
Distributed Recognition of Content Similarity in a
Tele-Teaching Portal

Maria Siebert
Hasso Plattner Institut
University of Potsdam

Potsdam, Germany
maria.siebert@hpi.uni-potsdam.de

Franka Moritz
Hasso Plattner Institut
University of Potsdam

Potsdam, Germany
franka.moritz@hpi.uni-potsdam.de

Christoph Meinel
Hasso Plattner Institut
University of Potsdam

Potsdam, Germany
christoph.meinel@hpi.uni-potsdam.de

Abstract—This paper focuses on the problem of finding similar-
ities between complex e-learning objects. For a web portal, which
contains a lot of different video objects, different types of meta data
for these objects are available. To combine the information of these
different data types to a combined similarity measure, a distributed
calculation algorithm is introduced.

Furthermore examples for calculating the similarity of different
aspects like the object title and tags. Some problems like calculation
time are considered and solutions are proposed.

Keywords—similarity detection, recognition, e-learning, tagging

I. INTRODUCTION AND RELATED WORK

When the amount of content is increasing, it is hard for the
user to find the content, he is interested in. Especially in tele-
teaching, where the main content consists of video material,
which cannot easily be searched, keyword based search is
difficult. Therefore other methods for supporting learners in
finding the appropriate content are needed.

Several approaches to provide support for the users in find-
ing the content they are looking for are researched currently.
One method that was evaluated in this context is to utilize com-
mon learning paths by tracking the learner’s interests [1], [2].
Other methods are based on web 2.0 technologies, like com-
munity tagging [3]. Web filtering systems, where the search
results can be limited, are also amongst the research fields [4].
Most of these options can be utilized for a personalization of
the portal according to the user’s needs and preferences [5]. A
last and vastly researched field are recommendation systems
[6], [7]. In the tele-teaching context those systems could be
attached to lectures and provide additional information to a
selected video or basic knowledge, which is needed.

Recognition of the similarity of content is a basis for
building recommendation systems. Recommendation systems
mostly consist of three parts. The first part is the comparison
of the users, to find similarities between them. The second
part is the analysis of the data, which is used to generate new
knowledge of the content. At last it is possible to consider the
outside influences on the system, like the date and time of the
request or even the temporal closeness to a special event.

This paper focuses on the finding of similarities in the
content. Therefore it will give a definition for similarity
based on the distance of objects. Then it will show, how the

distributed calculation of similarity can be done using a plug-
in architecture. Afterwards we describe how the distributed
calculated results can be combined using different approaches.

We will also give some examples, how the implementations
of the plug-in interface can be done and which algorithm could
be used. Furthermore some problems with possible solutions
are discussed and possible enhancement are pointed out.

A. About tele-TASK
The tele-TASK system [8] is a portable lecture recording

system. It allows to record two video and one audio streams
parallel. It is used to capture the screen of the presentation
as well as the presenter. This system is used since 2001.
More than 3000 recordings in more than 400 series, containing
lectures and conferences, have been produced so far.

These recordings are available at the tele-TASK portal
(http://www.tele-task.de). As not only students from our in-
stitute, but also external persons use the portal, it is an ideal
platform to research the content search process with real data
and real users. Our research focuses on creating better learning
experiences on basis of this available data.

II. DEFINITION OF SIMILARITY

When comparing two objects oi and ok from the set O of all
objects, the similarity of these objects s(oi, ok) is a function
s : O2 7→ R+

0 .
In this paper we will assume, that the similarity of two

objects is the opposite to the distance of these two objects.
Therefore we assume, that if two objects are equal, their
distance is zero and their similarity is maximized and when
they have nothing in common, their distance is maximized and
their similarity is zero. For better handling we will assume,
that the maximum of all values is 100, which should be
a reference to percentage calculation. Therefore we get a
function s : O2 7→ [0, 100].

Furthermore we define that the following relation between
similarity s(oi, ok) and distance d(oi, ok) should be used:

s(oi, ok) = 100− d(oi, ok) (1)

So when two objects have the similarity of zero, they have
the distance of 100 and when they have the similarity of 100,
their distance is zero.

To visualize the distance d(oi, ok) between each tuple of
n+1 different objects, we need a n-th dimensional room, for
being able to have the correct distance between all objects.
Figure 1 shows this fact for the example of three objects and
a two dimensional room.

o1

o2

o3

d(o1,o2) d(o2,o3)

d(o1,o3)

Fig. 1. Distance between three objects

The following facts should be concerned, when talking
about the result of the similarity of objects.

• Symmetry: The result of s(oi, ok) should be equal to
s(ok, oi), because the distance of two objects is obviously
symmetrical.

