
A Fuzzy, Incremental, Hierachical Approach of
Clustering Huge Collections of Web Documents

Patrick Hennig1, Philipp Berger1, Christian Godde2, Daniel Hoffmann2 and Christoph Meinel3
Hasso-Plattner-Institut

University of Potsdam, Germany
1Email: {patrick.hennig, philipp.berger}@hpi.uni-potsdam.de

2Email: {christian.godde, daniel.hoffmann}@student.hpi.uni-potsdam.de
2Email: office-meinel@hpi.uni-potsdam.de

Abstract— Since every day millions of posts are published
inside the blogosphere a huge collection of web documents
develops. Clustering this ever-changing collection is a very
time consuming task. Therefore some certain challenges has
to be accomplished because a clustering cannot be executed
from scratch all the time. The presented fuzzy, incremental
and hierarchical clustering algorithm tries to succeed these
challenges with both, clustering terms and documents in
a meaningful way and keep them up-to-date all the time.
Furthermore we take a critical look at the performance,
which is crucial on such a live data collection.

Keywords: Web Mining, Data Mining, Blog Mining, Clustering,
Blogs, Unstructured Data

1. Introduction
With a tremendous circulation of several hundred million

blogs worldwide, the ever changing collection of weblogs are
getting bigger and bigger every day. For mining, modeling
and presenting this think tank of open-source intelligence a
very intelligent and fast clustering method is needed. This
incorporates some very important and as well very difficult
challenges.

Since a clustering of an ever-changing huge corpus con-
sumes a lot of computing power, it cannot be calculated
from scratch every time a new document is added. Therefore
the first challenge is to keep the clustering up-to-date. In
addition, the number of clusters cannot be fixed in the be-
ginning, since different granularity levels should be covered.
As a consequence, it has to be a hierarchical clustering.
Furthermore, since we know a lot about the ambiguity from
semantic web it is not appropriate to force documents and
terms to fit into exactly one strict cluster. This means, the
clustering algorithm has to consider fuzziness.

In the next Section the overall project, the presented
work is integrated, is explained in more detail before some
related work for such clustering techniques are introduced.
In Section 5, we describe the basic challenges for the
presented clustering. Afterwards the main algorithm and its
characteristics is described in more detail.

In addition, the presented algorithm gets evaluated in
Section 7. Furthermore the performance is evaluated and de-
cisions are explained in order to improve the performance of
the presented algorithm. Finally, some future work that can
be conducted is highlighted before the paper is summarized
in the last Section.

2. Project Scope
With a wide circulation of more than 200 million weblogs

worldwide, weblogs with good reason are one of the most
important data streams in the World Wide Web. Therefore,
weblogs offer access to latest information discussed in the
real world. Since writing posts in weblogs goes along with
a high editorial effort, the available information is of major
interest. However, for a user it is becoming harder and harder
to gain an overview of all discussions in the blogosphere. It
is almost impossible for a user to extract information from
the web, especially from the blogosphere. Hence, a system
that collects information from the blogosphere and presents
it to the user in a very meaningful way would be of great
use.

Therefore, mining, analyzing, modeling and presenting
this enormous amount of data is the overall aim of the
project the presented work is integrated in. This enables
the user to detect technical trends, political climates or
news articles about a specific topic. Most approaches to
mining and analyzing such a huge amount of data focus
on offline algorithms which use pre-aggregated results. This
is in contrast to the continuously growing nature of the
World Wide Web. As a result, including the latest data is
one of the key aspects of data mining on the web. This is
exactly the topic covered by the BlogIntelligence1 project.
Since BlogIntelligence usees different text mining analytics
a clustering is a fundamental factor of success.

1BlogIntelligence is a tool the extract and analyze data such as content
and links from weblogs of the German blogosphere in order to visualize this
information and provide a tool to explore and discover the world of social
media. More information on: http://www.blog-intelligence.
com/

Int'l Conf. Internet Computing and Big Data | ICOMP'13 | 167

3. Related Work
As the field of cluster analysis is very complicated and

algorithms heavily depend on the specific domain, there are
as many different papers on clustering as there are possible
use-cases. In this section we mention some of them that are
closely related to our own work.

