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ABSTRACT 

In this paper we present a simple application of Description Logics in order to improve the semantic search 
engine of a multimedia e-Learning tool. CHESt (Computer History Expert System) allows students to enter a 
freely formulated question about computer history. The system returns a very short commented list of 
multimedia clips in which the user finds the answer to his question. Finding the semantically pertinent clip(s) 
is the challenge. In this paper we illustrate how the semantic reasoning process can be improved by using 
Description Logics as a formal representation language for specifying documents and queries. 
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1. INTRODUCTION 

We presented in [12] our new e-Learning tool CHESt (Computer History Expert System) that understands 
students' questions. Details about the pedagogical background of this e-Learning tool can be found in [11]. 
The tool disposes of a knowledge base with 300 multimedia clips that cover the main events in computer 
history. The user enters a question by means of natural language (NL) and the system returns a list of 
appropriated clips as an answer. Because the multimedia clips are recorded and stored as RealMedia files, 
their content is not available as text. However, to allow the search engine to understand the meaning of the 
documents, it is useful to describe the knowledge base with metadata [2]. In the former version of CHESt, we 
used RDF(S) to describe the semantics of the multimedia clips.  

Here we will briefly recapitulate how the former version of CHESt works. The semantic search engine 
gets a NL question from the user and maps it to a general assertion. To do this, it firstly searches for 
semantically important words and translates them into RDF. We use a specific domain dictionary to retrieve 
the semantics for every word in the sentence. For example, the question "Who invented the operating system 
CP/M?" would be transformed into a set of well-known-words  

Φ = {(dc:creator;"invented"),(chest:OS;"CP/M")}. 

Semantically unimportant words like {what, did} or too general words like {operating, system} are ignored. 
Secondly, this transformed question is mapped to a general assertion. The set of general assertions is given to 
the system, and generally contains only few elements. In the above example, the system would map the 
question to the general assertion "An invention was invented by an inventor", because of the predicate 
dc:creator. Based on that interpretation, an RDQL [13] query is generated and launched against the 
knowledge base. In the example, the query would look like this: 
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SELECT WHERE (?x;dc:creator;"CP/M") 

where ?x is the missing part of the query. A commented list of pertinent clips is returned to the user. 
Unfortunately, more advanced and complex reasoning is not possible in RDF, mainly due to the weak 

possibilities in expressing properties and rules over properties. In this paper, we report main improvements in 
the inference engine of our tool by using OWL (Web Ontology Language) instead of RDF(S). In section 2 we 
will show how the knowledge is represented formally with DLs. In section 3 we will present the reasoning 
process, which is the main advantage of this change. We will conclude in section 4 with some 
(dis)advantages of the proposed solution. 

2. KNOWLEDGE REPRESENTATION FOR CHEST 

In this section we will briefly introduce the main concepts for representing knowledge and reasoning about it 
by using DLs. The fact that OWL builds on RDF(S) simplifies the serialization task (which is not covered in 
this paper). 

2.1 Description Logics Preliminaries 

Description Logics is a formal language for representing knowledge and reasoning about it [1]. In DLs, the 
conceptual knowledge of an application domain is represented in terms of concepts (unary predicates) that 
are interpreted as sets of individuals, and roles (binary predicates) that are interpreted as binary relations 
between individuals. The semantics of a concept description is defined by the notion of interpretations as 
given below. 
 
Definition 1 (Interpretation): An interpretation I = (∆I,⋅I) consists of a non-empty set ∆I, the domain of the 
interpretation, and an interpretation function ⋅I that maps each concept name to a subset of ∆I and each role 
name to a binary relation rI, subset of ∆I × ∆I. 
 
A typical DL knowledge base comprises two components: a terminology, also called a TBox, and assertions, 
also called an ABox. Both are described in this section. 
 
Definition 2 (Knowledge Base): A knowledge base (KB) is a pair K = 〈T, A〉, where T is a TBox, and A is 
an Abox. 

2.1 Knowledge Terminology in a TBox 

The TBox defines the vocabulary to use in the KB by terms of concepts and roles. The concepts are either 
defined as new concepts or by using previously defined concepts. The resulting terminologies can easily be 
serialized as OWL. 
 
