
* Proceedings of The Ninth IEEE Symposium on Computers and Communications (ISCC 2004). Alexandria, Egypt. June 28 - July 1,
2004. pp 80 – 85.

Routing Based Workflow for Construction of Distributed Applications*

Wanjun Huang, Xinhua Zhang, Uwe Roth, Christoph Meinel
Department of Computer Science, University of Trier

{huang, zhang, roth, meinel}@ti.uni-trier.de

Abstract

Dynamic reconfiguration is absorbing more and

more research focus for its increasing demand in
inconstant distributed application. In this paper we
propose a routing based workflow to model the
dataflow, runtime state and control management of
cooperating components. Routing based workflow
successfully realizes dynamic reconfiguration by the
way of modifying routing structure and simplifies the
hard problem of maintaining consistence into rather
easy issue of synchronization. A detailed analysis is
also given to show the great flexibility for
construction of software architecture and potential
applications.

1. Introduction

Distributed applications and services increase
greatly as the popularization and development of
Internet. The complexity of distributed system grown
with dimension of application scope and areas makes
the design and implementation of distributed system
rather difficult. At the same time because of high speed
updating of computer hardware and invention of new
network technologies, new application services are
frequently required to be integrated into existing
distributed system, which demand the constitution of
distributed applications easy to be extended. When
designing and implementing a distributed application,
people always try to complete all functionalities and
services in advance. But if all components are loaded
into memory when starting, the fat server will cost much
unnecessary resources for some seldom used
components. Architecture description language
provides possibility to customize components for
specific services according different circumstances and
application areas, but this offline configurability can
not satisfy increasing requirements. Dynamic

reconfiguration is gradually becoming an indispensable
feature of large scale system. Especially for the system
which provides crucial services, it will produce big loss
if the system shut down or restart. But sometimes faults
are unavoidable, so defective component has to be
replaced. Component parts may also have a new
version, or even a new component is requested to
integrate into the system. In this case, if distributed
system has capability of dynamic reconfiguration, the
loss can be decreased to minimum.

Workflow is first proposed to model the automation
of a business processes according to a set of
procedural rules where the document, information or
task are passed from one participant to another for
action. The core task for construction of distributed
system is to design different components and organize
these components working together. The kernel of
workflow is processes management that is similar in
essence to components collaboration. So we can also
apply workflow to direct, coordinate and monitor
execution of relevant core components in a distributed
applications. For the dynamic reconfiguration, there are
also plenty of proposals trying to give a final answer.
These approaches do address some problems, but at
the same time they also leave other problems. From idea
of oil pipeline, we know, once the pipeline has been
established, the oils can automatically flow to
everywhere that the pipeline can reach. If we want to
transport oils to a new oil station, what need to do is
just to lengthen the pipeline to the new place, and other
oil stations will not be affected. This idea looks
apparently very simple and obvious, but it has not been
realized in area of distributed application system. Now
most approaches for dynamic reconfiguration adopt the
idea of safe state that contain s three steps: the first
step is to hold incoming requests to wait all updating
involved components into a safe sate, and then perform
reconfiguration, finally restore to process held requests
using new updated components . The kind of approach

published as: W. Huang, U. Roth, X. Zhang, Christoph Meinel: Routing Based Workflow for Construction of Distributed Applications;
Proceedings of the 9th International Symposium on Computers and Communications (ISCC 2004);
Alexandria (Egypt), 2004, pp. 80-85. isbn: 0-7803-8623-X; doi: 10.1109/ISCC.2004.1358385.

can deal with normal case, but it may wait a long time to
process the reconfiguration when concerned
component involves into a long time interaction or
processing. According to the mentioned idea of oil
pipeline, we propose a routing based workflow where a
routing is constructed as pipeline of dataflow. When
reconfiguration operation comes, what need to do is to
modify the structure of routing that simplifies the hard
problem of maintaining consistence into rather easy
issue of synchronization. In this paper we first will
introduce the concept and construction of routing
based workflow. Then we will analyze and discuss in
detail about features of routing based workflow for
distributed application. At last related works will be
given and compared to our solution.

