
Unsupervised Matching of Object Models and
Ontologies Using Canonical Vocabulary

Matthias Quasthoff
Hasso Plattner Institute

Potsdam, Germany
matthias.quasthoff@hpi.uni-

potsdam.de

Max Völkel
Institute AIFB

Karlsruhe, Germany
voelkel@aifb.uni-

karlsruhe.de

Christoph Meinel
Hasso Plattner Institute

Potsdam, Germany
christoph.meinel@hpi.uni-

potsdam.de

ABSTRACT
This paper presents a new method for publishing and con-
suming RDF data using object-oriented programming. We
improve Object Triple Mapping (OTM) by separating (1)
the transformation process between object-oriented data and
RDF data from (2) explaining the transformation results us-
ing established Semantic Web vocabulary. To achieve this
separation, we introduce a canonical vocabulary for object
models. As a result, the Semantic Web expertise required
to develop RDF-enabled applications is reduced.

Categories and Subject Descriptors
D.1 [Programming Techniques]: Object-oriented Pro-
gramming; I.2.4 [Artificial Intelligence]: Knowledge Rep-
resentation Formalisms and Methods—Semantic networks

General Terms
Semantics.

Keywords
Semantic Web, Object-oriented programming, object triple
mapping, schema matching.

1. INTRODUCTION
Modern Web sites are often build around huge data sets

and occasionally contain references to data stored in other
Web sites. For most commercial Web sites, these external
data references are implemented using proprietary service
interfaces using HTTP. Using a unified knowledge represen-
tation model to exchange information and organizing refer-
ences are desirable instead. The Linked Data [2] commu-
nity is working on using Semantic Web technologies such
as the Resource Description Framework (RDF, [8]) in or-
der to make the data stored in Web-based information sys-
tems available for other contexts. Researchers are working
on best practices how to publish, announce and discover,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
I-SEMANTICS 2010, September 1-3, 2010 Graz, Austria
Copyright c© ACM 978-1-4503-0014-8/10/09... $10.00

and consume RDF data sets, how to ensure compliance re-
garding privacy policy and data licenses, and also how to
actually develop RDF-enabled software. Developing RDF-
enabled software requires a good amount of experience with
different aspects of RDF data handling on top of software
engineering skills. This paper proposes extensions to ex-
isting approaches on how to simplify developing Semantic
Web applications using object-oriented programming. The
primary focus of this paper is to lower the requirements to
the software engineer’s knowledge on specific RDF vocabu-
lary.

An effective approach towards simplifying the develop-
ment of Semantic Web-enabled software is Object Triple
Mapping (OTM), and some amounts of practical work ex-
ists in that field [10, 11, 15]. The key principle of OTM is
to let software developers design an object model reflecting
the desired business logic, and let the OTM implementa-
tion handle the translation of RDF data from triple stores
or from the World Wide Web to this object model. This
approach has been proven to result in shorter development
times, cleaner source code and reduced learning required
from software engineers [13]. One important problem in Se-
mantic Web software development that has been identified in
the same experiment and is not directly addressed by OTM
is researching and selecting RDF vocabulary appropriate for
the intended use case. In this paper we present our research
on how Object Triple Mapping can be used to further sim-
plify developing RDF-enabled applications by incorporating
OTM and existing approaches on ontology matching in order
to support software developers in choosing RDF vocabulary
appropriate for their software.

Our goal is to let software developers create RDF graphs
from arbitrary object models without having to worry about
which RDF vocabulary to use or how to correctly use it,
and to let them restore their object models from these RDF
graphs. Therefor we identified two independent processing
steps in OTM, the separation of which adds clarity to the
semantics of OTM. Creating RDF graphs useful for third
parties, i. e. by using established RDF vocabulary, becomes
optional. As our second contribution, we present an ap-
proach how to partially automate this optional yet desirable
second step by applying known schema matching methods.
The feasibility of our approach is demonstrated using an
implementation prototype.

The rest of this paper is organized as follows. Related
work we build upon is presented in Section 2. In Section 3
we present our adaptation to object triple mapping, which is
the basis for the simplification we want to achieve, and show

Name Language Approach

ActiveRDF Ruby Naming
Elmo Java Annotation
OTMj Java Annotation
RDF2Java Java Code Generation
RDFReactor Java Code Generation
RDFAlchemy Python Annotation
So(m)mer Java Annotation
Surf RDF Python Naming

Table 1: Examples of existing object triple mapping
implementations.

how to integrate object triple mapping and ontology match-
ing. The first results achieved with our implementation pro-
totype are presented in Section 4. Section 5 concludes the
paper.

