
Web Mining Accelerated with In-Memory

and Column Store Technology

Patrick Hennig, Philipp Berger, and Christoph Meinel

Hasso-Plattner-Institut
University of Potsdam, Germany

{patrick.hennig,philipp.berger,office-meinel}@hpi.uni-potsdam.de

Abstract. Current web mining approaches use massive amounts of com-
modity hardware and processing time to leverage analytics for today’s
web. For a seamless application interaction, those approaches have to
use pre-aggregated results and indexes to circumvent the slow process-
ing on their data stores e.g. relational databases or document stores. The
upcoming trend of in-memory, column-oriented databases is widely used
to accelerate business analytics like financial reports, but the applica-
tion on large text corpora remains unaffected. We argue that although
in-memory, column-oriented stores are tailor-made for traditional data
schemes, they are also applicable for web mining applications that mainly
consists of raw text informations enriched with limited semantic meta
data. Thus, we implement a web mining application that stores every in-
formation in a pure main memory data store. We experience an accelera-
tion of current web mining queries and identify new opportunities for web
mining applications. To evaluate the performance impact, we compare
the run-time of general web mining tasks on a traditional row-oriented,
disc-based database and a column-oriented, in-memory database using
the example of BlogIntelligence, which serves exemplary for web mining
applications.

Keywords: blog analysis, web mining, data mining, in-memory,
column-layout.

1 Introduction

Since the information overload problem occurs in the mid of the 90s [8], the
amount of available information in the Word Wide Web grows exponentially.
Hence, the research area of web mining develops and gains increasing importance
in today’s businesses and life. Web mining essentially is the task of deriving
knowledge out of the available information on the internet and delivering it
to the user [7]. As the amount of data in the web continues to growth new
challenges of data processing occur that have to be handled by today’s web
mining applications.

In general, web mining is the appliance of data mining techniques to web
documents [4]. It tries to derive new knowledge of the vast pool of available data

M. Yao et al. (Eds.): ADMA 2013, Part I, LNAI 8346, pp. 205–216, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

206 P. Hennig, P. Berger, and C. Meinel

by automatically extracting and discovering information. According to Kosala
et al. [7], web mining comprises the following sub tasks:

– Resource finding includes the retrieval of web documents based on the
user’s need like a Google search.

– Information selection and pre-processing consists of tasks of natural
language processing and information abstraction like extracting receipts from
web documents.

– Generalization is the automatic discovery of new patterns across a set of
web pages like clustering or trend detection.

– Analysis reasons the recognized patterns and gives interpretations.

We introduce a tailor-made web mining application focused on weblogs and
social media, called BlogIntelligence. During the development of this application
we tested different kind of web-scale data stores. Based on our experience from
various analytical algorithms, we identified the need for a relational data schema.
Although it is hard to apply recursive link analysis algorithms, it supports de-
livers a high performance for aggregates.

Based on BlogIntelligence, we identify the necessity to compare the benefits
of different data stores by looking at typical tasks of web applications. BlogIn-
telligence helps us to discover the variety of tasks reaching from selecting the
next urls to clustering of web pages in communities.

We argue that based on our experience, document stores offer too limited
analysis capabilities and traditional disc-based relational databases cannot han-
dle the massive amount of data produced by the social web.

Finally, we conclude that an in-memory, column-oriented data store as pro-
posed by Plattner [12] offers better analytical performance and opens new ways
of analytics. Therefore it is necessary that all analytical data can be stored in
main-memory. Due to the massive amount of cheap main memory that is mean-
while available this is not a problem anymore.

This paper is structured as follows. In the next section, we describe related
data store techniques with their pros and cons. In Section 3, we give an intro-
duction to BlogIntelligence which is an exemplary web mining application. Sec-
tion 4 describes the different application areas, which the in-memory technology
extremely accelerates the computing time and where it has possible shortcom-
ings. Furthermore, we propose new analysis techniques that extend the feature
set of today’s web mining applications. We test our assumptions in Section 5 by
comparing the execution time of essential queries of a row-oriented and column-
oriented database. We give a short outlook and propose adaption for the tested
data store in Section 6. Finally, Section 7 summarizes our work and conclude
our results.

2 Related Work

The related approaches to speed up the store and analytical components of web
mining application roughly consists of three areas.

