The starting points for the project are the
requirements of a customer to evaluate web server
log statistics. The following section not only
emphasizes these concrete requirements, but also
stresses what (software-) environment is needed to
fulfill the requirements.

On the one hand, we had monthly log files from
two (virtual) Apache web servers. Some files on

Ernst-Georg Haffner, Uwe Roth, Andreas Heuer, Thomas Engel, Christoph Meinel:
Advanced Techniques for Analyzing Web Server Logs
in Proceedings of the 1st International Conference on Internet Computing (IC 2000), CSREA Press, Las Vegas, USA, pp. 71-78, 6, 2000.
ISBN: 1-892512-65-3.

both servers were identical, while others
differed. One virtual web server allowed public
access while the other was dedicated to a closed
circle of business customers. Only the public
web server provided multilingual pages (e.g.
English, German, French, Spanish).

On the other hand, we could use the
information of the online authoring system
DAPHNE [10] to retrieve the needed meta-data.

The following aspects describe the different
information parts (requirements) that have to be
extracted from the log files. According to the

data sources needed to retrieve the information, we
arranged the requirements in 3 “problem classes”
A to C (table 1 to 3):

A Simple logfile extraction
1 Summarizing total transfers by request date
2 Summarizing total transfers by request hour
3 Total transfers by toplevel/client domains
4 Total transfers by reversed subdomains
5 Summarizing total transfers by filename/URL

Table 1: Requirements of class A

B Complex logfile extraction or online

authoring access
Examples

1 Showing meta data of documents together
with the number of accesses (hits)

Title, author, original filename, creation date, expiration date, description,
language

2 Analyzing requesting Browsers Grouping by Browser producer (e.g. Netscape (Mozilla) or Microsoft
Internet Explorer)
Grouping by Browser version (e.g. 4.0, 4.01, 4.6, 4.7)

Table 2: Requirements of class B

C Complex grouping of hits Examples for groups
1 Grouping according to the content of a

document
Departmental information, language, content similarity (e.g. tables with share
values), types (html, gif, jpeg...)
Grouping different servers of the same Internet service provider (mostly with
the same subdomain, but not always, e.g. n.svr.t-online.de, ,...)

2

Grouping according to the accessing
domain-name (only if available; an
important part of IP numbers can not be
resolved to domain names)

Grouping together according to the branch of the requesting domain (e.g.
summaries of scientific institutions www.mit.edu, www.uni-trier.de,
www.ti.fhg.de or banks www.bankofamerica.com, www.deutsche-bank.com)

3 Grouping of long time statistics by
requesting month or year

Monthly or yearly trends in access statistics, not only single hits but also
session requests

Table 3: Requirements of class C

Certainly, the class C problems can not fully
automatically be determined. Instead, a database
stores manual affiliations of domains.
Unfortunately, the grouping of “private
accesses” and “business accesses” is sometimes
hard to fulfill. Small companies and private
persons can have the same Internet service
providers (ISP), while also private requests can
be made by business domains.

In paragraph 2.2 the functionality and the
relevant database model that DAPHNE provides
is highlighted. To combine the information
sources considering the requirements of class C
it was necessary to work on the data of a central
server. Here, we used the Smart Data Server SDS
(2.3) as flexible, modular and scalable
framework for distributed functionality.
Furthermore, also the requirements of class A

were solved by the SDS. We only checked the
results of our program against those of wwwstat
during the implementation phase to see whether
there were some errors in the counting procedures.

2.2 DAPHNE

We used the online authoring system DAPHNE
(Distributed Authoring and Publishing in a
Hypertext and Network Environments) as
described in [10] to produce the Internet web
pages and to generate the files provided in the
Intranet, their meta tags (description, keywords,
etc.) and the securing of web accessibility.

For our project we used the system to get the
meta-data for the documents on the web server and
thus being able to fulfill the requirements of class
B1.
DAPHNE uses a relational database to store meta-

data for documents. For instance, the author, the
document title, the original path and name of the
source file (on the local computer of the author)
are meta-data information that can be retrieved
directly from the DAPHNE database. There are
also several statuses from “locked” over “free” to
“published in the Internet” stored for each file.
The access to them happens on a role based
access control [11]. For our problem those
values were not too important.

Each document belongs to one or more
hierarchically structured areas and every area has
one document as cover page. Figure 1 shows the
relevant part of the database conceptual model
concerning information needed to improve
statistical analysis of web accesses.