2. RELATED WORK
Mapping object-oriented concepts onto RDF vocabulary

builds upon existing work on formalizing object-oriented
programming, on knowledge representation using RDF, and
on schema and ontology matching. Zhao et al. present a
comprehensive survey on representing knowledge about soft-
ware engineering-related concepts [17]. The EvoOnt soft-
ware ontology model by Kiefer et al. [7] defines the con-
cepts necessary to formally describe the structure of object-
oriented software. This is relevant to describe how object-
oriented class models can be mapped to RDF concepts. The
PathLog language [4] formally describes access to object-
oriented data, which is required to translate actual data held
in object-oriented software to RDF and vice versa.

The idea to encapsulate operations on RDF data in an
object-oriented domain model is inspired by Fowler and Rice’s
work on object-relational mapping [3]. This idea has been
implemented a number of times, e. g. in So(m)mer [15], RD-
FReactor [16], ActiveRDF [10], and a number of other imple-
mentations as listed in Table 1. An overview on existing im-
plementations is maintained at the Tripresso site1. Among
the implementations, three main approaches for mapping
object-oriented and RDF concepts can be identified.

Mapping by code generation. The first type of OTM im-
plementation takes a RDF schema definition and generates
object-oriented source class definitions, which contain the
RDF data handling logic for the RDF properties relevant
for the RDFS class the object-oriented class represents.

Mapping by annotation. A second possibility to imple-
ment OTM is to annotate existing object-oriented classes
and specify the RDF class an OO class corresponds to, and
for class members specify the RDF properties they corre-
spond to.

Mapping by naming. A third option found in OTM imple-
mentations for dynamically typed languages is to construct
URI identifying RDF concepts from the names of OO class
members, i. e. by extracting a commonly known URI names-
pace prefix and the URI’s local part from the name.

The third field of research involved is schema and ontol-
ogy mapping. A detailed overview on schema matching is
presented by Rahm and Bernstein [14]. A fundamental dif-
ference between schema matching algorithms can be whether

1http://semanticweb.org/wiki/Tripresso

they operate on schema level only or whether they also also
use relations between instances from the schema. Due to
the availability of standardized schemata and limited access
to instance stored in a distributed way on the World Wide
Web, our prototype performs schema matching on schema
level using Similarity Flooding [9] and the Stable Marriage
problem [5]. More information specific to ontology matching
is presented on a dedicated Web site2.

3. MAPPING BETWEEN OO AND RDF
The problem of simplifying the translation between object-

oriented (OO) and RDF data can be split into two indepen-
dent tasks. The first task is to reliably translate between
object-oriented and RDF representations of information. It
is not required for this step to take into account any external,
publicly available RDF vocabulary. Instead, the generation
of “ad-hoc” vocabulary linked to the object-oriented class
model and expressed as meta-data to the primary data is
acceptable, if not preferrable for traceability reasons. The
second task is to link this ad-hoc vocabulary to established
RDF vocabulary so that the data generated can be reused in
other contexts, and other data expressed in more established
vocabulary can as well be translated to a meaningful object
model. By separating these two tasks, the latter becomes a
traditional schema matching problem.

In the following sections we first introduce a formal repre-
sentation of OTM. Then we describe how to express informa-
tion from an object model in RDF using so-called canonical
vocabulary, how to describe the links of this vocabulary to
the underlying OO class model, and how to reconstruct an
object model from RDF using this vocabulary description.
Afterwards, we describe how to link canonical vocabulary
to established, publicly available vocabulary, and how these
links can be used to also consume external RDF data ex-
pressed using such established vocabulary only.

3.1 Formal basics of OTM
In this section, the formal representation of the RDF and

OO data models introduced as well as a formal mapping
between the two data models. The RDF data model has
an established formal notation building upon the following
concepts [8].

Definition 1 (RDF data model). Let U be the set of
URI references, B an infinite set of blank nodes, and L the
set of literals.

• V := U ∪B ∪ L is the set of RDF nodes,

• R := (U ∪B)×U × V is the set of all triples or state-
ments, that is, arcs connecting two nodes being labelled
with a URI,

• any G ⊆ R is an RDF graph.

