
Logging and Signing Document-Transfers on the WWW- A Trusted Third Party
Gateway

A.L. Heuer, F. Losemann, C. Meinel
{Heuer,Losemann,Meinel}@ti.fhg.de

Institute for Telematics
Bahnhofsstr. 30-32, 54292 Trier, Germany

Abstract
In this work we discuss a service that aims to make
quoting of online documents, „web contents“ easy and
provable. For that reason we report the conception of a
gateway that works as a Trusted Third Party (TTP)
service which is based on a public key infrastructure
(PKI). The developed service consists of the signing of
any data-transmission that was done via the TTP-
gateway. After the data-transfer a set of data can be
requested from the used gateway that is signed with the
TTP-gateways private key. This signed set of data
contains for each request that was processed by the
gateway at least three components. Those are the request
from the client, the reply from the server and finally the
signature of the (TTP-)server. Storing this signed data
the recipient at the client side can provide it to other
parties suitable for a latter verification of the data-
transfer. The TTP-server generates automatically
verifiable statements of the kind „this request resulted in
that response“. Now anyone that trusts the chosen TTP-
gateways statements will be able to verify the data-
transfer by the use of the trusted third parties certified
public key. Furthermore this paper describes a prototype
implementation of such a service using HTTP. Finally a
possible employment of the TTP-gateway is discussed.

Introduction

This paper focuses on a very common problem on the
World Wide Web(WWW). With the WWW being a
highly dynamic medium it is quite obvious that with time
going by most resources are changed or finally removed
at all. If a document is removed or renamed this often
results in a broken link and hinders any further access to
the document. If there is no archive provided the
document is lost for any further use. Eventually more
frustration arises from a changed document. While a

substantial change probably will be recognized by
anybody that referenced that document minor changes in
details are difficult to be recognized without the help of
difference engines [1, 2, 3]. Since a removed or modified
document is worthless as a reference some solution to the
broken link problem is necessary. Although there are
several efforts [4, 5, 6, 7] and therefore several
mechanism, e.g. removal of the link from all referencing
document, are employed to solve this, they still have not
been stablished. For example the reading of most online
References of the former WWW conferences is
impossible since a huge number of links already expired.

If it is not possible to solve the problem of broken
links in general it might be helpful to maintain a local
copy of a online reference. This can be a personal
solution, but is not practicable in common, since the local
document lacks any authenticity. Independent of the type
of connection, simple HTTP[8] or a more secure
derivative, e.g. HTTPS [9] or S HTTP [10], the client has
no means to prove later, that it indeed received that
certain document from the server and that it has not been
modified in any way. So the special problem is how to
get an authenticated document as a substitute for a online
reference, if the owner of the reference, e.g. the author or
the web-server itself, does not provide such a service. In
common the problem with the actual client server
architecture of the internet is, that data-transfers itself are
not commonly verifiable afterwards.

The approach discussed in this paper focuses on this
fact. We suggest a new type of service that can be used
by anybody without modification of neither the server
nor the client. This service provides for any client the
possibility to get some trustable proof for the data
transfer it handled. While the concept explained in this
paper might be applicable for most data transfer
protocols that support a kind of gateway, it is prototypal
developed for the use of HTTP.

Andreas Heuer, Frank Losemann, Christoph Meinel:
Logging and Signing Document Transfers on the WWW - A Trusted Third Party Gateway
in Proceedings of the First International Conference on Web Information Systems Engineering (WISE 2000), vol. 1, IEEE Press,
Hong Kong, China, pp. 146 - 152, 6, 2000. ISBN: 0-7695-0577-5.

TTP-Gateway Concept

In this section we describe the concept we developed
to offer a provable data transfer. It is based directly on
the existence of a trusted third party (TTP) that signs any
data transfer it handles. Dependent on the field of
employment of this concept different requirement for the
TTP will arise. Given the problem of online references,
e.g. a digital library, could be accepted as a TTP. As well
external proxies of an intranet could offer a service for
use within the intranet. The TTP we focus on has to care
for two services. On the one hand there is the
functionality of a gateway. The TTP has to care for
handling of data transfers between any client and server.