Figure 1: Web-statistic relevant part of the
conceptual model of the DAPHNE database

Cover pages can have an alias name to generate
links to the according area or to the special
document. Every document receives a unique,
numeric name (document) when put into the
DAPHNE system and every area gets a unique
identifier (aid). Cover pages of areas can be
referred to by simply using the unique area name
and adding the “.html” as suffix1. Therefore, all
accesses to cover pages must be summarized to
the according document requests so that the
results become correct.

To fulfill class C requirements the area
hierarchy represented in table “Area”, that
references to itself, must be flattened. Each web
server access to a document that belongs to an

1 The export procedure of DAPHNE stores all documents of
the same language in the same directory so that no path
information has to be considered.

area A counts also for all areas (in the hierarchy)
above A. The sense of this counting gets clear
when imaging that one wants to compare exactly
the hits for every department of the company.

Our idea was to directly access the DAPHNE-
database without making any further data
transformation.

2.3 SDS

The requirements C and B2 described in section
2.1 were not easy to achieve. For instance, we
could have adapted a perl script as wwwstat [5] to
make additional summaries for web browser
versions but such a solution would not have been
very flexible. Instead, to group several classes of
client domains together it was necessary and
obvious to use a database.

So we decided to install the Smart Data Server
SDS [12] as a general framework for distributed
applications. The SDS as platform for many appli-
cations in heterogeneous network environments is
able to access several databases at a time [13]. It
comes with its own relational database and can
access also the DAPHNE-database. To be able to
fulfill the requests of class C we added the
following database tables to the SDS database
(figure 2).

The central table is “Access”. Here we store a
data record for every line in a logfile. The tables
“OS”, “Browser” and “Versions” serve to
fulfill the requirement B2. The host and domain
related tables on the right side are necessary for
requirement C2. The “WebServers” table helps
handling the log information of different web
servers.

The mechanism to obtain flexible grouping
summaries is explained in the section 3.2. The
tables “ComeFrom” and “Search” contain the
extracted information of the fully specified web
server request. Especially, the parameters given by
search engines (with the HTTP-Get Method [14])
are used to evaluate the share of document
accesses that are initiated by search engines (and
not other, mostly static html pages).

The tables “Statistics” and
“ReferenceData” are generated to store the
analyzing results of the (monthly) evaluation.
Thus, the information needed to create longtime
statistical summaries of log data (trends over the
year) can be easily derived from that tables instead
of calculating all these results again from the
“Access”-table. The disadvantage of keeping
somewhat redundant data can be overcome by

efficiency considerations. If needed, the data
records of both tables could be regenerated from

the other tables.

Access

ID N8
Date D
Time T
Bytes I
HTTPMethod A10
RemoteLogname VA20
TotalUserAgent A128
StayInTime I
ProtocolVersion A10
UserID A32
DayOfWeek A2
Weeknum A2
DayInMonth A2
Month A2
Year A4
Hour A2
SeEnAccess BL

Host

IP A15
SearchEngine BL
Proxy BL
Hostname A20

Source

Sourceidentificator A15
Locationpath A100
Sourcename A100
Suffix A5
MIMEType A30

OS

OSName A20

Browser

Browsername A10
Manufacturer A10

Versions

Versionnumber A10

Languages

LApprevation A5
Language A15

ComeFrom

URLFrom A128

Conceptual Data Model

Project : SDS WWWLOG

Model : SDS Weblogs

Author : EGH/UR Version: 2.3 16.11.99

WebServers

ServerID BT
ServerName A10
TCPPort I

DomainGroups

Groupname A10
Groupdescription A30

Domain

Domainname A50
ReverseName A50

HTTPStatus

HTTPCode N4
HTTPCDescription A50

Grouping

GroupingID A15
Grouppingname A40
GroupHits N10
GroupApprevation A5

Search

SearchKWords A250

Statistics

StatisticsName A15
fromDate D
toDate D

Aggregate

AgregateId N4
ADesc A20

Referencedata

ReferenceId N5
IS_G BL
IS_A BL
IS_S BL
Referencename A20
Referencevalue N10

LocalSeEn

LSearchId N10
LSearchDate D
LSearchtime T
LSearchvalue A250
LLanguage A5

DomainFragment

DFragmentName A50
DFragmentkomponent SI

DomainRelated

Figure 2: The SDS conceptual database model for analyzing web server logs

3. A solution strategy

3.1 General considerations

To be able to solve all classes of requirements
(2.1) we used the logfiles from the Apache web
server, the DAPHNE-program, especially its
database, and the SDS as central server to handle
the different data sources as a useful platform to
implement the statistical algorithms. The graphics

of figure 3 show the architecture of our project
approach.
The SDS comes with its own relational database
and accesses also a replication of the original
customer DAPHNE-database. Once a month a
data replication of the tables shown in figure 1
must happen.