2. Routing based Workflow

As indicated in Figure1, routing based workflow
includes three parts: workflow manager, routing
manager and component repository. Workflow manager
is responsible to transfer an arrived request to a
specified routing manager and get back the response
from routing manager. When the routing manager
receives a request from workflow manager, it dispatches
a routing processor to concretely execute the routing
for this request.

2.1 Description of Routing

Routing is a concept appeared with Internet
technologies. In network protocols routing is an action
of moving information across an internet from a source
to a destination, whose functionalities are to determine
optimal routing path and to transport information

packet. In distributed environments, in spite of
underlying system components or application services,
there exist similar issues. To flexibly manage the inner
structure of system or application services, we model
the functional component as computational module,
and model the running dataflow and control relations
between different components as routing. Routing is
data flow pipeline of workflow constructed from
information contained in routing schema. Before the
creation of active routing, all relevant modules have to
be created and instantiated firstly. Then module
delegates are constructed to encapsulate module
processor and form the entity of routing. A routing is
ready to execute only after virtual binding is performed,
and real binding will occur at the momentary of request
execution.

2.2 Routing Composition

Composition elements of routing are communication
port, module delegate and input/output set. Input set
indicates what are needed for execution of routing, and
output set provide the way to export results produced
by routing.

2.2.1 Communication Port

To achieve more convenience for modification of a
routing, each computational module should keep in a
state as independently as possible . The communication
between different modules is realized by communication
port. From the type of passed data, port can be
distinguished as operation port or stream port, and from
IO direction communication port can be identified as in
port and out port. Operation port is used for
conventional communication conformable to pattern of
request-reply. Stream port is imported to process the
continuous stream media, such as video, audio or other
stream data. Inside of routing communication port is the
unique data exchange media among different
components. Communication port can be used in
module processor and module delegate. For module
processor, ports are not detachable. When the design
and implementation of a module finish, the ports are
fixed to processor. But for module delegate, these ports
are detachable, through which delegate can represents
different modules in different period. Two important
part of communication port are destination object and
source object. Destination and source object can be
ports or named object. Just as in Figure1, all coupled
ports should be bound to create a pipeline of dataflow.
Destination indicates the next object where the passed
data of port should be transferred, and source tells port

Figure1. Architecture of Routing Based Workflow

where the data can be got from. When ports are bound,
there are some rules that have to been met to ensure the
action of binding is correct. For example, if the owner of
an in port is a module processor, the destination of in
port must be a named object that is directly consumed
by processor.

2.2.2 Module Delegate

Module Delegate encapsulates IO behaviors of
module that it delegates, and represents the module for
all management tasks in a routing. That means what can
be seen in a routing is delegate instead of processor
entity. All dependences operation and management
concerned with a module can be done by its delegate.
Inside of delegate, a mandatory module manager has to
been given to indicate which module is being delegated.
Delegate is like a container. What delegate contains is a
module manager through which processor instance can
be fetched or returned. Class of module delegate is
unique, but the type of module that it delegates is
countless. The detachable ports of delegate provide
ability for this possibility. When module delegate
instance is created, the ports of delegate should also be
created according to ports of represented module. It’s
possible to hold different module delegates that
represent the same module in different routings. In this
case a module instance may serve for multiple routings
synchronously.

Delegate’s primary responsibilities are to help
managing and controlling a routing in workflow. Two
such major tasks are checking requirements and
dependences management. To ensure a routing can be
processed successfully, there are many requirements
needing to be satisfied. Some are for routing, such as
input set and output set should be a valid type and can
be bind to its owner delegates. Some are for module
processor that ensures it can be executed correctly.
Dependences management is another task that delegate
has to take charge. There are two dependences existing
in routing based workflow. One is dataflow dependence
has already been realized by binding of communication
ports. The other is control dependence that is created
according dataflow dependency and indicates the
control relationship between current module and its
neighboring modules.

2.3 Computational Module

Computational module consists of module manager,
module processor and component repositories . Their
essential responsibilities are to create connection
between module delegate and its processor entity.

Module processor is the real processing component
that implements the functionality what it provides.
Module processor doesn’t need to care about any
functionality of collaboration and management with
other modules. In addition to functionality
implementation, the processor needs to complete two
tasks. One is to create communication ports for its
supplier and consumer to exchange data with itself.
Another task is trigger mechanism for activating the
execution of processor. In a routing processor will be
loaded after real binding, and begin to execute when all
in port data arrive.