PathLog [4] has been used by Oren et al. [10] to describe
object-oriented access to data. In this paper we use a sim-
plified version of PathLog, which does not differentiate be-
tween scalar and set-valued class members. Also, we use a
simplified version of the semantic structure explained in [4].

Definition 2 (OO data model). Let N be a set of
names. The set of PathLog references RN is defined in-
ductively as follows.

2http://ontologymatching.org/

p1 p2

p3

John Doe Jane Doe

k

n n

I(p')1
n': John Doe

n': Jane Doe

k' I(p')2

I(p')3

Figure 1: Representing social information in RDF
(left) and OOP (right).

• n ∈ N is a reference, also called a simple reference.

• for references t0, t1 and a simple reference s

– t0.s is a reference, called a path

– t0 : s and t0[s→ t1] are references, called molecules.

A semantic structure is a triple (N , O, I) such that

• O is a set of objects and

• The interpretation I : RN → 2O relates references to
objects.

In the following, we show how RDF and PathLog can be
used to express information in the respective data model.

Example 1 (comparison of RDF and OO).
Let p1, p2, p3 ∈ U denote three people, n ∈ U be the URI
foaf:name and k ∈ U be the URI foaf:knows3. An RDF
graph describing p1, p2 might look as follows (Fig. 1, left).

G :=
{
〈p1, n,“John Doe”〉, 〈p1, k, p2〉,

〈p1, k, p3〉, 〈p2, n,“Jane Doe”〉
}

Let furthermore p′1, p
′
2, p
′
3 ∈ N be object names denoting

three people and n′, k′ ∈ N fields labelled name and known-

People. The OO representation of G (Fig. 1, right) requires
a semantic structure (N , O, I) such that

I(p′1.n
′) = {“John Doe”}

I(p′2.n
′) = {“Jane Doe”}

I(p′1.k
′) = I(p′2) ∪ I(p′3)

The mapping of RDF data to OOP concepts as shown in
Example 1 and vice versa has been formalized [13]. This
formalization can be adopted to the concepts of PathLog as
follows.

Definition 3 (Object triple mapping, OTM). An ob-
ject triple mapping for an RDF graph G ⊆ (U ∪B)×U ×V
is a tuple (N , O, I, mt, ma), such that

• (N , O, I) is a semantic structure,

• the vocabulary map mt : F → U maps a field names
F ⊆ N to properties,

• the instance map ma : O → U maps objects to re-
sources,

3The foaf prefix denotes the URI namespace
http://xmlns.com/foaf/0.1/

pi
I(p')i

k, n k', n'

ma

mt

Figure 2: Mapping OO concepts (right) to RDF.

• and the following holds for all o ∈ O, n ∈ I−1({s}),
f ∈ F : The mapping is

– complete:
∀〈ma(o),mt(f), u〉 ∈ G∃o′ ∈ I(n.f) : ma(o′) = u,
∀o′ ∈ I(n.f) : 〈ma(o),mt(f),ma(o′)〉 ∈ G

– injective, i. e. ma |I(n.f) is injective.

The idea of OTM is illustrated in Fig. 2 using the names
from Example 1 and Definition 3. Besides such purely formal
description of Object Triple Mapping, concrete implemen-
tations need to consider additional aspects such as object
equivalence. Also, concrete implementations need to map
the semantics of RDF, such as lists or reification, of RDF
Schema, such as class hierarchies, and OWL, such as con-
straints on classes and properties, to the semantics of their
supported programming language. The general feasibility of
such features is discussed in [12]. Since these considerations
mostly concern the runtime of a program, they are outside
the scope of this paper.

3.2 Canoncial vocabulary
Existing OTM implementations either require a manual

specification of the vocabulary map mt by the developer
(e. g., So(m)mer, Elmo and OTMj), or generate separate
OO classes from RDF schema definitions that have mt hard-
coded (e. g., RDF2Java and RDFReactor), or implement mt

via naming conventions (e. g., ActiveRDF and Surf RDF).
In contrast, we propose to separate the translation between
OO and RDF representations and the addition of meaning to
mt by the introduction of a canonical vocabulary for object
models as follows.

Definition 4 (Canonical vocabulary). When a set
of objects {o1, . . . , on} ⊆ O is translated to RDF, the canon-
ical vocabulary V ⊆ U ∪B and the injective canonical map
mt : N → V are constructed as follows.