The initial idea for an incremental clustering was intro-
duced by Arnaud Ribert et al. [1]. They explain an efficient
way of inserting new elements into existing hierarchical clus-
terings and give a brief overview of hierarchical clustering
itself. In their evaluation they show that the required memory
and number of computations can be significantly reduced
with an incremental algorithm.

Among other improvements in our algorithm we mainly
focused on the efficiency of the distance matrix calculations.
The map reduce technique that is now in use and described in
the implementation section is based on the work of Elsayed
et al. [2].

With the objective that the algorithm should perform in
reasonable time the focus moves towards building up a
hierarchy tree. Therefore we looked at different approaches
for preparing the data in order to improve efficiency of
clustering. Dash et al. [3] relies on partitioning the items
beforehand.

The ’BIRCH’ algorithm by Zhang et al. [4] would be
an alternative that uses a different tree structure for a first
rough clustering. It can be computed in quadratic time and
thereby reduces the time that has to be spent for the final
clustering. Unfortunately the time complexity even for these
sophisticated techniques can not be better than O(n2).

4. Clustering Techniques
a) Partitional Clustering: The most prominent represen-
tative of the first class is the k-means algorithm. Partitional
clusters divide a database into a specific amount of clusters.
In general this number of clusters (k) has to be given in
advance and it is not possible to change it later on. The
problem is to find the optimal k if the exact composition of
the data is not well known before.

b) Hierarchical Clustering: A Hierarchical clustering does
not produce a partition into a specified number of clusters.
It produces aso called dendrogram. This dendogram can be
build either top-down or bottom-up. The first type is called
divisive clustering. Starting with the whole data set and
splitting it into two subsets until every item is represented by
a leaf node. The top-down clustering is called agglomerative
clustering. Starting with each item in a separate node and
combining two nodes until the root includes the whole data
set.

In both cases, when finished, the dendrogram forms a
hierarchical binary tree with each item of the given database
as leaf node and the root representing the whole database.

Every node in the tree represents a subset of the database
and thereby a sub-cluster. The greater the difference between
the two sub-nodes, the higher the node is in the hierarchy.
Knowing this, we can get few big clusters as well as
many small clusters from the same dendrogram without
recomputing the clustering. The biggest disadvantage of
hierarchical clustering versus partitional cluster techniques
is the higher computational time.

c) Hard and Fuzzy Clustering: In general, each item is
assigned to exactly one cluster it fits best (e.g. the average
distance to the other cluster members is the smallest). This
is called hard clustering. If we want to express that an item
can be quite similar to different other items we have to
introduce a fuzzy clustering. In fuzzy clustering techniques
the membership of an item to a cluster is expressed as a
probability value which in total sums up to 1. That way any
item can appear in multiple clusters.

d) Incremental Clustering: Incremental clustering has to
be taken into account either if the corpus to be clustered is
too big to keep the information about all items at the same
time in memory or if the corpus is increasing over time and
we do not want to repeat the clustering every time a new item
is added. Incremental clustering has the advantage that we
can add the items of the database one by one and therefore
reduce time and space complexity. A huge disadvantage is
the order-dependence of the resulting clustering. We might
get completely different results if the order of the items
added to the clusters is changed. Thus, it is very difficult
to guarantee the quality of the clustering.

5. Clustering the Blogosphere
The goal of the system that is described in this paper is

to improve and add new functionality to BlogIntelligence.
Inside the blogosphere cluster analysis faces a lot of old and
new problems. The first question to be answered is: Where
do we want to find clusters? This question can be answered
in two ways. On the one hand, blogs and their post can
be clustered. These represent documents in a more classical
view on cluster analysis. So the goal is to find groups
of blogs that might cover the same topic like politics or
computer science. This is important because it helps finding
new links between different blogs and thereby helps authors
and users to explore the Web 2.0.

On the other hand, we are also interested in clustering
features of blogs and posts. These are terms or also tags
of blog posts. By clustering terms it gets necessary to find
words that together best describe specific topics. So we are
able to categorize blogs even better and again improve the
possibility to explore the blogosphere. These term clusters
can be used for further analysis like trend detection and
visualization.

168 Int'l Conf. Internet Computing and Big Data | ICOMP'13 |

The main challenge the blogosphere imposes on clustering
is its size. The user might dive into the blogosphere from the
top and narrow the search down to parts of the blogosphere
he is interested in. Hence, the clustering should provide
a way of getting a very rough division as well as a very
detailed one.