Module manager is used to manage pool of module
processors and keep contact with routing. Inside of
manager, there is a pool to store processor instances
that are available for multiple requests synchronously.
Whenever there is no more available processor
instance in pool and the size of pool has not reach its
maximum, a new processor instance will be created to
deal with new request. Also, if a processor has finished
its execution for one routing, it will be reinitialized and
retrieved back to pool. To optimize the usage of
memory resource, module repository is designed to a
two-layer storage structure. One is static repository
that stores all available modules Schema. Another is
active repository that stores instances of module
processor that has joined in one or multiple routings.

2.4 Routing Execution

Routing execution is a procedure of serial real
binding and unbinding, and only after virtual binding
routing is ready to execute.

2.4.1 Virtual Binding

Virtual binding is a process to make the delegates of
routing connected. After virtual binding the dataflow
still can not run immediately in routing. Virtual binding
has just established the pipeline of dataflow, and
created the contact with specific module processor.
Communication still needs a performing of real binding.
The concrete tasks of virtual binding include port
binding and validation check for rules. When a routing
is created, the composition of routing are separated
module delegates. Port binding is to connect delegates
according provided binding pairs of coupled ports. In a
pair of coupled ports supplier should be set to the
source of its consumer and consumer should also be
set to the destination of its supplier. If all ports of all
delegates in a routing have been bound, a dataflow
pipeline of routing from input set objects to output set
objects has been created. To further enhance the

success rate of routing, some rule requirements should
also be checked to validate the routing after port
binding.

2.4.2Real Binding

Virtual binding has created the dataflow pipeline of
routing. But just like the example of oil pipeline,
warehouse of oil station should also connect to
pipeline. The responsibility of real binding is to bind
the “oil station” with “oil pipeline”, and here the “oil
station” is component repository and “oil pipeline” is a
ready to execute routing. For the delegate and
processor, the source of their in port and the
destination of their out port are involved in the
processing with outer delegates, so we call these as
outer behaviors of its owner. Similarly the destination
of in ports and the source of out ports are concerned
with processor or the inner named object of processor,
so we call these as inner behaviors of its owner. In the
description of virtual binding, we have known that the
outer behaviors of delegates have been bound to form
dataflow pipeline. But after the stage of virtual binding,
the inner behaviors of delegates are still separated. The
concrete operations of real binding are to connect the
inner behaviors of delegates to the outer behaviors of
module processors. The inner behaviors of processor
has already bound and fixed when it was created. So
after the real binding, the routing can be said really
ready for request processing. For a module processor,
only when it is its turn to execute, it then processes the
real binding and performs concrete functionality. After
execution, processor will also process the operation of
unbinding to release module processor.

3. Analysis and Discussion

In this section we analyze and discuss in detail the
features and flexibilities of routing based workflow for
construction of distributed applications.

3.1 Routing Structure

Routing is a graph oriented structure that enables
routing bases workflow to flexibly establish different
kinds of distributed application. Different routing
structure represents varied potential software structure
of application. The most common routing is depicted in
Figure2 where each module delegate stands for
respective module processor. In a valid routing out
ports may point to in ports of different delegates and an
out port may also be bound to multiple in ports, but
each in port can only be bound to one out port.

 Figure2. Common Routing

One module processor may be shared by different
delegates, and these delegates may also belong to
different routings or the same routing. An example of
this case is given in Figure3. Because of the enough
independence of module proces sor and its contact way
with delegate, the usage of shared module is same as
normal one and need not any special measure and
management except for pool synchronization.

 Figure3. Component Reused Routing

In some case, application may be involved in
circulating operation between different components . In
traditional solution these different components have to
be merged into one module. In our routing based
workflow, we can model this case using circulating
routing as in Figure4. In this case one out port points to
in port of its prior delegate or itself. Certainly the
condition to break circulating has to be defined in
module processor.