Definition 3 (Terminology): Let A be a concept name and C a concept definition. Then A  C and A  C 
are terminological axioms. The first is a complete definition, the second an incomplete one. A terminology T 
is a finite set of terminological axioms such that no concept name appears more than once in the left-hand 
side of a definition. If a concept A occurs in the left-hand side of a definition, it is called defined concept. The 
other concepts are called primitive concepts. 
 
The concepts in CHESt are organized in a taxonomy. Figure 1 illustrates the translation of the hierarchy of 
concepts (HC) into the acyclic ALC-concept description TCHESt. A special case in our taxonomy is the 
concept Firm, which can be an inventor (something was invented by that firm) or an invention (a firm was 
founded by an inventor). The language ALC [15] is sufficiently expressive for our purposes. It is in fact a 
subset of the logics implemented in most "state of the art" DL systems, for example those based on highly 
optimized tableaux algorithms, see for example [8, 6]. ALC concepts are built using a set of concept names 
(NC) and role names (NR). Valid concepts are defined by the following syntax: 



C ::= A | F | ⊥ | ¬A | C1  C2 | C1  C2 | ∀R.C | ∃R.C 

with A ∈ NC is a concept name and R ∈ NR is a role name. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Example of a hierarchy of concepts and the according ALC-terminology for TCHESt. 

2.1 Knowledge Assertions in an ABox 

In the ABox, one introduces individuals, by giving them names, and one establishes properties for these 
individuals. Figure 2 shows some examples of CHESt assertions translated into DLs, noted ACHESt. 
 
Definition 4 (Model of Assertions): The interpretation I = (∆I,⋅I) satisfies the concept assertion C(a) if 
aI ∈ CI, and it satisfies the role assertion R(a,b) if (a,b)I ∈ RI. An interpretation I satisfies the ABox A if it 
satisfies each assertion in A. In this case we say that I is a model of the ABox. 
 

Person(Kildall) 
String("Gary Kildall") 
Date(1942) 
Date(1994) 
hasName(Kildall,"Gary Kildall") 
wasBorn(Kildall,1942) 
isDeceased(Kildall,1994) 

Firm(DR) 
String("Digital Research) 
Date(1973) 
hasTitle(DR,"Digital Research") 
wasCreated(DR,1973) 
hasInventor(DR,Kildall) 

OS(CPM) 
String("CP/M") 
Date(1974) 
hasTitle(CPM,"CP/M") 
wasCreated(CPM,1974) 
hasInventor(CPM,DR) 

Figure 2. Examples of concept assertions for ACHESt. The person Gary Kildall (1942-1994) founded the firm Digital 
Research in 1973, which has published the operating system CP/M in 1974. 

3. INTERPRETING A USER QUESTION 

A DL system not only stores terminologies and assertions, but also offers services that reason about them, 
called logical inference. This allows to make explicit some implicit knowledge that is contained in the KB. 
We first present the main kinds of reasoning performed in DLs before showing their application in CHESt. 

3.1 Main Kinds of Reasoning 

Reasoning in a DL KB is mainly based on determining subsumption relationships and satisfiability with 
respect to the axioms in the TBox, and instance checking with respect to the assertions in the ABox. An 
exhaustive list is described in [1]. 
 
Definition 5 (Subsumption): Let C and D be concept names, D subsumes C with respect to T (noted 
T  B C  D) iff CI ⊆ DI for all interpretation I that satisfies T. 
 

Person  ∃hasName.String  
∃wasBorn.Date  
∃isDeceased.Date 

Clip  Inventor  Invention 
Inventor  Person  Firm 

Invention  Firm  Software  Hardware 
 ∃hasTitle.String  

∃wasCreated.Date  
∃hasInventor.Inventor 

Software  Language  OS 
Hardware  EComponent  Computer 

Computer  hasComponent.EComponent 

Invention 

Software Hardware 

EComponent Computer 

Inventor 

Clip 

Language OS 

Person Firm Firm 



Definition 6 (Satisfiability): A concept C is satisfiable with respect to T if there exists a model I of T such 
that CI is nonempty. In this case we say also that I is a model of C. 
 
Definition 7 (Instance Checking): An assertion α (a concept assertion or a role assertion) is entailed by A 
(written A B α) if every interpretation that satisfies A, that is, every model of A, also satisfies α. 