On the other hand a service must be provided that
protects the TTP output from tampering preserving
authenticity. Furthermore a mechanism for later data
validation is needed. This could be achieved by signing
[11] the results of the TTP-gateway including a
statement, that describes the service provided, i.e. how
the statement granted by the TTP-gateway is to be
interpreted (policy). To provide this TTP-gateway
service to the whole internet community the TTP-
gateway should be integrated in a commonly accepted
Public Key Infrastructure (PKI), e.g. the PKIX Internet
X.509 Public Key Infrastructure as described in PKIX
Charter [12]. Making use of this infrastructure its means
for data validation [13] as well as certificate formats [14]
are determined. The integration of the TTP-gateway into
this infrastructure can be handled as usually by any
commonly accepted internet certifying authority (CA).

While the client usually connects directly to a server
(Picture 1A), the concept of the TTP-gateway requires
that the client does not connect itself directly to the
server but transfers its data via the gateway (Picture 1B).
Since the complete communication between the client
and the server is handled by the TTP-gateway, it is able
to log the whole session. Of course one would only allow
a trusted party this freedom. In this case one has to trust,
that the data will not be available to anybody else, until
one decides to provide it oneself.

But trust is required in an other, broader sense as well.
After the data transfers via the TTP-gateway between the
servers and the client are finished, the client can request
from the TTP-gateway a log of the data transfer (Picture
1C). In order to allow a latter validation by interested
parties, the TTP-gateway has to sign the data transfer it
handled with its private key. So the Signed Data Transfer
Log (SDTL), which the client can receive for either
single requests or any set of requests, enables the user to
prove to anybody that trusts in the party that runs the
gateway, what data he/she did receive on a certain
requests. Therefore the SDTL has to contain several
components, at least three. The first component is the
request the client did send to the server. With this
component it is possible to validate which request did

result in the received document in focus. In the case of
HTTP the request headers are essential, since different
browsers or language preferences may result in different
replies. At second the SDTL has to contain the server
reply to the request. In the case of HTTP this reply splits
into two parts, the response header and the reply data
itself. Having HTTP in mind, the response header
contains information about the reply data, e.g. the
content-length. Now anybody that has access to the
SDTL can read the request, the reply and therefore the
document that was transferred.

Picture 1 In order to get a provable data transfer the
client has to switch from a direct connection to the server
(A) to a connection that is handled by the TTP-gateway
(B). In a last step the client requests from the TTP-
gateway the Signed Data Transfer Log (C), a file that
contains a signed prove for the data transfer handled by
the gateway.

Finally the third component contains the signature of
the client-request-component and the reply component
sent by the server. In order to make the mechanism work
quite stand alone the signature-component may also
contain the certificate of the TTP that did the signing. At
last a HTML-file containing instructions how to interpret
and verify the given signatures for the request/response
can be approved.

With a SDTL created in the described format the
client is now able to prove to anybody that trusts in the
party running the TTP-gateway, that indeed a request, as
it is contained in the SDTL did result in the response,
that is included in the SDTL as well. The document
validation process requires at least three steps. In the first
step the one who wants to check the SDTL has to get this
file (Picture 2A). The SDTL can be provided either by
the original client itself or any other party.

In the second step, the validating party has to get and
validate the certificate of the TTP-Gateway. Several
solutions for the certificate transfer are possible, either a
secure connection (e.g. HTTPS) can be used to request

the certificate from the TTP directly, or a Data
Validation Server (DVCS), see [13] can be involved.
With the knowledge, that the certificate is indeed
assigned to the TTP running the TTP-gateway the
content of the SDTL can be validated (Picture 2B). Of
course it is also possible to implement a public service
the handles the complete validation of a SDTL, including
validation of the certificate and the SDTL’s contents.

Picture 2 When the validating party received the SDTL
(A), the Validation of the SDTL includes at least two
steps(B). The certificate of the TTP has to be validated as
well as the content of the SDTL.

Given the special case that someone wants to use an
online reference (available via HTTP) in his/her paper
that is to be published online, it is now possible to
provide along with the hyperlink to that document a
SDTL of a former retrieval of the document by the
author. The SDTL can be handled as any image data that
is linked in the paper. When that paper is published the
SDTL will still be available along with the paper, when
the original online document was already removed or
modified in between. So this enables any user that trusts
in the TTP to validate independently the content of the
reference. Trusting in the SDTL of the online reference,
there is an added value given by the SDTL even if the
online reference itself is still available. This value arises
from the ability to find out, if the document was modified
since the reference was made.