 Figure4. Circulating Routing

3.2 Dynamic Reconfiguration

The motivation of routing based workflow is to
acquire the capability of dynamic reconfiguration and it
embodies in distributed system as changing the inner
structure of software system, namely adding, deleting
or modifying an inner component or methods of a

component. The difficult of dynamic reconfiguration is
not just to realize these meta-operations, but also
maintain consistence for involved components and
recover the dependencies between updated component
and its surrounding. The success of routing based
workflow is that it has rather perfectly modeled the
inner structure of system software and dependencies of
involved components . In routing based workflow, the
dynamic reconfiguration of distributed applications can
be realized by manipulation on routing. And
reconfiguration operations can be classified into three
categories, routing updating, module updating and port
updating. Routing updating involve the operations of
adding a new routing and deleting a routing. Here we
have not offered operation of modifying a routing
because it can be achieved by the operation of module
and port updating. Module updating includes adding a
module, deleting a module and replacing the
implementation entity of a module. When a module is
added for a routing, the real operation is to add a
delegate of this module into the routing. Also, deleting
a module means to delete delegate of the module in a
routing. Operations of port updating only contains
enable a port and disable a port. We have introduced
that the ports of module processor are fixed after the
programming of module is completed. So here the port
updating only refer to the port of module delegate.
When disabling a port of a delegate, it means to hide
the port of this module in current routing. Only after a
port is already disabled, the operation of enabling for
this port is available. One of big problems of traditional
solutions is how to maintain consistency, because the
updating component may be interacting with client and
its neighbour components. Here our proposal
transforms the consistency of involved components to
the routing that simulates runtime environment for
involved components. When updating a routing, it will
first be duplicated. Only if the updating on duplicated
routing success, the old routing will be replaced by
updated one. So the hard problem of consistency is
turned to easy issue of synchronization on routing.

3.3 Coupling degree

From observation of the law of nature, we detect that
the configurability of everything is rather close with the
coupling degree of its compositional parts. When the
coupling degree is higher, the configurability is lower if
appropriate method it has chosen. On the other side, if
the coupling degree is lower, the configurability may be
higher. Software developing also follows this rule. So
we try to minimize the coupling degree of compositional

components, not only inner components itself and also
the management and control of components. Lowering
the coupling degree of components does not mean
decreasing its out behaviours. What we have done is
just turning the black, uncontrollable communication
way of components to a clear and manageable one and
then naturally acquires higher flexibility and
reconfigurable ability.

3.4 Application Analysis

Routing based workflow has reflected the dynamic
dataflow, control dependencies and runtime sate for
cooperating components. It can be applied for system
level software development, such as middleware
architecture construction that we are doing now. In this
case routing based workflow may only model parts of
system. Other components still have to be kept as non-
reconfiguration part . Such as , communication protocol
can not be modeled into routing based workflow for the
nature of its function. In addition to system software,
routing based workflow can also be applied for
application level development. For example, web
services can be assembled to a composite service or
services application with the help of routing based
workflow.

4. Related Works

Allen et al [1] separate the dynamic re-configuration

behavior of architecture from its non-reconfiguration
functionality, and provide a notation to precisely
interpret each of these aspects. Through analysis to the
notation for consistency and completeness, it is
possible to guarantee that reconfiguration occur only at
points in the computation permitted by the participating
components and connectors. Allen’s approach based
on the Architecture Description Language (ADL) is
only passive to know when it’s better to make the
reconfiguration and has not addressed the problem of
consistency maintaining. In [2], [3], Almeida et al in
detail analyze the situation when dynamic
reconfiguration occurs and subdivide the problems to
three concrete requirements: structural integrity,
mutually consistent states and application state
invariants and propose individual solutions for
different requirements. This approach can be said rather
successfully solved the problem of maintaining
consistency, but it is also not available for extreme case.
Goudarzi et al [5] also present a similar approach as
Almeida to preserving mutual-consistency, and give a
description of the intended changes, automatically

identify and forces components which will be affected
by the change into a safe state. In [9], [10], Kon et al
design a Component Configurator to model and ma nge
the runtime dependencies of components . Component
Configurator just records the dependences of
component, but it has no consideration of the
consistency, and the communication way between
components is also not available. In our approach the
design of control dependency is influenced by the
concept of Component Configurator. Rather similar
idea with us can be found in [11], Shrivastava et al
present a workflow based model for distributed
applications. In their model, workflow schema is used to
express the structure of tasks in a distributed
application and task controller is used to represent
temporal dependences between constituent tasks. In
our approach the design of module delegate are much
effected by the idea of task controller. But Shrivastava
et al have not modeled the structure of workflow
execution and they also directly bind the component
implementation to task controller, so the multi-solutions
supporting are not available in his solution.