3.2 Reasoning in CHESt 

The interpretation of a user question in CHESt is performed in two steps: the mapping of concepts over the 
TBox, and the transformation of the user question into an ABox query. Both are explained below. 

3.2.1 Mapping of Concepts 
In [9] a matching algorithm is proposed. It is not the topic of this short paper to explain this algorithm in 
detail. However, for a better understanding of its use in our e-Learning tool, we will summarize its 
mechanism briefly. The algorithm takes a query description TQ and a document description TD and returns a 
mapping that identifies corresponding elements in the two descriptions. This mapping consists of a set of 
mapping elements indicating that certain concepts of the query are related to certain concepts in the 
document. A concept Ai from TQ is related to a concept Bi from TD if their names and their descriptions are 
similar. The algorithm uses the difference operation presented in [16] and improved in [10]; since the result 
of the difference operation is a description or a set of descriptions, it can be used for retrieving sets of 
individuals matching the difference between two descriptions. In other words, only similar documents from 
the KB are found. The algorithm works in three steps: computing the similarity of concepts (step 1 and 2), 
which is quantified by two coefficients (the name and the description coefficient), and mapping similar 
concepts (step 3). 
 
Step 1: Matching of names. It is based on the notion of semantic relatedness that measures the extent to 
which two lexicalized concepts are close. This measure is based on the semantic relations of a knowledge 
source, for example WordNet. This result is called the name similarity coefficient (nsim). 
 
Step 2: Matching of description. It consists in comparing the concept descriptions occurring in the two 
terminologies. This phase uses name similarities between concepts appearing in the concept descriptions. 
This result is called the description similarity coefficient (dsim). 
 
Step 3: Mapping of concepts. The resulting weighted similarity (wsim) is a mean of nsim and dsim. A 
mapping ρ is deduced from those coefficients by choosing pairs of elements with maximal similarity. A 
mapping ρ from TQ to TD is computed as follows: 
ρ(Qi) = Dj with 1 ≤ i ≤ n, 1 ≤ j ≤ m, 

if wsim(Qi, Dj) > ε and wsim(Qi, Dj) > wsim(Qi, Dk) for all Dk ∈ TD , k ≠ j 
where ε is the minimal tolerated difference. 

ρ(Qi) = F otherwise. 
 
We had to modify this algorithm in two points in order to use it in CHESt.  
• The reasoning mechanism must be improved in order to perform a query over a non-empty ABox. 
• It must not consider the documents content, but the metadata, which describe the document. As already 

stated in the introduction, this is necessary because we are dealing with multimedia clips where a textual 
content is not available.  

3.2.2 The Generating of a Semantic Query 
We start from the assumption that all documents in the KB KCHESt are represented by DL terminologies, but 
the user's question Q is expressed in NL. Thus, the latter must be transformed into a query w.r.t. the ABox. 
The so generated query allows to retrieve all documents from the KB that satisfy the expression RQ. This 
means that it must be checked if there exists at least one model I of ACHESt such (RQ)I ≠ ∅. In other words, 
there must exist an individual y in ∆I that is an element of (RQ)I. Figure 3 shows an example where the 
system must find all objects in the KB that are individuals of the concept Inventor and are involved in the 



invention of the operating system "CP/M". A model w.r.t. the ABox (see figure 2) is the Firm DR. 
Technically, the reasoning over the KB and the retrieval of individuals can be performed with most DL 
reasoners.  We experimented with the Java interface of RACER [6], which builds on the OWL-API 
(http://owl.man.ac.uk). More information about the use of DLs as query language for retrieving sets of 
individuals matching a description from the KB can be found for example in [4, 5, 7]. 
 

Q = Who invented the operating system CP/M? 

ACHESt B RQ = OS(x) ^ hasTitle(x,"CP/M") ^ hasInventor(x,y?) ^ Inventor(y?) 

Figure 3. Example of a NL user question Q and the according ALC query expression w.r.t. the ABox. The variable y is 
the missing part and should be the result of the query. 