The size of the blogosphere also pushes the need for the
efficiency of the clustering algorithm. Another characteristic
of the blogosphere is that new documents are added con-
tinuously. Because of this, it is not applicable to constantly
recompute the clustering. It has to be possible to change the
existing one if a new item has to be integrated.

All in all, a system is needed that clusters both, documents
and terms, that is capable of adding new documents to an
existing cluster, that returns clusters of variable size and
amounts, and that assigns terms and documents to multiple
topics and groups. This leads to a hierarchical, incremental,
fuzzy clustering.

6. Implementation
6.1 General Idea

Before the main algorithm is described in detail we first
have to define the most important terms concerning cluster
analysis within blog posts.

6.1.1 Post term matrix
The post term matrix describes the distribution of terms

across all blog posts. For every post a list contains the
frequency of each possible term. The optimal case provides
normalized tf-idf values as described in the next Section.
The other way around, it is also possible to get a list that
for a specific term containing all frequencies among all blog
posts. The number of terms defines the dimensionality of
a document vector and the other way round. Typically, the
post term matrix is sparse because for each blog post only
the most representing terms (terms with the highest tfidf) are
stored.

6.1.2 Term frequency - inverse document frequency
The tf-idf value [5] describes the frequency of a term

in a document in comparison to its frequency in the whole
corpus. A term that appears in all available documents is
not very descriptive for a single document and therefore has
a low tf-idf score for every document. On the other hand,
a term that only occurs in one document has a high score
for this specific document even if its frequency is low and
therefore has a high meaning for this document. The general
formula for calculating the tf-idf is given as follows:

tfidf(ti, dj) = tf(ti, dj) ∗ log
N

ni

tf(ti, dj) is the frequency of term ti in document dj . N
is the number of documents in the corpus. And ni is the
number of documents that contain term ti.

6.1.3 Similarity measure
To measure the similarity between documents and terms,

we use the cosine similarity. It measures the inner angle
between two tf-idf vectors.

sim(d1, d2) =
d1 · d2
|d1||d2|

To accelerate similarity computation normalized tf-idf
vectors can be used. That way the cosine similarity becomes
a simple inner product

sim(d1, d2) = d1 · d2 =
n∑
i=0

w(ti, d1)w(ti, d2)

where w(t, d) is the tf-idf of term t in document d.

6.1.4 Initial Clustering
Initially a common agglomerative clustering algorithm is

used. To determine how many documents should be taken
into account at the initial clustering, we take a look at
Heaps’ law [6]. This helps to reduce the computational
effort enormously. Heaps’ law describes how the size of the
vocabulary VR grows depending on the document size n:

VR(n) = Knβ

For English language normally K is between 10 and 100
and β is between 0.4 and 0.6. The vertical line in 1 shows a
possible cut to cover sufficient terms of the existing corpus.
This ensures that most terms are covered in the cluster and
the clustering runs still in an acceptable time.

Fig. 1: Example plot for Heaps law VR(n) = Knβ

6.2 Approaching Fuzzyness
Since a term can appear in several contexts, a fuzzy clus-

tering should be used as well. Thus a term can be contained
in several clusters. To achieve this, we search for all pairs
of items that have a similarity above a certain threshold.
These pairs constitute the leaves in the clustering tree. In

Int'l Conf. Internet Computing and Big Data | ICOMP'13 | 169

order to reduce the computational effort, the calculation of
the similarity can be limited to terms that have been occurred
with each other in the same document once.

Fig. 2: Two clusters: {0, 2, 3} and {1, 3, 4}

6.3 Algorithm
The initial clustering algorithm consists of three steps:

finding the items that have a high similarity and associate
them in leaves, adjusting the distance matrix and computing
the hierarchical clustering.

1) Finding leaves For efficient similarity calculation a
MapReduce [7] approach fits to our needs. MapReduce
is a framework that allows parallel execution of an
algorithm on several CPUs or machines. The map
functions map a list of key-value pairs from one
domain to another, the shuffle function groups the
results and the reduce function computes the results
for each group (see Figure 3).