• Maximimum of s(oi, oi): For every object it is obvious,
that the similarity of the object with itself is 100, because
each object is equal to itself. Therefore the similarity of
the object to itself is equal or higher than the similarity
to any other object. It is easily possible to force the value
of s(oi, oi) to the value 100 by using a stretching factor
for all calculations.

• Transitivity of the distance: Because of the triangle in-
equality the following rule has to be valid:

∀i, j, k d(oi, oj) ≤ d(oi, ok) + d(ok, oj) (2)

Using the connection between distance d(oi, oj) and
similarity s(oi, oj) as defined in formula 1 it should be
visible that the following rules has to be followed:

∀i, j, k − s(oi, oj) ≤ 100− s(oi, ok)− s(ok, oj) (3)
∀i, j, k s(oi, oj) ≥ s(oi, ok) + s(ok, oj)− 100 (4)

In the following section we will show, how the similarity
of two objects concerning a subset of their meta data can be
calculated, before combining this data to an overall similarity
result. All of these calculations have to consider the facts
described in this section.

III. DISTRIBUTED CALCULATION ALGORITHM

The idea of the implementation of a distributed algorithm is,
that every module of the application knows best, how to treat
its own data concerning the fact of comparing different objects.
Therefore in this section we will describe, how we are capable
of distributing the calculation to the different modules of our
application using plug-ins. With the help of two examples
it is shown how each module developer can implement his
specialized calculation algorithm.

In the next section we give some explanations on how these
intermediate results can be combined to a single similarity
measure.

A. Plug-in Architecture

The tele-TASK portal is designed using a plug-in archi-
tecture as we described in [9]. Plug-ins are a known concept
for a distributed application with few connections between the
different modules [10]. It results in an inversion of control and
a loose coupling between the modules of the application.

A plug-in consists of two parts, the plug-in interface and
the plug-in implementation. For a single plug-in interface it is
possible to provide no plug-implementation of a huge number
of them. This has to be considered, when writing function,
which uses the plug-in functionality.

core

utils

search

tagging

relations

playlist

Fig. 2. Excerpt of the structure of the architecture

This architecture allows us to define a global calculation
function, which combines the calculation results from the dif-
ferent plug-in implementations provided by different modules.

Therefore the calculation module needs no knowledge about
the modules, which will provide the intermediate search re-
sults. It only provides the interface, which the modules have to
implement and therefore knows, how the classes and functions
looks like and how to use them.
1 class RelationScore(PluginBase):
2 types = list()
3 weight = 3
4 description = ’’
5

6 def __init__(self, object):
7 self.scoreObject = object
8 self.type = object.__class__.__name__
9

10 def get_scores(self):
11 ’’’ This function has to be overridden for

new calculation results ’’’
12 return dict(), list()

Listing 1. Plug-in interface for recommendation calculations

The provided plug-in interface for the calculation functions
has to describe the parameters of the function and the available
variables. It needs at least a function which can be called for
generating a list of the compared objects and the result of the

comparison. Therefore the function has to know the source
object, which should be compared to other objects. A short
version of the interface can be found in listing 1.

This version of the plug-in interface provides the get scores
function. This function has to be implemented with the calcu-
lation algorithm for the specific problem, like the comparison
of titles or tags. It returns two representations of the data, a
dictionary with the compared object as key and the score as
value as well as a list of all compared objects. This is necessary
for easier data management.

B. Suggestions for basic calculations

Each calculation function is allowed to generate their own
results. To have a better possibility for comparison it is
recommended to the plug-in authors to provide results between
0 and 100 points. If they want to provide the special case
of downgrading objects (for example because of obvious
disconnection between the content), they are allowed to vote
between -100 and 100 points. This should not be used in
regular cases but for special function like user ratings of
similarities.

When comparing two objects oi and ok, each can be
described as a set of atomic data objects D(oi) and D(ok).
These atomic data objects are used to calculate the similarity
soi,ok between the two objects. A simple calculation algorithm
of the similarity of the these objects concerning the data D,
which follows the rules is shown in formula 5.

sD(oi, ok) =

0, if D(oi) ∪D(ok) = ∅ ∧ oi ̸= ok
100, if D(oi) = ∅ ∧ oi = ok
100 · #(D(oi)∩D(ok))

#(D(oi)∪D(ok))
, else

(5)

The data set D can be interpreted as all possible values in
the given aspect, for example it can be the set of all words in
a title. So D(oi) ⊆ D is the subset of all values of D which
are used in the data of oi for example all words used in the
title of oi. Because the first two cases are obvious and only
interesting if no data exists, we will not write them down any
longer, but implicitly use them as fact in every calculation.

This approach does not take into concern, that each data
can have a different weight. How to use the number of usages
of a special data value is considered, we will describe in the
next section.