• For each class c ∈ N of oi ∈ {o1, . . . , on}

– Let c′ ∈ V and mt : c 7→ c′,
i. e. c′ is the canonical RDFS class of c.

– Add RDFS super-class relations to c′.

– For each member variable f ∈ N of c

∗ Let f ′ ∈ V and mt : f 7→ f ′,
i. e. f ′ is the canonical RDFS property of f .

∗ Add RDFS domain and range information to
f ′. Include the range class in the canonical
vocabulary.

During the construction of the canonical vocabulary, fixed
mappings for known OO types (e. g. primitive types) on

OO model

_:class1 a som:Class;

som:name "org.example.Person";

som:hasAttribute _:att1, _:att2.

_:att1 a som:Attribute; som:name "name".

_:att2 a som:Attribute; som:name "knows".

RDF schema

_:class2 a rdfs:Class; rdfs:label "Person".

_:property1 a rdfs:Property; rdfs:label "name";

rdfs:domain _:class2.

_:property2 a rdfs:Property; rdfs:label "knows";

rdfs:domain _:class2; rdfs:range _:class2.

Vocabulary map

_:class1 otm:mapsTo _:class2.

_:att1 otm:mapsTo _:property1.

_:att2 otm:mapsTo _:property2.

Figure 3: N3 representation of the canonical vocab-
ulary derived in Example 2.

p1 p2

p3

John Doe Jane Doe

 :property1

 :property :property2

 :class2 :class2

rdf:type

Figure 4: RDF created from the object model and
canonical vocabulary in Example 2.

primitive types from XML schema can be defined. Also,
existing OTM implementations often do not map collection
and array types, but rather translate object-oriented collec-
tions of objects to a set of statements about the elements of
the collection.

Using canonical vocabulary, object-oriented data can be
translated to RDF and vice versa at the cost of complete lack
of meaning of the resulting RDF data to other applications.
To not rely on URI naming conventions and to allow the use
of blank nodes for the canonical vocabulary, the vocabulary
V and mt need to be described as meta-data to the primary
data. This in turn requires to also describe the relevant
concepts from V , e. g. using the EvoOnt software ontology
model [7]. The description of mt requires an additional RDF
predicate to relate EvoOnt entities, i. e., classes and fields,
to RDFS concepts.

Example 2 (Canonical vocabulary). Let p1, p2 ∈
O be two objects representing acquainted people as illustrated
in Fig. 1 (left). The corresponding canonical vocabulary is
described in RDF (N3) in Fig. 34. Using the canonical
vocabulary, the information represented by p1, p2 can now
be expressed in RDF as displayed in Fig. 4.

Note that the description of the object-oriented class model
using the EvoOnt vocabulary is refers to a specific class

4The som prefix denotes the URI namespace
http://www.ifi.uzh.ch/ddis/evoont/2008/11/som#

model created in a specific programming language. Canoni-
cal vocabulary created from different programming languages
will result in separate descriptions of the class model. Al-
though the original object model in Example 2 can easily
be re-created from the RDF data and the canonical vocabu-
lary, the RDF data produced is utterly useless for consumers
unaware of the OO class model. Hence in the next section,
we discuss how link the canonical vocabulary to established
RDF schemata.

3.3 Linking to established vocabulary
The canonical vocabulary needs to be linked to exist-

ing vocabulary with the means of RDFS or OWL. Using
owl:sameAs links has several disadvantages, such as, e. g.
meta-data attached to the canonical vocabulary would clut-
ter the description of the established vocabulary being linked
to. Using owl:equivalentClass would improve the situ-
ation, but still potential semantic differences between the
canonical vocabulary and the established vocabulary do not
let this approach seem appropriate.

The intended meaning of the object model in Example 2—
that resources representing a former person object pi are of
type foaf:Person—can be conveyed using rdfs:subClassOf

statements, and the properties of the canonical vocabulary
can be linked using rdfs:subPropertyOf statements. Using
RDFS reflects a specific issue found in OTM, but also in
similar approaches like mappings from relational databases.
RDF data produced from structured data like models us-
ing OTM will be more structured than RDF graphs from
arbitrary sources: Due to constraints in the object model,
statements with a certain predicate might always exist in
the generated RDF graph, or never, depending on the ac-
tual OO class model. In contrast, if an RDF graph from
another data source contains information about a resource
r of type foaf:Person, we of course cannot assume that r
is of the type : class2 in the canonical vocabulary from
Example 2 or that statements with certain predicates about
r do or do not exist.