HTTP-Prototype Implementation

In this section a prototype implementation of the TTP-
gateway in JAVA for the use with the commonly used
HTTP is described. Although this programming language
has disadvantages concerning the performance, we chose
it for the prototype, since the given security tools [15]
and the JAVA security API [16] allows a quite easy
handling of security related problems. Furthermore we
decided to use the signed jar-files [17,18] as SDTLs. This

decision was based on the following reasons: At first jar
files are prepared to be signed, since they are used to
transport trusted mobile executables from servers to
clients. The second reason is the availability of an
compression algorithm, since jar files are based on the
zip file format [19]. At third there exists with the
jarsigner [15] at least one commonly available tool for an
immediate verification of the content and signature of a
jar file. Although the handling of this command-line tool
is quite poor, the use in a prototype is appropriate.

The prototype implementation consists of a multi-
threaded server program that listens on a given port for
requests. Clients are distinguished by their ip-addresses
in order to get a kind of session information that lasts
longer than stateless HTTP request. Problems with data-
privacy arise, if several users share the same ip-address.
Therefore the prototype can not be used for security
relevant browsing sessions.

For each client a kind of cache is build in the gateway
to store the data of the recent (a time period can be
defined) browsing session. This stored data includes the
request header, the request-data (POST-method), the
reply header and finally the reply data, respectively the
file received by the client.

If the user finished his/her browsing session via the
gateway, he/she can connect via HTTP directly to the
TTP-gateway. Based on the ip-address of the client all
requests of the recent browsing session are now listed on
a HTML-page (Picture 3). This allows the user to decide,
which requests he/she needs to be signed. As a reply to
the user request for a SDTL he/she will receive the
SDTL in form of a signed jar file. Although its name is a
little bit cryptic at the moment (unique id) this single,
compressed file contains anything required for validation
of the complete data transfer of the concerning HTTP-
request.

Picture 3 The HTML-page that lists all the requests of
the last "session". Each request is handled separately in
order to provide high flexibility to the user. A mechanism
that combines all request (e.g. HTML-page, with the
bound images inside of that page) of a certain document.
By click on a link, the SDTL will be created and sent to
the user.

In detail the signed jar file consists, in the case of a
single HTTP-transfer signed, of seven files (Picture 4).

Picture 4 Since the jar-file is based on zip it can be
opened with programs like winzip[20] in order to view the
content. As one can see, there are seven files included.
Those are the Request (header), the Request_data
(empty), the Reply (header) and the file, that is the
document, one is interested in. Furthermore there is the
Manifest of the jar, the signature file (in this case labeled
Ti-gatew.sf, since this was the selected alias of the
certificate owner) and finally the signature block (Ti-
gatew.dsa)

Of those files four "contain" the data transfer. Three
files, stored in a subdirectory (meta-inf), are required in a
signed jar file[21]. The first of those later files is the
manifest file.

Picture 5 The content of an example manifest file.

It contains for each of the four member files a
message digest computed e.g. with the MD5 [22]or
SHA[23] algorithm. The second of those files is the
signature file (Picture 6).

Picture 6 The content of an example signature file.

It contains digest entries for the archive’s files similar to
the digest-value entries in the manifest. While the digest
values in the manifest are computed from the files
themselves, the digest values in the signature file are
computed from the corresponding entries in the manifest.
Since the signature file is compatible with version 1.2 of
the Java-platform it also contains a digest value for the
entire manifest. Finally the third of those files is the
signature block, a not human-readable file in the
PKCS#7 format [24]. It contains two elements that are
essential for the verification, the digital signature for the
jar file and the signers certificate. The digital signature is
generated with the trusted third parties private key
[conforming to PKCS#7]. The certificate contains the
public key of the trusted third party. Therefore one needs
only to provide that signed jar-file to enable others to
validate the data transfer.

Two different modes for the request for signatures are
available right now. In the single request mode each
request of the browsing session can be requested in a
separate file. This allows the user a selection of the
required data. The multi request mode works slightly
different. It offers the user a single signed jar file
containing all requests with their related data. This mode
is very effective, if there was a document browsed via the
gateway that contains many other important sub-
components e.g. images. In that case the jar file would
contain additionally to the document itself the related
components, too. Of course this mode is also very useful
when browsing documents split into several parts.

But also all components of the document are
afterwards available in the SDTL, the links in the
document appear broken, since no modification of the
content of the SDTL was done. Probably a kind of
SDTL-Viewer can be built that can handle such link
transformations.