Fig. 3: General MapReduce architecture (taken from [7])

This method is used for computing document similar-
ity with the approach described in [8]. For each term a
list of the documents it appears in and its tf-idf value in
this document is constructed. The map task multiplies
the term weights for each pair of documents in the
posting. The output is sorted by the keys, resulting
in a list of pairs of documents as keys and a list of

products computed in the map step. Reduce sums up
the products and outputs the similarity values for the
pairs of documents (see Figure 4). While this method
is much faster than calculating the cosine similarity
by iterating over the vectors, it uses more memory.
Nevertheless, since the MapReduce approach allows
simple distributed computing and main memory gets
cheap we favor the faster version.

Fig. 4: Computing document similarities with MapReduce

After computing the similarity values, each pair having
a similarity above a certain threshold is associated in a
leaf node. The tf-idf vector for this pair is the average
of the two tf-idf vectors of the associated items.

2) Calculating the distance matrix To compute a matrix
of distances between these new leaves, we use the
similar map and reduce function mentioned before
with the new tf-idf vectors.

3) Hierarchical Clustering The implementation makes
use of the Efficient HAC [9, 368] (Algorithm 1), which
uses priority queues. For each row of the distance
matrix a priority queue keeps the entries sorted in
decreasing order. The maximum value of P [k] consists
of the similarity and index of the cluster most similar
to the cluster with index k.
Since the C++ standard library priority queue does not
allow erasing other elements than the top, we imple-
mented a suitable version using the std::make_heap,
std::push_heap and std::pop_heap functions. In this
algorithm I stores the clusters that are still active,
A stores the clustering as a sequence of merges.
With these optimization the time complexity becomes
O(n2 log n).

6.4 Adding and removing documents/terms
6.4.1 Adding

To add an element into the cluster tree it is compared
with each existing element as shown in Algorithm 2. If the
similarity is above the threshold mentioned in Section 6.3, a
new leaf is constructed with this pair of elements. For each
new leaf its place in the clustering hierarchy is determined
by starting at the root node and following the path with the
highest similarity. To accelerate this procedure, each centroid
of a cluster is cached. If a leaf is reached, a new inner node
with this leaf and the new leaf as children is inserted. Its
centroid is computed and the similarity values up to the root
are refreshed.

170 Int'l Conf. Internet Computing and Big Data | ICOMP'13 |

Input: d1, . . . , dn
for n = 1 to N do

for i = 1 to N do
C[n][i].sim = dn · di;
C[n][i].index = i;

end
I[n] = 1;
P[n] = priority queue for C[n] sorted on sim;
P[n].DELETE(C[n][n]) (don’t want
self-similarities);

end
A = [];
for k = 1 to N - 1 do

k1 = arg maxk: I[k]=1 P[k].MAX().sim;
k2 = P[k1].MAX().index;
A.APPEND(k1, k2);
I[k2] = 0;
P[k1] = [];
forall the i with I[i] = 1 and i = k1 do

P[i].DELETE(C[i][k1]);
P[i].DELETE(C[i][k2]);
C[i][k1].sim = SIM(i, k1, k2);
P[i].INSERT(C[i][k1]);
C [k1][i].sim = SIM(i, k1, k2);
P[k1].INSERT (C[k1][i]);

end
end
return A;

Algorithm 1: Efficient HAC algorithm using priority
queues (from [9, 386])

Input: element e’ to add
foreach other element e do

if similarity(e’, e) > threshold then
construct new leaf(e’, e);

end
end
foreach new leaf l′ do

node = root;
while !node.isLeaf() do

node =
argmaxn∈{node.left,node.right} sim(l′, n);

end
construct new inner node(leaf, node);

end
refresh similarity up to root;

Algorithm 2: Add element to clustering tree

6.4.2 Removing
When removing an element from the tree each leaf con-

taining this element is inspected as shown in Algorithm 3.
In order to not remove an element that is just contained in
one leaf, we need to keep track of the number of leaves an

Fig. 5: Inserting a new leaf into the cluster tree, following
the path of highest similarity. The similarity values in the
dashed nodes needs to be refreshed.

element appears in. Suppose we want to delete it from the
tree. If a leaf (e, e’) is the only one containing the element
e’ that is not deleted, e is deleted from the node. Otherwise
the father node of the node to be deleted is replaced by its
sibling node. Finally, the similarities of the nodes up in the
hierarchy get refreshed.