Web Mining with an In-Memory DB 207

First, the traditional row-oriented disc-based database approaches like Post-
gres [9] and MySql [14]. These are based on a B-Tree structure and optimized
for accessing patterns of traditional hard-drives. Further, they offer index mech-
anisms that are beneficial for data access and query processing (eg. cube con-
structs). Nevertheless, those structures are pre-aggregatedand need a high amount
of processing time to be created. In addition, traditional databases fail to scale up
to the massive data load of the web.

The second area consists of distributed data stores that use a large number of
commodity hardware like Google BigTable [3] or Apache Cassandra [5]. These
are specially adapted to handle massive amounts of data and to provide fast
search access. Hence, each inserted data gets preprocessed and categorized into
the tailor-made meta structure. Although the access performance of those data
stores is remarkable, the analytical algorithms applicable are limited or need to
process the whole data set at once like MapReduce PageRank [1].

Thirdly, the usage of complex index building applications that aggregate be-
forehand data for predefined questions like Apache Lucene1. The idea behind
those applications is to incorporate with traditional databases and deliver fast
query results for various kinds of analytical queries. Furthermore, they offer
the possibility to integrat natural language processing stages into their index
building process. Nevertheless, complex analysis algorithms like topical cluster-
ing, ranking, or equally complex aggregations need to be facilitated by external
components.

In contrast to the related work, we argue that with the availability of massive,
inexpensive main memory, web mining can be leveraged by in-memory database
with a tremendous performance gain. The advantage of those databases is that
the data access is equally fast than the data aggregation. We implement and test
web mining operations for an in-memory database and equally for a traditional
database (see Section 5).

3 Blog Intelligence

Blog Intelligence is a web mining application tailor-made for blog mining with the
objective to map, and ultimately reveal, content-oriented network-related struc-
tures of the blogosphere by employing an intelligent blog crawler. As described
in [10], BlogIntelligence is able to harvest the pool of millions of interconnected
blogs, called blogosphere.

We want to gain a better user experience and discover new analyses by us-
ing the benefits of in-memory computing column-oriented store for the unusual
application area of web mining. The identified benefits are discussed and finally
evaluated in this paper. We look at some critical parts in the overall system to
evaluate the different techniques.

1 http://lucene.apache.org/

http://lucene.apache.org/

208 P. Hennig, P. Berger, and C. Meinel

4 Application Areas

In general, a web mining application consists of three components that are re-
sponsible for the three main tasks: crawling data, storing data, and analyzing
data. The crawling of data is the actual process of downloading web pages from
the internet. Next, storing the data is the task of managing the massive amount
of data and prepare it for analytical queries. Finally, analyzing data consists of
running diverse text mining and natural language processing algorithms includ-
ing community discovery, influencer identification, and topic extraction.

The performance of the crawling and analyzing component depend dramati-
cally on the performance of the intermediate data store.We try to understand the
relation between the data store and the other two components, and the possible
performance gain through a in-memory, column-oriented data store. Hence, we
introduce the characteristics of these components using the example of BlogIn-
telligence. In addition, we give an overview of new analyses ways enabled by the
usage of in-memory technology.

4.1 Crawling

The major prerequisite of web mining tools, like BlogIntelligence, is harvest-
ing web pages. These crawling activities deliver the data that is necessary for
the underlying analytics. During the development of our focused web mining
application, BlogIntelligence, we experienced major benefits of the in-memory
technology in both areas.

The crawling of web pages consists essentially of downloading pages and se-
lecting new urls to crawl. The BlogIntelligence framework uses an intelligent and
scalable tailor-made blog-crawler [10] to harvest blog pages.

Especially inserting data is a common task for harvesting weblogs. By design,
the insertion costs of column-oriented database are comparable high. This is
caused by the distribution of the column values in the main memory, which re-
sults in high insert costs. In contrast, a row-oriented layout enables the database
to write one line sequentially into the main memory without caring about any
specific place for the column values. Anyway, since each website is only inserted
once, this disadvantage is almost negligible. An evaluation of the execution time
of insert webpages is given in Section 5.

Beside inserting pages, selecting new pages is another frequently executed task
during harvesting to identify the best pages for crawling. The complexity of the
selection of new urls varies among different use cases. A general crawler simply
selects the next not visited url from the database, whereas a specialized crawler
has to ensure more complex selection constraints.