Given the scenario a user reading a document that
contains a online reference as well as a link to a
corresponding signed jar-file. Then there are two
potentialities. Either the online reference is still available
or it cannot be loaded anymore. In both cases it would be
a good idea of the user to load the signed jar-file anyway.
In the first case the user can compare the actual
document located at the online-reference with the
document that the author had in mind when using that
reference. In the other case the user is able to read the
document regardless to the invalid original online
reference.

If the user did load the signed jar-file there are several
steps to perform in order to assure the content. The first
step is the verification of the signed jar-file. The
verification of the signed jar file is simple, given the fact
that the jarsigner -tool, distributed with the common JDK
[25], is commonly available. Running the program with
the -verify -certs options, will start the verification and
also display the certificate of the signer (the trusted third
party).

Picture 7 A screenshot after the execution of the
jarsigner with the -verify option for the example jar.

Supposed the verification was successful in the next
step the user should validate the certificate provided
inside the jar-file. Validated that the jar-file was indeed
signed by the TTP-gateway the user now can concentrate
on the content of that file. The user can extract the
request information as well as the document in focus.
Since the request header as well as the reply header are
human readable the verifier can reproduce the
communication that brought up the document that was in
focus of the online reference.

Attacks against the gateway

Of course question of security and possible attacks are
very relevant, when there is a PKI involved. But
obviously this field of interest must be discussed in more
detail than it is possible in this paper. Therefore we give
here only a brief statement about the attacks that can be
expected concerning the described concept. Following
the design of the TTP-gateway it is obvious that
somebody using the gateway should receive the same
data from the web as somebody not using the gateway.
So if there happens any attack of the kind man in the
middle, it would have happened without the gateway
anyway. For a man in the middle attack there are two
working points. The first is located between gateway and
client. This one can be neglected since any modification
of the signed jar file will result in a failure of the
verification. The second point of attack is located
between the gateway and the web-server serving the
requested document. This attack can only be hindered if
a secure connection between that server and the gateway
is used. Since the overhead given with the handling of a
secure connection is not inevitable, the implementation
of such a feature depends on the security requirements of
the users. Anyway the number of web-sites that can be
accessed with a secure connection is remarkably small
against the number of servers using unsecured
connections.

Other attacks against the TTP-gateway will aim for
the private key used to sign the data-transfer. Attacks of
that kind can happen to everyone employing public key
infrastructures. Therefore common security concepts
have to be implemented to secure the gateway.

Possible Employment of the TTP-gateway

One can imagine several possible fields of
employment for the Signing Transfer Service (STS)
provided by the TTP-gateway. In particular there are two
kinds of service providers. The first is the conventional
service of a gateway as described in this paper. But there
is a second one, that is a special constellation. This
second kind is a web-server that itself provides the
signing functionality for each request handled at a certain
port. While in the first case the STS is independent of
any special web-space, in the second case the web-site
and the STS are more or less integrated.

The STS as an independent solution can be provided
by any trusted party. Employment candidates are in this
case for example search engines, web-portals, or
institutional sites as universities. They would be trusted
by a wide variety of parties and therefore be prepared for
a widespread use.

Institutions as well as companies can provide the STS
as an integrated service in order to give more reliability
to their customers or employees. This is especially

interesting since the combination of the web-server and
the STS avoids the man in the middle attack. Therefore
the mentioned parties can provide for any document
delivered an additional SDTL. E.g. a internet shop could
offer for each handled purchase a signed proof in form of
a SDTL to the customer.

While such purchase proofs are to be for private use
only they will not interfere with any copy right. This is
different, if one publishes along with an online document
the referenced documents as SDTLs. In this case the
copy right of the original authors has to be taken into
consideration. So either an agreement of those authors is
available or the SDTL can only be stored for personal
use, e.g. to prove the correctness of a reference.

Finally again independent of this difficulty the STS
might be very interesting for some companies, as they
might employ it in order to offer their employees a
reliable framework for internal use inside the intranet.

Outlook

With the prototype of the TTP-gateway an example
implementation of the STS concept is for testing
available. Using jar-files as containers this simple
approach guaranties easy implementation and broad
availability of the validation tools. While the prototype is
for testing purposes a good solution, there are several
drawbacks on the client side. The tools that allow the
validation of the SDTL are command-line based and the
complete validation process, including the import of the
TTP’s certificate, is quite circumstantial. Efforts will be
undertaken to develop a client program with an adequate
Graphical User Interface that encapsulates the complete
validation process. Required features are easy import of
certificates, simple verification of SDTL with a graphical
user-interface and probably a kind of SDTL
management. Of course it would be easier for the users if
the validation process is located on a server. A simple
upload via a secure connection could transfer the file in
question to the validating server. This method would
require additional trust in the validation server.