The results of the log analyzing process are
output by the SDS in form of ASCII-tables, pairs
of name and values. At the moment, there is work
in progress to automate the postprocessing of the
results into a graphical representation (e.g. data
transfer to Microsoft-Office products as Excel
[15] with DDE-interface and/or a Unix based
solution with latex [16] and gnuplot [17])

Our idea was, that the architecture must
provide much flexibility. The number and
volumes of the Apache log file data poses no
problem to the SDS, also the database sources are
simply registered as part of the SDS
configuration. The same model would work for
much more databases and several locations of the
tables.

3.2 The grouping algorithm

The central algorithm to analyze log information
consists of the grouping mechanism. It has
relevance especially for the grouping of affiliated

documents and has to work on the self-
referencing DAPHNE-table “Area”.

The two-phase process to transfer the grouping
hierarchy of the online authoring system into the
“Grouping” table of the SDS is called
flattening. In order to describe the algorithm
adequately, we need to have a closer look at the
physical representation (ANSI level 2) of the SDS
“n to m”-grouping table relation. Figure 4 shows
the resolution of the relevant part of the model:

sourceidentificator =
sourceidentificator

groupingid = groupingid

source

sourceidentificator CHAR(15)
serverid SMALLINT
locationpath CHAR(100)
sourcename CHAR(100)
suffix CHAR(5)
mimetype CHAR(30)

grouping

groupingid CHAR(15)
grouppingname CHAR(40)
grouphits NUMERIC(10)
groupapprevation CHAR(5)

groupingrelations

groupingid CHAR(15)
sourceidentificator CHAR(15)

Figure 4: Log-analyzing architecture

The flattening algorithm can thus be described as
(figure 5):

Flattening Algorithm

Phase 1: "transferring the table
information"
INPUT: set of records "Area" and of
"Meta" of the DAPHNE-database
OUTPUT: RESULT-CODE only
SIDE-EFFECT: set of records
"Grouping" and "Source" of the SDS-
database

• transform and copy records from

Area to Grouping
• transform and copy records from

Meta to Source

Figure 3: Log-analyzing architecture

Figure 3: Log-analyzing architecture

Phase 2: "generating source-grouping
affiliations"
INPUT: set of records "Area" of the
DAPHNE-database
OUTPUT: RESULT-CODE only
SIDE-EFFECT: insert records into
"GroupingRelations" of the SDS-
database
function retrieveFathers(areaRecord,
 resultSset) {
 if(hasNoFather(areaRecord))
 return resultSet;
 else {
 fatherRecord =
getFather(areaRecord);
 resultSet = resultSet ∪ father;
 return retrieveFathers(father,
 resultSet);
} // function retrieveFathers

main function ("Area" records) {
 relationsSetOfSets := empty;
 for every record areaRecord in "Area"
 do{
 if(not existsEntry areaRecord in
 relationsSetOfSets) {
 relationsSetOfSets(areaRecord) =
 retrieveFathers (areaRecord, {
 areaRecord });
 }
 for every entry relation in
 relationsSetOfSets(areaRecord) do
{
 insertRecord(relation) into
 "GroupingRelations";
 }
} // main function

Figure 5: The "Flattening Algorithm"

After the re-generation of the grouping tables of
the SDS in phase 1 the flattening-algorithm
inserts a data record into the
“GroupingRelations” table for every
document and every group. The group accesses
can easily be retrieved afterwards using simple
SQL-statements. The core of the algorithm
consists in recursively stepping through the
“Area”-table and considering the father relation
for every record. In the last step the “flattened”
grouping information is stored in the grouping
relations table.

4. Practical Hindrances

As usual in the IT-world the main tasks of our
project were quickly and stable implemented, but
several little problems posed a lot of difficulties.

An important point was the evaluation of the
responses to the server requests. In web server
statistics forbidden requests (403) or “file not
found”-errors (404) are often treated the same
way as positive answers [14]. But what would be

the best reaction? If a request for
“/department/filex.html” can not be fulfilled, this
is an other situation as if a request “/filex.html”
leads to a 404 error. In the first case the path to
the department may be correct, so the missing file
would belong to this group (for counting grouped
error accesses). For this reason, we distinguished
between the path information and the filename to
evaluate the answer.

Another problem arises when the content of a
page changes. When is it appropriate to
summarize all hits for that file and when should
the requests be regarded as for two different files?