It becomes clear that we cannot safely apply OTM di-
rectly to RDF data from other data sources. Instead, con-
suming linked data from other sources relies on assuming
that a resource of a certain type t might also be of canonical
class t′, if this is an RDFS sub-class of t. Although this ap-
proach might not seem convincing at first sight, it is correct
as the structure of external data to be consumed cannot be
assumed to adhere to explicit or implicit constraints of the
object-oriented piece of software operating on the object-
model. The choice of t′ can be easy, and will be in many
cases, when, e. g. t′ is the only known sub-class of t and no
further constraints are known. The choice of t′ will become
arbitrarily hard if more sub-classes of t are known, and con-
straints about these sub-classes are formulated, e. g. using
OWL or exist with regard to different object-oriented classes
these sub-classes are mapped to.

4. IMPLEMENTING SCHEMA MATCHING
By strictly separating the translation from object-oriented

data to RDF and vice versa from the mapping of the canon-
ical vocabulary introduced in Section 3, this section can
clearly focus on how to implement schema matching without
having to deal with the semantics of object-oriented pro-
gramming or OTM. First, we discuss the selection of ap-
propriate vocabulary to map against. Then we present our

implementation and lessons learned from it.

4.1 Choice of established vocabulary
Before schema matching can be performed on the canoni-

cal vocabulary and existing RDF vocabulary, some existing
vocabulary to map to needs to be identified. The vocabu-
lary to consider can be obtained from the World Wide Web,
e. g., by querying a Semantic Web search engine for key-
words extracted from the canonical vocabulary. By using
a search engine to find potentially relevant schema defini-
tions, the OTM implementation will benefit from the popu-
larity ranking, such that popular vocabulary is more likely
to be considered for schema matching than rather unknown
special-purpose vocabulary.

It has been observed that not all popular schema defini-
tions were available via HTTP at all time, and that this
limited availability can reduce the productivity of software
engineers [12]. For this reason, schema definitions should
be searched and retrieved from the Web only when neces-
sary, and should be cached locally. To focus on the schema
matching part only, we did not implement this schema look-
up so far, but operate on a fixed sub-set of the schemata
investigated in [12].

4.2 Schema matching algorithm
The algorithm we implemented to prove our concepts con-

sists of three steps.

1. Initialization of similarities between all OO and RDF
concepts, based on the edit distance of string represen-
tations of the concepts,

2. Applying similarity flooding [9] to the RDF graph rep-
resenting the canonical vocabulary, and to the RDF
graph containing all vocabulary to map to,

3. Solving the Stable Marriage problem [5] for the OO
and RDF concepts.

In the first step of the computation we use the RDFS la-
bels of classes and properties and obtain the Levenshtein
distance of these labels. There has been some work on find-
ing more elaborate string representations, e. g. in the imple-
mentation of RDFReactor [16], which considers RDFS la-
bels from different languages and also considers local parts
of URI identifying the concepts. Although analyzing URI
is not encouraged theoretically, it has shown good results in
practice.

The choice of similarity flooding is the most influential
part of our implementation. The algorithm iteratively prop-
agates the estimated similarity between nodes from the to
graphs to their neighbour nodes until some level of conver-
gence is achieved. Due to its design, the algorithm is un-
aware of what is a class and what is a property, but these
are kept separate due to the bi-partite nature of the graphs
(classes are only connected to properties and vice-versa.)
Although the algorith gives good results most of the time,
bad similarity initializations in the previous step can let the
algorithm converge in wrong mappings. Assigning fixed sim-
ilarity for known mappings, i. e. rdf:Literal to strings or
mappings interactively confirmed by the user, dramatically
improved the quality of the mappings produced by the algo-
rithm. An advantage of similarity flooding is its support for
interactivity, i. e. after assigning fixed similarities by user
input, new iterations of the algorithm can be computed.

Solving Stable Marriage does not have such large impact
on the quality of the mapping. It is however a charac-
teristic of the solution that only one-to-one mappings are
returned. Consequently, bean-style accessors to one and
the same member variable (such as setName(String) and
getName()) need to be treated as a single property when
creating the canonical vocabulary.