A constraint can dictate a specific priority for each web page depending on
the rank of the source page, the last visiting date of the page itself, the expected
content of the page, the type of the page or even restrictions of the content
provider. We describe and evaluate an example query of our focused web crawler,
which is part of BlogIntelligence, in Section 5.

Web Mining with an In-Memory DB 209

4.2 Analytics

The analytics of BlogIntelligence are at a magnitude more complex than the
crawling. In the following, the major algorithm types that get applied in BlogIn-
telligence are introduced.

One typical application area is a link analysis algorithm. The most prominent
algorithm is PageRank [11]. It calculates a rank for a web page based on the
rank of all incoming web pages. For Blog Mining this gets even more important
since it is very important to select the most important and interesting blog.
Therefore such a ranking function can be improved to take the structued data
of the blogosphere into account as described in the previous work [6]. Caused by
the inherent complexity of recursive ranking algorithms in databases, we sim-
plified the example ranking query to an subcomponent of the rank calculation.
Therefore we want to demonstrate this simply by calculating a count of incoming
links of blogs. We expect this select and count aggregation to perform fast on a
column-oriented layout.

Sentiment analysis handles the problem of sentiment extraction from sen-
tences in the web page’s text. Thereby, an algorithm applies a set of predefined
language specific rules that identify whether a word has a positive or negative
meaning. These extraction as well as an entity extraction is done asynchronously
by inserting data into the database. Therefore these aspects can be retrieved af-
terwards pretty fast via SQL and can be used in very simple way for other
calculations. Nevertheless, this is a database-specific extension that can also be
executed by external application.

In addition by inserting new data into the database some additional structures
can be filled and therefore kept up-to-date all the time. For example a compressed
Document-Term matrix helps to calculate similar terms or similar documents
based on the well-known TF-IDF [13] measure. In the evaluation part some
execution runs are shown for this analysis.

Compared to link analysis algorithms, blog rank algorithms incorporate a set
of additional factors. Another metric BlogIntelligence provides is to rank blogs
according to the consistency of the content they are writing about. For example
if an author is writing about the same topic all the time, he should have a big
knowledge in this topic. This is accomplished by looking at the usage of the tf-idf
measure.

Last but not least, another important part is to identify top emerging trends
within the blogosphere. Since the metric is basically specified the user can get
trends for his own topic space and change the metric according to his special
interests.

4.3 New Application Area

In former times the analytics were carefully designed beforehand. Afterwards
the execution of these analytics produced the results, which got visualized in a
meaningful way. The execution of the complete analytics often took several days,
even with a limited data set.

210 P. Hennig, P. Berger, and C. Meinel

As a result two major problems occurred. The first major problem of this life
cycle is that it contradicts the ever changing nature of the World Wide Web.
Therefore, the results are out-dated by the time they are produced.

The second major problem is that the analytics have to be set up-front. This
can be hidden from the end-user by offering smart filtering options for the ana-
lytical results. Nevertheless, the user is not able to change the underlying metrics
and get immediate feedback of his change via a freshly calculated result.

In addition, it is very important to give the user the possibility to adapt
metrics according to his own interest. If a user wants to get the best and most
interesting blogs, he often does not want to use a general metric. Since no results
are pre-aggregated, the user can change a metric until it fits to his needs. The
user can even limit the analyses to a specified topic space.

Furthermore, it was not feasible to ask the database questions like the follow-
ing:

– Which are the blogs with the most incoming links in a specific topic?
– Who are the authors with the most posts writing about politics?
– What are the most recent posts which the user is interested in?
– How is a topic discussed in its community or within a certain time frame or

within the most popular blogs?

By using in-memory technology together with a column store we are able to
answer these questions without knowing the question beforehand. As well, we
can immediately provide results for his latest analytical questions at design time.

In order to get a better impression, we want to take a deeper look at the basic
extraction, crawling and analyses tasks in the next section.

5 Evaluation

In this Section we evaluate the performance of the PostgreSQL database2 and
an in-memory database from SAP on the presented web mining operations.

5.1 Data Set

The data set for this evaluation consists of 73 221 376 webpages. 2 473 898
of these webpages are parsed. Parsed webpages are already downloaded and
processed by the web mining applications that results in additional informations
like raw text, feed items, authors, categories and other semantic data.

After the classification BlogIntelligence identified 15 327 blogs with 818 865
posts. The link graph of the web is also represented as a table that consists of
200 000 000 entries. The space used for the two main tables, webpage and link,
is 200 gigabyte. Hereby, the webpage table uses 151 gigabytes and the link table
uses 49 gigabytes.