Independent of the usability of the prototype there are
several other features to be implemented in future
developments. The feature needed probably at most is the
provision of a secure connection from the TTP-gateway
to the server. This would decrease the probability of the
man in the middle attack described above. If
confidentiality or anonymity are desired for SDTLs, a
secure connection from the gateway to the client could be
used too. Such a secure connection would furthermore
provide something like a session that could be tracked
inside the gateway independent of the ip-address as it
happens at the actual prototype.

Other features possible, are a time-stamping-service
and probably a persistence service. While the time-
stamping-service certifies the time for each SDTL and
therefore allows the classification into a historical

context, a persistence service would care for the long-
term availability of the SDTLs. Those additional features
could be provided in connection with external services,
according to different quality of service levels, up to the
user’s choice.

Related Work

In the context of signed documents there are two
initiatives to mention. On the one hand there is xml-sig
[26]. The specification of XML-Signature provides a
mechanism for applying digital signatures to XML
documents and other Internet resources and encoding
those signatures as XML. Its structure allows for both
embedded and detached signatures. On the other hand the
Digital Signed Label Architecture [27] is to mention. The
SDTLs described in this paper are similar to XML-
Signatures or Digital Signed Label (DSL) in the sense,
that they are assembled to make a signed assertion about
an information. While the concept of the TTP-gateway is
independent of the format used for the SDTL, it may be
interesting to discuss the use of XML-Signature or DSLs
as format for the SDTL.

Another program providing services on a similar field
is the SSL Proxy [28] that can be used to transfer data
with an secure connection even if, for example the
original web-server, does not support a encrypted
protocol (HTTPS). Indeed this program would be a great
complement for the TTP-Gateway, since it provides
secure connections between clients and servers. Of
course we are aware, there are other services available on
the WWW that offer similar features.

E.g. there are certified delivery services such as
AuthentiX (www.true-email.co.il) that offer proof of
what was delivered (downloaded) via Web-based email.
Although they provide a similar functionality there is a
big difference to the STS, since the STS does not require
any modification of an existing service. It can just simply
be plugged into the communication between client and
web-server. Finally the combination of several
independent services in the appropriate, complicated way
would obviously achieve results providing the same
statements. The most important of those services to
mention are time stamping services[29] and electronic
notaries[31]. Time stamping services bind a statement to
a given point in time. Electronic notary services focus on
the authenticity and persistence of certified statements
themselves. Our service links an URI or, more precise a
protocol request, to a protocol response at a given time.
The time included in the TTP-gateways statement could
of course be additionally improved by obtaining and
adding a time stamp from a dedicated service to the
response. The requirement for including all protocol
request headers in the SDTL arises e.g. from the
existence of web-sites that adapt to different language
preferences or browser identification strings sent by
browsers. In the case of HTTP a web-server

implementing content negotiation [31] this could result in
different documents sent as response to a request of the
same URL.

Conclusion

With the concept of the TTP-gateway a service is
developed that provides a mechanism for the signing of
data-transfers. Since any data-transfer can be signed by
simply directing it through any TTP-gateway the use is
multifarious. After choosing a convenient provider of
such a service anybody can use the mechanism to get a
verifiable documentation about certain data-transfers.
This rises the reliability of the resources of the world
wide web a lot. With the simple prototype
implementation of the service for HTTP the feasibility of
the concept is proven. Using the signed jar files to be
verified by the commonly available jar-signer tool
increases the practicability of the technique. Since the
service is based on a public key infrastructure it depends
strongly on the availability of trusted parties that will
provide this kind of service to their customers. We think,
with our service we offer a solution to some of the
problems in focus of the article "Intellectual
Preservation: Electronic Preservation of the Third Kind"
[32].