4. RELATED WORK 

We found three very promising projects that have several concepts in common with our method. In [3] the 
algorithm CTXMATCH is presented, which allows to coordinate hierarchies of concept (HC). Semantic 
coordination, namely the problem of finding an agreement on the meaning of heterogeneous semantic 
models, is one of the key issues in the development of the Semantic Web. CTXMATCH is a new algorithm for 
discovering semantic mappings across hierarchical classifications based on a new approach to semantic 
coordination. This approach shifts the problem of semantic coordination from the problem of computing 
linguistic or structural similarities (what most other proposed approaches do) to the problem of deducing 
relations between sets of logical formulae that represent the meaning of concepts belonging to different 
models. The authors show how to apply the approach and the algorithm to an interesting family of semantic 
models, namely hierarchical classifications, and present the results of preliminary tests on two types of 
hierarchical classifications, web directories and catalogs.  

In [14] a similar but maybe more specific project was presented, stating that the need for Natural 
Language Interfaces to databases (NLIs) has become increasingly acute as more and more people access 
information through their web browsers, PDAs, and cell phones. Yet NLIs are only usable if they map natural 
language questions to SQL queries correctly. People are unwilling to trade reliable and predictable user 
interfaces for intelligent but unreliable ones. With their work, the authors introduce a theoretical framework 
for reliable NLIs, which is the foundation for the fully implemented PRECISE NLI. They prove that, for a 
broad class of semantically tractable natural language questions, PRECISE is guaranteed to map each 
question to the corresponding SQL query. They report on experiments testing PRECISE on several hundred 
questions drawn from user studies over three benchmark data-bases. They find that over 80% of the questions 
are semantically tractable questions, which PRECISE answers correctly. PRECISE automatically recognizes 
the 20% of questions that it cannot handle, and requests a paraphrase. Finally, they show that PRECISE 
compares favorably with Mooney's learning NLI and with Microsoft's English Query product. 

A larger system is the KIM Platform (http://www.ontotext.com), which provides a novel Knowledge and 
Information Management (KIM) infrastructure and services for automatic semantic annotation, indexing, and 
retrieval of unstructured and semi-structured content. The most direct applications of KIM are:  
• Generation of meta-data for the Semantic Web, which allows hyper-linking and advanced visualization 

and navigation;  
• Knowledge Management, enhancing the efficiency of the existing indexing, retrieval, classification and 

filtering applications.  
As a base line, KIM analyzes texts and recognizes references to entities (like persons, organizations, 

locations, dates). Then it tries to match the reference with a known entity, having a unique URI and 
description. Alternatively, a new URI and description are automatically generated. Finally, the reference in 
the document gets annotated with the URI of the entity (semantic annotation). This sort of meta-data can be 
used for indexing, retrieval, visualization and automatic hyper-linking of documents. In order to allow the 
easy bootstrapping of applications, KIM is equipped with an upper-level ontology (KIMO) of about 250 
classes and 100 properties. Further, a knowledge base (KIM KB), pre-populated with about 200 000 entity 
descriptions, is bundled with KIM. Its role is to provide as background knowledge (resembling a human's 



common culture) a quasi-exhaustive coverage of the entities of general importance - those, which are 
considered well-known and because of this, typically, not introduced in the documents. 

5. CONCLUSION 

In this paper we have presented a simple application of DLs to improve the semantic search mechanism of a 
multimedia e-Learning tool. The advantages of this upgrade are firstly, that the serialization in OWL is still 
compatible with the former RDF(S) description. Secondly, the inference engine allows logical reasoning 
tasks that go beyond the heuristics of the earlier system. Thirdly, queries can be classified with respect to 
each other into a subsumption hierarchy. It is very useful to have the user questions organized so that the 
results of previous related queries can be reviewed, for example to implement a kind of learning mechanism. 
Unfortunately, one of the main problems of the solution presented here is that the matching algorithm 
mentioned in section 3.2 was created for being used with WordNet as knowledge source. We think that a 
large-scale dictionary like WordNet is not the best possible solution for a domain ontology about computer 
history. First of all, different meanings for the same word are possible. Hence, our information retrieval 
system must set the different interpretations in a context to find the best match. Secondly, large-scale 
dictionaries often lack specific domain expressions. For these reasons we propose either to use an existing 
domain specific dictionary or to create a dictionary of its own. 
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