All tables are stored as column-oriented tables with a primary index. Some
columns are compressed by the database which leads to the small amount of

2 http://www.postgresql.org/

http://www.postgresql.org/

Web Mining with an In-Memory DB 211

main memory needed for the dataset. As a big advantage of the column store the
table containing all blog pages, the webpage table, is able to handle 79 columns
including the original HTML page, the extracted text, authors, the publishing
date as well as other information.

This data set is the result of a 3-week-run from August 2012. We use this
data set because we like to provide real results to the users of our prototype and
measure the performance more accurate by using a data set that is not cleaned
or adapted in any way.

5.2 Setup

Both databases get evaluated on the same server hardware. The database server
has 32 cores one terabyte of main memory. The full file system size is 20 ter-
abyte. The file system is located on a EMC storage, which uses SSDs for storing.
During the execution of the experiments the server is exclusively used by the
databases and only the minimal SUSE Linux basic daemons are running beside
the database.

Since the in-memory database is operating exclusively on main-memory the
time to load data into main memory is negligible. Therefore the tables has to
be re-constructed from the disk only if the database server was shutdown com-
pletely. Fore more details about the concepts of an in-memory database the Book
of Prof. Hasso Plattner [12] provides deeper insights.

For this setting we want to look at different aspects that specially depend on
the performance of the data stores for web mining applications.

5.3 Crawling

Heavy Inserts. As already mentioned a column-oriented layout is not the
best choice for processing a lot of different insert statements. Nevertheless it
provides such an improvement benefit in the analytical part that this can be
neglect. However, the in-memory database from SAP used in the experiment is
optimized to absorb these disadvantages.

For the experiment 200 000 insert commands were sent to the database, filled
with generated content. The web page table has columns from almost every type,
from binary columns over integers to big text columns.

For the execution of the 200 000 insert commands a parallelized Java appli-
cation running with 50 threads is used together with a JDBC driver for both
databases. The execution results are shown in the following Table 1.

As we can see by looking at Table 1 the database is able to absorb the low
insert performance of a traditional column-oriented data store. In average the
in-memory database is still 20 seconds faster than the traditional row-oriented
layout.

Selection of Next Job. The selection of the next urls to crawl, called job,
is one of the most frequently executed tasks during crawling. As described in

212 P. Hennig, P. Berger, and C. Meinel

Table 1. Execution of 200 000 insert queries

Run SAP Hana PostgreSQL

1 1m 29s 155ms 3m 8s 466ms
2 2m 32s 622ms 3m 8s 466ms
3 2m 32s 622ms 3m 50s 583ms
4 3m 53s 147ms 3m 22s 176ms
5 3m 58s 291ms 4m 29s 566ms

Section 4.1, a focused crawler for blogs has to incorporate complex constraints
for the selection.

In former times the complex selection process as described previously was a
pretty time consuming task. With the change to an in-memory database this
task can be accomplished within a few seconds. The actual crawler uses a query
with more than 10 constraints. We simplified the query to one constraint that
uses the pre-calculated fetchtime for a URL 1.1. The fetchtime is calculated while
the URL was inserted based on our own heuristic, when it is most promising to
download this URL.

Listing 1.1. Selection of next job

SELECT ID FROM WEBPAGE
WHERE FETCHTIME < (c u r r e n t T im e I nM i l l i s)
ORDER BY SCORE DESC LIMIT 10000

The results of this experiment is shown in Table 2 after several executions on
each database.

Table 2. Selection of next urls

Run SAP Hana PostgreSQL

1 0m 21s 919ms 3m 46s 666ms
2 0m 21s 554ms 3m 46s 007ms
3 0m 21s 832ms 3m 41s 213ms
4 0m 21s 745ms 3m 56s 505ms
5 0m 21s 811ms 3m 56s 198ms

By looking at Table 2 we can see that the selection of the next urls is up to 8
times faster with the in-memory database. Furthermore in the real scenario this
difference would even more important.

5.4 Analytics

Blogs with the Most Incoming Links. As already mentioned the ranking
got very simplified for this experiment, by counting the incoming links and order
them accordingly by the top blog with the most incoming links.