5. Conclusion

For the attractive application prospect, dynamic
reconfiguration of distributed system absorbs quite a
number of research activities, but there is still no a
recognized stable solution that has addressed a serial
of problems arisen by dynamic reconfiguration. In this
paper we have proposed a routing based workflow for
construction of distributed applications. Routing based
workflow has successfully modeled the inner structure
and dependencies of cooperating components. In a
routing all involved components are represented by
their own delegate. Only when it’s time to execute, the
module processor will be loaded, and it will again be
released to component repository when execution
finishes. Because of low coupling degree of
components, all components have gained much
independence and at the same time do not lose the
flexibility of collaboration. Through modification of
routing structure, the capability of dynamic
reconfiguration is automatically realized. At the same
time some hard problems, such as maintaining
consistency etc., are skillfully simplified.

References

[1] R. Allen, R. Douence and D. Garlan. Specifying and
analyzing dynamic software architectures . In Fundamental

Approaches to Software Engineering, volume 1382 of LNCS,
pages 21-37. Springer-Verlag, 1998.
[2] J.P.A. Almeida, M. Wegdam, L. Ferreira Pires, M. van
Sinderen. An approach to dynamic reconfiguration of
distributed systems based on object middleware. In
Proceedings of 19th Brazilian Symposium on Computer
Networks (SBRC'01), Florianópolis - Santa Catarina, Brazil,
May 2001.
[3] Maarten Wegdam, Joao Paulo A. Almeida, Marten J. Van
Sinderen, Lambert J.M. Nieuwenhuis. Dynamic
Reconfiguration for Middleware–based Applications.
Submitted to IEEE Transaction on Parallel and Distributed
System, Special Issue on Middleware, 2003.
[4] T.Batista and N.Rodriguez. Dynamic Reconfiguration of
Component-Based Applications. In Proceedings of
International Symposium on Software Engineering for Parallel
and Distributed Systems (PDSE 2000), Limerick, Ireland,
June 10- 11, 2000.
[5] K. Moazami-Goudarzi. Consistency-Preserving Dynamic
Reconfiguration of Distributed Systems. PhD thesis,
University of London, Department of Computing, Imperial
College of Science, Technology and Medicine, 180 Queen's
Gate, London SW7 2BZ, UK, 1997.
[6] C. Hofmeister and J. Purtilo. Dynamic Reconfiguration in
Distributed Systems -Adapting software modules for
replacement. In Proceedings of the 13th International
Conference on Distributed Computing Systems, pages 101--
110, Pittsburgh, May 1993. IEEE Computer Society Press.

[7] K. H. Kim, Chittur Subbaraman. Dynamic Configuration
Management in Reliable Distributed Real-Time Information
Systems. IEEE Transactions on Knowledge and Data
Engineering 11(1): 239-254, 1999.
[8] J. Suzuki, T. Nakano, K. Fujii, N. Ikeda and T. Suda,
Dynamic Reconfiguration of Network Applications and
Middleware Systems in the Bio-Networking Architecture. Proc.
of IEEE Workshop on Large Scale Real-Time and Embedded
Systems, Austin, TX, December 2002.
[9] Fabio Kon, Manuel Román, Ping Liu, Jina Mao,
Tomonori Yamane, Luiz Claudio Magalhães, and Roy H.
Campbell. Monitoring, Security, and Dynamic Configuration
with the dynamicTAO Reflevtive ORB, IFIP/ACM
International Conference on Distributed Systems Platforms
and Open Distributed Processing (Middleware'2000). New
York. April 3-7, 2000.
[10] Fabio Kon and Roy H. Campbell, Dependence
Management in Component-Based Distributed Systems.
IEEE Concurrency, 2000. 8(1): p. 26-36.
[11] Shrivastava, S. and Wheater, S., Architectural Support
for Dynamic Reconfiguration of Large Scale Distributed
Applications. The 4th International Conference on
Configurable Distributed Systems (CDS'98), Annapolis,
Maryland, USA, May 4-6 1998.