4.3 Evaluation
To evaluate the feasibility of our approach, we asked eight

CS graduate students to come up with an object model
meeting the following requirements.

• One class should describe human beings, and contain
a name (either first and last or full name), a list of
acquaintances, and two more attributes to be made
up by the participant.

• The class describing human beings should be associ-
ated to a second class like a product, a creative work
or an event, which should also be described using some
made-up attributes.

These requirements were expressed in German since partici-
pants were likely to deliver an English object model and we
did not want to suggest entity names. Seven object models
were indeed expressed in English language, the eighth model
was described in German. We applied the schema matching
algorithm described in the previous section to the individ-
ual object models and the union of the Friend of a Friend
(FOAF) ontology and DCMI Metadata Terms5.

Our hypothesis is that the class describing humans will
be matched to foaf:Person with high confidence due to
the structural information conveyed by the mandatory “has
friend” and “has name” attributes, and that the similarity
values computed by Similarity Flooding will help separating
correct mappings from incorrectly guessed mappings.

Four of the data participants called the human class “Per-
son”, three participants called it “Human”, and one had the
German name “Mensch”. Similarity Flooding does not al-
ways converge to the same results, but still all “Person”
classes were always mapped to foaf:Person. The “Men-
sch” class and one of the “Human” classes were also always
mapped correctly. A second “Human” class was alternately
mapped to foaf:Person or wgs84:SpatialThing6, the third
“Human” class was alternately mapped to foaf:Person and
foaf:Document, and the remaining “Human” class was al-
ways mapped to wgs84:SpatialThing. As Similarity Flood-
ing highly relies on the structure of the schemata, attributes
like“first name”,“last name”or“name”were correctly mapped
on the corresponding FOAF predicates whenever the person
class was mapped correctly. In a second round we renamed
the human class in all object models to “Person”, which re-
sulted in correct mappings at all time. The mapping of
the second class provided by the participants (e. g., “Con-
certTicket”, “House”, “Book”, “Pet” etc.) was always stable,
but never correct or usable. The stability of this part of
the mapping can be partially explained as, e. g., the “Con-
certTicket” was modelled to have an “eventName”, which
was initialized similar to foaf:accountName. The similar-
ity of these names has then been propagated to the classes
“ConcertTicket” and foaf:OnlineAccount.
5http://dublincore.org/documents/dcmi-terms/
6The wgs84 prefix denotes the URI namespace
http://www.w3.org/2003/01/geo/wgs84 pos#SpatialThing.

Regarding the first part of our hypothesis, we can say
that a small overlap in schema structure and in the nam-
ing of concepts already leads to a a promising mapping of
central concepts. Even if names differ a lot, chances are
that matching concepts will be identified correctly. One ap-
proach to further improve our implementation could include
some simple natural language processing to identify, e. g., a
possible relation between a class called “Human” and a “Per-
son” class. Also, most class models provided by the partic-
ipants featured a very simple structure, consisting only of
two classes. More realistic class models with a higher num-
ber of classes might also lead to further improved results.
Regarding the second part of our hypothesis, the similarity
values computed by Similarity Flooding have been found
unsuitable for applying thresholds, but are rather to be in-
terpreted as relative similarities, just that a best match, e. g.
by applying Stable Marriage, can be constructed [9].

5. CONCLUSION AND OUTLOOK
In this paper we presented an extension to Object Triple

Mapping that further simplifies the development of Semantic
Web applications using object-oriented programming. We
proposed to separate the transformation between the two
knowledge representations and the mapping of the RDF
data generated to established RDF vocabulary. We intro-
duced canonical vocabulary to represent object models in
RDF and showed how to link this canonical vocabulary to
established RDF schema definitions from the World Wide
Web using existing schema matching algorithms. Finally,
we presented our implementation of the proposed method
using an existing schema matching algorithm and discussed
the first results obtained using the implementation.

We plan further research in two directions. First, the
canonical vocabulary and its links to established vocabulary
are meta-data to the RDF data produced by OTM imple-
mentations. The quality of information inferred from the
data produced and these links directly depends on the qual-
ity of the schema matching results. Luckily, some schema
matching algorithms, such as Similarity Flooding, which we
used, also return metrics on the quality of the mapping
achieved. Publishing these quality attributes along with the
mapping will lead to increased transparency for data on the
Web and can be used in the context of data provenance
tracking [6] and trust management [1]. Since we intend our
work being valuable for a variety of use cases, and also not
be tied to specific programming languages, the second direc-
tion of research will be to evaluate practictal implementa-
tions of our approach with different programming languages
and also with different schema matching algorithms, in order
to provide maximum support for a large number of software
developers.