Web Mining with an In-Memory DB 213

Listing 1.2. SQL Query most incoming links

SELECT COUNT(∗) as incomLinks , toHost
FROM l i n k
GROUP BY toHost ORDER BY COUNT(∗) DESC

The execution time for each database of this experiment is shown in Table 1.3.

Table 3. Execution of the link query

Run SAP Hana PostgreSQL

1 0m 11s 800ms 1m 46s 140ms
2 0m 11s 955ms 1m 43s 245ms
3 0m 11s 735ms 1m 44s 058ms
4 0m 11s 780ms 1m 42s 443ms
5 0m 11s 940ms 1m 45s 194ms

Table 1.3 shows that the execution time of this query could in average de-
creased by factor 10.

Big Blogs with Additional Information. At the first look it sounds pretty
easy to retrieve information from the biggest blogs. But in order to get additional
information of each blog, a join between the table containing blogs and the table
containing links is necessary. This makes it more complicated for the database
to handle.

Listing 1.3. Blogs with additional information

SELECT POSTTITLE , POSTAUTHOR
FROM WEBPAGE INNER JOIN (

SELECT toUr l , COUNT(∗) as l i n k s
FROM l i n k
GROUP BY t oU r l

) as l i n k
ON l i n k . t oU r l = webpage . ID
WHERE type=’POST ’
ORDER BY l i n k s desc

Table 4. Execution of the addition info query

Run SAP Hana PostgreSQL

1 1m 12s 544ms 208m 02s 737ms
2 0m 1s 722ms 199m 51s 321ms
3 0m 1s 868ms 233m 42s 876ms
4 0m 2s 243ms 201m 33s 128ms
5 0m 1s 925ms 214m 55s 057ms

214 P. Hennig, P. Berger, and C. Meinel

The execution time of this experiment is shown in Table 4. The measurement
reveals a significant difference in the execution time. The in-memory database is
faster by a few orders of magnitude. This difference is caused by the layout of the
database. Since we are just looking at columns, it is not a problem if a table has
lot of columns. For a row-oriented database this is a big problem. Therefore the
PostgreSQL database has to touch 150 gigabyte of data which of course takes
some time. Another interesting point is, that the in-memory database obviously
is performing some kind of caching. Thus, the execution gets really fast if the
database stays untouched.

Calculate Similar Terms / Similar Documents. In addition we take a
short excursion at text mining area that is essential for web mining applications.
As discussed, the tested database provides a compressed Document-Term matrix
and the functionality to calculate similar terms or similar documents with the
well-known tf-idf measure.

Performing a search for similar terms can be accomplished on this data set
within short time. The following Table 5 shows the execution time for finding
similar terms for given terms. In this experiment the text-mining index contains
400 million entries with 7 million unique terms.

Table 5. Execution of similar term search

terms time

Apple 1025 ms
Apple or Microsoft 1057 ms
Obama 630 ms
Merkel or Obama 950 ms
Politik or Wirtschaft or Bildung 1620 ms

The experiments showed that the in-memory technology together with a
column-oriented layout performs faster on simplified web mining tasks than
a traditional row-oriented disc-based store. We expect that this performance
gain applies also for the compound analytical tasks of web mining applications.
Further, insert commands, which are expected to be cost-intensive tasks in a
column-oriented layout, also perform very fast due to database optimizations
specific to SAP HANA.

6 Future Work

In this paper we evaluated some basic data store task for crawling and analysis.
Although we show performance improvements for these tasks, we need to dive
deeper into complex analysis algorithms and their behavior on our storage. Thus,
we investigating current analysis approaches and try to transfer them to our
system. The following two directions support this objective and promise insight
about complex tasks.

Web Mining with an In-Memory DB 215

In order to benefit from this technique in the future, some additional function-
ality should be improved inside the database. As mentioned above, the internal
Document-Term matrix helps to calculate text analysis in almost real time based
on the latest data. Thus, we suggest to use similar structures to store a up-to-
date clustering for blogs and related terms. A hierarchical clustering fit these
requirements, because the amount of clusters is not known at creation time.
This clustering provides the possibility to access a certain hierarchy level or the
subtree of a specific topic space. We want to build a prototype using such a
structure and evaluate this concerning the real-time performance.