References

[1] Fred Douglis, Thomas Ball and Yih-Farn Chen
,WebGUIDE: Querying and Navigating Changes in Web
Repositories, Fifth International World Wide Web Conference,
May 6-10, 1996, Paris, France,
http://www5conf.inria.fr/fich_html/papers/P38/Overview.html
[2] Thomas Ball and Fred Douglis. An internet difference
engine and its applications. In Proceedings of 1996
COMPCON, February 1996, pp. 71-76.
[3]Fred Douglis and Thomas Ball . Tracking and viewing
changes on the web. In Proceedings of 1996 USENIX
Technical Conference, January 1996
[4] The PURL Homepage. URL: http://purl.oclc.org/
[5] David Ingham, Steve Caughey, Mark Little, Fixing the
"Broken-Link" Problem: The W3Objects Approach, Fifth
International World Wide Web Conference(May 6-10, 1996,
Paris, France),
http://www5conf.inria.fr/fich_html/papers/P32/Overview.html
[6] A. Aimar et al., "WebLinker, A Tool for Managing WWW
cross-references," Computer Networks and ISDN Systems, Vol.
28 No. 1&2; Selected Papers from the Second World Wide
Web Conference, December 1995
[7] F. Kappe, K. Andrews, and H. Maurer, "The Hyper-G
Network Information System," J.UCS Vol. 1, No. 4 (Special
issue: Proc. of the Workshop on Distributed Multimedia
Systems, held in Graz, Austria, Nov. 1994), pp. 206-220,
Springer, April 1995.
[8] HTTP, HyperText Transfer Protocol,
http://www.w3.org/Protocols/
[9] HTTPS, HTTP Over TLS, http://www.ietf.org/internet-
drafts/draft-ietf-tls-https-04.txt

[10] The Secure HyperText Transfer Protocol,
http://www.ietf.org/rfc/rfc2660.txt
[11] R.L.Rivest,A.Shamir,L.M.Adleman: “A method for
obtainingdigital signatures and public-key cryptosystems“,
Communications of the ACM,21, (1978), 120-126
[12] Public Key Infrastructure (X.509)(pkix);
http://www.ietf.org/html.charters/pkix-charter.html
[13] Internet X.509 Public Key Infrastructure Data Validation
and Certification Server Protocols <draft-ietf-pkix-dcs-03.txt,
http://www.ietf.org/internet-drafts/draft-ietf-pkix-dcs-03.txt
[14] Internet X.509 Public Key Infrastructure Certificate and
CRL Profile, http://www.ietf.org/rfc/rfc2459.txt
[15] Summary of Tools for the JavaTM 2 Platform Security,
http://java.sun.com/products/jdk/1.3/docs/guide/security/Securit
yToolsSummary.html
[16]Java security API,
http://java.sun.com/products/jdk/1.3/docs/api/java/security/pack
age-summary.html
[17] Package java.util.jar,
http://java.sun.com/products/jdk/1.3/docs/api/java/util/jar/packa
ge-summary.html
[18] Manifest and Signature Specification,
http://java.sun.com/products/jdk/1.3/docs/guide/jar/manifest.ht
ml
[19] Info-ZIP Application Note 970311,
ftp://ftp.uu.net/pub/archiving/zip/doc/appnote-970311-iz.zip
[20] WinZip Home Page, http://www.winzip.com/
[21] Jarsigner (Windows) ,
http://java.sun.com/products/jdk/1.3/docs/tooldocs/win32/jarsig
ner.html
[22] The MD5 Message-Digest Algorithm,
http://info.broker.isi.edu/in-notes/rfc/files/rfc1321.txt
[23] SECURE HASH STANDARD,
http://www.itl.nist.gov/fipspubs/fip180-1.htm
[24] PKCS #7: Cryptographic Message Syntax Version 1.5,
http://www.ietf.org/rfc/rfc2314.txt
[25] The Java(TM) 2 SDK, Standard Edition, v 1.3 Beta
Release, http://java.sun.com/products/jdk/1.3/
[26] XML-Signatur , http://www.w3.org/Signature/
[27] SDML - Signed Document Markup Language,
http://www.w3.org/TR/NOTE-SDML
[28] SSL Proxy, http://www.obdev.at/Products/sslproxy.html
[29] Internet X.509 Public Key Infrastructure Time Stamp
Protocol (TSP) <draft-ietf-pkix-time-stamp-04.txt,
http://www.ietf.org/internet-drafts/draft-ietf-pkix-time-stamp-
04.txt
[30] US Patent no. :5,022,080 Electronic Notary; Filing date:
April 16, 1989; Inventors: Robert T. Durst, Kevin D. Hunter
http://www.clir.org/pubs/reports/graham/intpres.html
[31] Transparent Content Negotiation in HTTP;
http://www.ietf.org/rfc/rfc2295.txt
[32] Peter S. Graham: "Intellectual Preservation: Electronic
Preservation of the Third Kind", March 94, available online:
http://www.clir.org/pubs/reports/graham/intpres.html