Input: element e to delete
foreach leaves (e,e’) containing e do

if number of leaves containing e’ > 1 or
the leaf contains only one element then

replace father node with brother node ;
else

delete element from leaf;
end
refresh similarity up to root;

end
Algorithm 3: Remove element from clustering tree

6.5 Differences between Document and Term
Clustering

When we talk about adding a new element to the cluster,
regarding our use-case, this means generally adding a new
blog post and thereby a new document to the corpus. Adding
a new term independently is rather impossible. This leads to
the following observation.

While clustering documents, the insertion of a new item
does not raise any complications. Table 1 shows a simple
document-term matrix after document 3 was added to.
Because the new document does not change the correlations
of all other documents, the new document can simply be
compared to the existing documents and a new base nodes
can be added accordingly.

When adding a document, there might also be new terms,
but the frequencies for these in the existing documents
will always be zero. Otherwise the term must have already

Int'l Conf. Internet Computing and Big Data | ICOMP'13 | 171

T0 T1 T2

Document 1 1 0 0
Document 2 0 1 0
Document 3 0.5 0 0.5

Table 1: Doc-Term Matrix after adding the new Document
3

been in the corpus and is not new. So the assumption that
existing correlations do not change, still holds even if a new
document brings up new terms.

On the other hand, while clustering terms some new
challenges has to be faced. As shown in Table 1, the terms T0
and T2 get more similar because they are now used together
in the same document. The same way a new document might
as well decrease the similarity of two existing terms. Taking
this into account we adjust our algorithm for adding elements
as follows:

For all terms in the new document
1) find all base nodes that include the term as one of their

elements
2) remove all those base nodes
3) find and add new base node according to Section 6.4
This ensures that changes in the increasing or decreas-

ing similarity between existing items are propagated to
the cluster without recomputing the clustering as a whole.
Nevertheless the number of nodes that has to be removed
and added can be quite huge, depending on the composition
of the clustering and the new document. As a side-effect the
cluster tree might get smaller although a new document is
added.

6.6 Runtime versus Correctness
The presented method for adding new elements does not

always produce a correct cluster tree, but it is much faster
than computing a new cluster tree. Additionally, the cluster-
ing is very heavily order-dependent as already pointed out.
Therefore the more documents are added incrementally the
more inaccurate the cluster becomes. To maintain an at least
proximate correct partitioning, the clustering algorithm can
be performed in background periodically. And the currently
active cluster can be replaced by the latest computed one.

7. Evaluation
7.1 Improvements Through Parallelization

For parallelization, OpenMP [10] allows simple multi-
platform parallel programming. Compiler directives indi-
cate the code parts that are executed in parallel. #pragma
omp parallel denotes a parallelized section. Then, as many
threads are created as there are CPUs. OpenMP takes
over the whole work of thread creation and management.
#pragma omp for distributes the iterations of a for loop to
these threads. Critical sections are marked with #pragma
omp critical section. If a compiler does not understand these

directives, the code still compiles and the for loop is executed
sequentially.

The part that profits the most of parallelization is the pair-
wise similarity computation which is used for example for
creating the distance matrix. By using map reduce as pointed
out in Section 6.3, a high degree of parallelization can be
achieved. Parallelizing the construction of the dendogram
has to be done carefully because we are looking for the
global most similar items and not for the one in a subset
of the dataset. This requires a high amount of inter-thread
communication.

7.2 Runtime

Fig. 6: Runtime of the initial clustering algorithm for differ-
ent corpus sizes

For evaluation purposes we used the Classic collection of
documents called Classic3 published by Cornell University1.
This collection of documents is often used as benchmark in
text mining. It consists of 7095 documents and 5896 terms.