Furthermore, we currently investigate a personalized rank editor. Ranking
mechanisms for blog posts are a very interesting research topic as stated by
Bross et al. [2]. Nevertheless, it is not possible to define one universal rank for
every user of a search engine. Thus, we try to integrate the user into the ranking
process and let the user decide what is important. The user gets the ability to
define his own ranking formula based on intuitive factors. A first prototype of
this ranking editor is already available at BlogIntelligence3.

Since the user expects immediately feedback when defining a new ranking
equation, the computational effort is tremendous. For example, if a user wants
to search for blog posts ranked by a quotient between incoming and outgoing
links, the whole link table has to be scanned every time. The system is still
under construction, but we were able to get the first prototype running really
fast. With a traditional database this would be unthinkable. We want to improve
that functionality in the future and provide as many as possible ranking criteria
for the editor.

In addition, we are working on a personalized trend detection interface. Hereby,
a user can search for trends in his topic of interest and can select a certain time
window to detect trends. This helps to understand discussions and trends in more
detail and gives the user the possibility to predict trends in the future.

7 Conclusion

As shown in this paper we were able to apply the in-memory technology in con-
junction with a column-oriented layout and gained an for the tested web mining
application including crawling, analysis and visualization of big amount of web
pages in this case blogs. We emphasize that the whole crawled web data includ-
ing extracted meta data is stored in main memory without helping structures on
disc. In addition, the optimization of the database used in the experiment is able
to absorb the low performance when inserting thousands of tuples. This helps
to make use of the tremendous performance improvements of the in-memory
database when executing analytics.

Furthermore, we demonstrate that advanced analysis like similar term extrac-
tion can also be performed very fast by integrating the specific data structure
like a document term matrix directly into the database.

3 http://www.blog-intelligence.com

http://www.blog-intelligence.com

216 P. Hennig, P. Berger, and C. Meinel

Finally, the change from an traditional row-based database to an in-memory
column-oriented database provides BlogIntelligence complete new kind of analy-
sis like the described ranking editor where users are able define their own ranking
equation and immediately get the results for their ranking equation. BlogIn-
telligence is now able to provide personalized real-time analyses for each user
separately according to the user’s special topic of interest.

References

1. Bahmani, B., Chakrabarti, K., Xin, D.: Fast personalized pagerank on mapreduce.
In: Proceedings of the 37th SIGMOD International Conference on Management of
Data, pp. 973–984 (2011)

2. Bross, J., Richly, K., Kohnen, M., Meinel, C.: Identifying the top-dogs of the blo-
gosphere. Social Netw. Analys. Mining 2(1), 53–67 (2012)

3. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer Systems (TOCS) 26(2), 4 (2008)

4. Etzioni, O.: The world-wide web: quagmire or gold mine? Communications of the
ACM 39(11), 65–68 (1996)

5. Hewitt, E.: Cassandra: the definitive guide. O’Reilly Media, Incorporated (2010)
6. Bross, J., Kohnen, M., Richly, K., Kohnen, M., Meinel, C.: Identifying the top dogs

of the blogosphere. Social Network Analysis and Mining. Springer LNSN (2011)
7. Kosala, R., Blockeel, H.: Web mining research: A survey. ACM Sigkdd Explorations

Newsletter 2(1), 1–15 (2000)
8. Maes, P., et al.: Agents that reduce work and information overload. Communica-

tions of the ACM 37(7), 30–40 (1994)
9. Momjian, B.: PostgreSQL: introduction and concepts, vol. 192. Addison-Wesley

(2001)
10. Hennig, P., Berger, P., J.B.C.M.: Mapping the blogosphere - towards a universal

and scalable blog-crawler. In: Proceedings of the Third IEEE International Confer-
ence on Social Computing (Social Com2011), pp. 672–677. IEEE CS, MIT, Boston,
USA (2011)

11. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
bringing order to the web (1999)

12. Plattner, H.: A course in In-Memory Data Management. Springer, Berlin (2013)
13. Sparck Jones, K.: A statistical interpretation of term specificity and its application

in retrieval, pp. 132–142 (December 1988)
14. Widenius, M., Axmark, D., MySQL, A.: MySQL reference manual: documentation

from the source. O’Reilly Media, Incorporated (2002)

	Web Mining Accelerated with In-Memory and Column Store Technology
	Introduction
	Related Work
	Blog Intelligence
	 Application Areas
	Crawling
	Analytics
	New Application Area

	Evaluation
	Data Set
	Setup
	Crawling
	Analytics

	Future Work
	Conclusion