Simplifying the development of Semantic Web applica-
tions is a necessity in order to get non-academic software
engineers start using Semantic Web technologies in their
projects. Experiments have shown that Object Triple Map-
ping does simplify such software development, but also that
OTM still has issues to be solved [13]. One difficulty for
software developers lies in the task of manually researching
RDF vocabulary to use and making sure to use it correctly.
In this paper we showed how to reduce, and potentially
eliminate, these manual efforts, so that software develop-
ers can start using Semantic Web technologies immediately.
When implementing object-oriented software, they can have

a usable mapping of their object model to commonly used
RDF vocabulary without any extra effort. In combination
with emerging tools supporting the development of complete
Linked Data applications, such as OTM-based RDFa plug-
ins for Web application frameworks7, our results make Se-
mantic Web software technologies an easy-to-use option for
a broad range of software engineering tasks.

6. REFERENCES
[1] R. Alnemr, J. Bross, and C. Meinel. Constructing a

context-aware service-oriented reputation model using
attention allocation points. In IEEE SCC, pages
451–457. IEEE Computer Society, 2009.

[2] T. Berners-Lee. Linked data.
http://www.w3.org/DesignIssues/LinkedData.html,
2006.

[3] M. Fowler and D. Rice. Patterns of Enterprise
Application Architecture. Addison-Wesley, 2003.

[4] J. Frohn, G. Lausen, and H. Uphoff. Access to objects
by path expressions and rules. In J. B. Bocca,
M. Jarke, and C. Zaniolo, editors, VLDB, pages
273–284. Morgan Kaufmann, 1994.

[5] D. Gusfield and R. Irving. The stable marriage
problem: structure and algorithms. MIT Press
Cambridge, MA, 1989.

[6] O. Hartig and J. Zhao. Using web data provenance for
quality assessment. In J. Freire, P. Missier, and S. S.
Sahoo, editors, SWPM, volume 526 of CEUR
Workshop Proceedings. CEUR-WS.org, 2008.

[7] C. Kiefer, A. Bernstein, and J. Tappolet. Analyzing
software with isparql. Proc. of the 3rd Int. Ws. on
Semantic Web Enabled Software Engineering, 2007.

[8] F. Manola and E. Miller. Rdf primer. w3c
recommendation 10 february 2004.
http://www.w3.org/TR/2004/REC-rdf-primer-
20040210/,
2004.

[9] S. Melnik, H. Garcia-Molina, E. Rahm, et al.
Similarity flooding: A versatile graph matching
algorithm and its application to schema matching. In
Proceedings of the International Conference on Data
Engineering, pages 117–128. IEEE Computer Society
Press; 1998, 2002.

[10] E. Oren, B. Heitmann, and S. Decker. Activerdf:
Embedding semantic web data into object-oriented
languages. J. Web Sem., 6(3):191–202, 2008.

[11] M. Quasthoff and C. Meinel. Design patterns for
object triple mapping. In Proc. of IEEE SCC 2009,
2009.

[12] M. Quasthoff, H. Sack, and C. Meinel. Can software
developers use linked data vocabulary? In Proc. of
I-Semantics ’09, 2009.

[13] M. Quasthoff, H. Sack, and C. Meinel. How to
simplify building semantic web applications. In Proc.
of the 5th International Workshop on Semantic Web
Enabled Software Engineering. CEUR-WS.org, 2009.

[14] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. The VLDB Journal,
10(4):334–350, 2001.

7e. g., Grails RDFa, http://grails.org/plugin/rdfa

[15] H. Story. Java annotations and the semantic web.
http://blogs.sun.com/bblfish/entry/java annotations the semantic web,
2005.

[16] M. Völkel. Rdfreactor – from ontologies to
programatic data access. In Proc. of the Jena User
Conference 2006. HP Bristol, Mai 2006.

[17] Y. Zhao, J. Dong, and T. Peng. Ontology classification
for semantic-web-based software engineering. IEEE
Transactions on Services Computing, 2:303–317, 2009.