Figure 6 shows the results of the presented clustering
algorithm with this collection. It ran on a 4-core 64bit Linux-
System with 8GB main memory. The similarity threshold for
combining elements into one base node was set to 0.8 which
resulted in approximately 25% combined base nodes and
75% single base nodes while clustering documents. The CPU
Time is the aggregated time of all cores working while the
actual time is the time the program actually runs. The results
show that the presented algorithm has a complexity of about
O(n3). Which is the general complexity of hierarchical
clustering algorithms. However these figures do not entirely
represent the proposed algorithm. The documents in the
classic collection have the characteristic that documents with
a lower ID also only use terms with lower IDs. This leads
to considerably shorter term vectors for smaller corpus sizes

1You can find more information about the document collection
at http://www.dataminingresearch.com/index.php/2010/
09/classic3-classic4-datasets/ and download it at ftp://
ftp.cs.cornell.edu/pub/smart/

172 Int'l Conf. Internet Computing and Big Data | ICOMP'13 |

and longer vectors for the whole corpus. So the numbers
are not unbiased and in practice the complexity is better
than O(n3).

8. Future Work
a) Memory versus Time Complexity: A big step in the
direction of reasonable performance was the decision to
use map reduce for pairwise similarity computation. This
reduced the calculation time of the distance matrix by 80%.
Tthe downside of this is the fact that our implementation of
the map reduce tasks extremely increases the memory con-
sumption. This is due to the fact that during the map step all
values in the document-term matrix are emitted before they
are combined during the reduce step. However, as the whole
environment is based on main memory computation and runs
on systems offering a lot of main memory the advantage of
better performance outweighs this disadvantage.

b) Distributed Hierarchical Clustering: In Section 7.1 we
pointed out that parallelizing the hierarchy construction is
not easy because every time time all distance values are
needed. Dash et al. [3] introduced a way to compute the hi-
erarchy in a distributed manner called ’partially overlapping
partitioning (POP)’. The algorithm is split into two parts.
At first the data is distributed into p partitions with p given
by the number of processors available and clustered into
sub-clusters. In the second phase the p sub-clusters have
to be combined and further clustered. This approach can
be combined with the approach presented in this paper to
reduce the execution time.

9. Conclusion
With this paper we presented an approach of a fuzzy, hi-

erarchical, incremental clustering. The initial step of finding
items that have a high similarity and combining them into

one base node enables a fuzzy clustering. Hereby, terms
representing different topics can be grouped together.

The hierarchical characteristic provides the user with dif-
ferent levels of granularity for the composition of weblogs.
By incrementally adding new documents we can cover the
fact that bloggers publishes new blog posts all the time. As
we showed, the performance of the presented algorithm is
already pretty good, but can be boosted with some smaller
improvements. Finally, the algorithm is able to deal with
all challenges that are imposed by the overall use-case of
clustering the blogosphere.

References
[1] A. Ribert, A. Ennaji, and Y. Lecourtier, “An incremental hierarchical

clustering,” in IAPR-VI’99, Trois Rivières, Québec, Canada, 1999, pp.
586–591.

[2] T. Elsayed, J. Lin, and D. W. Oard, “Pairwise document similarity in
large collections with mapreduce,” 1999, pp. 265–268.

[3] M. Dash and P. Scheuermann, “Efficient parallel hierarchical cluster-
ing,” in In International Europar Conference (EURO-PARŠ04, 2004.

[4] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient data
clustering method for very large databases,” in Proceedings of the
1996 ACM SIGMOD international conference on Management of
data, ser. SIGMOD ’96. New York, NY, USA: ACM, 1996, pp. 103–
114. [Online]. Available: http://doi.acm.org/10.1145/233269.233324

[5] K. Sparck Jones, “A statistical interpretation of term specificity and
its application in retrieval,” pp. 132–142, Dec. 1988.

[6] H. S. Heaps, Information Retrieval: Computational and Theoretical
Aspects. Orlando, FL, USA: Academic Press, Inc., 1978.

[7] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

[8] T. Elsayed, J. Lin, and D. W. Oard, “Pairwise document similarity
in large collections with mapreduce,” in Proceedings of the 46th
Annual Meeting of the Association for Computational Linguistics
on Human Language Technologies: Short Papers. Association for
Computational Linguistics, 2008, pp. 265–268.

[9] C. D. Manning, P. Raghavan, and H. Schtze, Introduction to Informa-
tion Retrieval. New York, NY, USA: Cambridge University Press,
2008.

[10] OpenMP Architecture Review Board. (2011) OpenMP application
program interface version 3.1. [Online]. Available: http://www.
openmp.org/mp-documents/OpenMP3.1.pdf

Int'l Conf. Internet Computing and Big Data | ICOMP'13 | 173