The “Meta”-table of the DAPHNE-database
allows it to use a creation and expiration date, but
practice shows that especially the expiration
feature is seldom used for standard HTML-pages.
Another possibility would be to take care of the
title: if it changes, we could speak of a
fundamental content change and distinguish
between hits before and after the change (even
though this might not be correct). But the monthly
update of the replicated database prevents us from
evaluating that point: we only see the results of
the change. Alas, we have no other possibility as
to summarize all hits of target documents with the
same identification (filename).

Much harder is the affiliation of a document to
one or more groups. A change in the affiliation
has lots of consequences for the group
summaries. Unfortunately here again, we retrieve
only monthly updates of the accordant records. A
single change of affiliation of a document is very
seldom and (perhaps) statistically not relevant.
But to overcome the problem when a re-
structuring of the whole page is planed, we
arranged to send an additional update of the
replicated table records and the logfile
information so far. At the end of the month the
remainder of the logfiles is added and the
monthly statistic works quite fine.

Evaluating the “URL referrer”-part of the
HTTP-request, manifold information from the
referring page can be retrieved. We have to
distinguish between search engine result pages,
bookmark requests, static HTML link and direct
input URL sources. If search engines (or other
CGI-scripts [18]) work with the HTTP-GET
method (instead of POST), the arguments of the
request can be evaluated by logfile analyzing
tools [14]. It is relatively easy to find out the
keyword of the user search when looking at the
request line, but an automatical extraction is

rather difficult, because the search engine
providers can change the format every time and
there are several possibilities to present the
keywords together with several further
information.

5. Summary and outlook

In this paper, we described the problem of
extracting very specific statistical information
from web server log data, sketched a solution and
several pitfalls. The topology we worked on
consisted of an Apache web server, an online
authoring system called DAPHNE and the Smart
Data Server (SDS) as central server to implement
the calculating requests. The combination of these
constituents posed comparatively few problems.
Especially the flexibility of the SDS to implement
diverse algorithms was persuasive.
There are some problems still unsolved and we
plan to find their solution in the future.
Particularly the complex of evaluation session
traces can be very useful to help improving the
quality of web sites.

References

[1] Apache, http://www.apache.org/

[2] Netcraft, http://www.netcraft.com/survey/

[3] CLF,
http://www.w3.org/Daemon/User/Config/Lo
gging.html#common-logfile-format

[4] Perl, http://www.perl.org

[5] Roy Fielding et. al., wwwstat,
http://www.ics.uci.edu/pub/websoft/wwwstat
/wwwstat.html

[6] Stephen Turner, Analog, http://
www.statslab.cam.ac.uk/~sret1/analog/

[7] Boutell.com, Inc., Wusage,
http://www.boutell.com/wusage/

[8] Tabulate,

ttp://www.lib.ncsu.edu/staff/morgan/
tabulate.txt

[9] Yahoo,
http://www.yahoo.com/Computers_and_Inte
rnet/Software/Internet/World_Wide_Web/Se
rversLog_Analysis_Tools

[10] A. Heuer, Z. Zhang, T. Engel and C. Meinel.
DAPHNE - Distributed Authoring and
Publishing in a Hypertext and Networked
Environment. In Proceedings of the
International Conference IuK99 - Dynamic
Documents, 1999. Jena

[11] Z. Zhang, E.-G. Haffner, A. Heuer, T. Engel
and C. Meinel. Role-based Access Control in
Online Authoring and Publishing Systems vs.
Documentation Hierarchy. In Proceedings of
the SIGDOC ’99, 1999. ACM

[12] Uwe Roth, Ernst-Georg Haffner, Thomas
Engel, Christoph Meinel. The Smart Data
Server: A New Kind of Middle-Tier. Internet
and Multimedia Systems and Applications ,
IASTED IMSA‘99, Nassau, Bahamas,1999

[13] Uwe Roth, Ernst-Georg Haffner, Thomas
Engel, Christoph Meinel. An Approach to
Distributed Functionality - The Smart Data
Server. World Conference on the WWW and
Internet, AACE WebNet‘99, Honolulu,
Hawaii,1999

[14] Hypertext Transfer Protocol
http://www.w3.org/Protocols/

[15] Excel, Microsoft™,
http://www.microsoft.com

[16] LaTex, Information about “LaTex” can be
found e.g. http://www.cl.cam.ac.uk/TeXdoc/
TeXdocs.html

[17] GNUPLOT, http://www.cs.dartmouth.edu/
gnuplot_info.html

[18] CGI, The Common Gateway Interface (e.g.
http://tiger.coe.missouri.edu/~research/cgi/)