C. Usage of logarithm

In many cases of comparing data it is a difference, how often
the data is used globally. Every term which is used more often
will result in a more useless information. For example it would
not help to use a tag in every lecture for finding similarities.
Every lecture would get the same value added and no new
information can be gained. Therefore we define the function
u : D 7→ N, which defines the number of usages of a value
d ∈ D related to the set of all objects.

It is also obvious, that the information that a specific person
holds a lecture has more quality if a person holds only a
small number of lectures. That is why the overall number

of data usage has to be considered and has to decrement the
similarity value. If we would use a linear approach, like shown
in formula (6), the factor would decrease really fast.

sD(oi, ok) =
100

#(D(oi) ∪D(ok))

∑
d∈D(oi)∩D(ok)

1

u(d)
(6)

Because this could result in lower calculation results even
for the calculation of sD(oi, oi), we have to use a stretching
factor to increase the results. This stretching factor s∗D(oi, ok)
is:

s∗D(oi, ok) = min

 1∑
d∈D(oi)

1
u(d)

,
1∑

d∈D(ok)

1
u(d)

 (7)

It is more recommendable to use the logarithm like in
formular (8) for a smaller decrease when using higher values.

sD(oi, ok) =
100

#(D(oi) ∪D(ok))

∑
d∈D(oi)∩D(ok)

1

log(u(d))

(8)

Analogically a strechting factor is needed, to ensure that the
sD(oi, oi) is 100.

s∗D(oi, ok) = min

 1∑
d∈D(oi)

1
log(u(d))

,
1∑

d∈D(ok)

1
log(u(d))

(9)

The decision, which basis is used for the logarithm, depends
on the highest value of a usage n∗ of an element d ∈ D
expected. We think it should not happen, that the decrease
factor gets smaller than 1

10 , therefore the basis of the logarithm
should be about 10

√
n∗.

The next two paragraphs will introduce two examples for
modules which contributed to the similarity calculation.

D. Example: Comparison of title

The first implementation of a comparison function is the
comparison of the title of different lectures. Normally a title
consists of a different number of words. So when comparing
a title with another title, we have two sets of words W (oi) =
{wi1 , . . . , wij} and W (ok) = {wk1 , . . . , wkl

}. We are looking
for the set W (oi) ∩W (ok), which contains all words, which
are used ins both titles.

So in the first step we calculate the value for the similarity
of both titles of the objects oi and ok in formular 10.

sW (oi, ok) = 100 · #(W (oi) ∩W (ok))

#(W (oi) ∪W (ok))
(10)

Some words are used more often, than other words. This
fact should be kept in mind, when calculating a more precise
result. Therefore we need the number of usage of the word

w in other lecture titles, which is u(w), as described before.
The usage of u(w) as a linear factor would result in a fast
decrease of the values, that is why we decided as explained
before to use the logarithm instead, as shown in formula 11.

sW (oi, ok) =
100 · s∗W (oi, ok)

#(Wi ∪Wk)
·

∑
w∈W (oi)∩W (ok)

1

log(u(w))

(11)

With that approach common words have less impact on
the calculation. It is also possible to exclude some words
completely from the calculation by using stop word lists.
Therefore we exclude these words of the title from the list
of used words before calculating the similarity of both titles.

E. Example: Comparison of tags

Tagging is a concept know from the web 2.0. Tags are user
generated keywords. We implemented this function as one of
our user centric functions to allow the users of the portal to
actively use the portal for learning.

Tags are terms which are connected to content objects. With
the help of these terms, the content of the object is described
(see figure 3).

TagText

TagObject

ContentObject

t1

t2

o1

o2

o3

o4

Fig. 3. Example for tags

As can be seen, a tag can be used multiple times for the
same object. This happens, when more than one user uses the
same tag on the object. This would mean, that more than one
user thinks, this is a good tag for the object. So it should of
course be treated with higher weight than a single connection
between a term and an object.

When calculating the similarity between two objects con-
cerning the tags used for these objects, the weight of each tag
has to be considered. Therefore let T be the set of all tags and
ci(o, t) the i-th connection of object o with tag t. Furthermore
we define:

To = {tags of object o} (12)
wM (t) = #{ci(o, t)|o ∈ M} (13)

When comparing two objects oi and ok, the easiest approach
is to look at the number of tags available in both objects and
compare it with the number of tags available in at least one
object, as shown in formula 14.

sT (oi, ok) = 100 · #(Toi ∩ Tok)

#(Toi ∪ Tok)
(14)

Because of the possibilities of more than one connection
between a tag and an object, this approach is a little to easy.
The number of usages of a tag should be considered. That is
why we need to consider that fact as well.

sT (oi, ok) = 100 ·

∑
t∈(Toi

∩Tok
)

w{oi,ok}(t)∑
t∈(Toi

∪Tok
)

w{oi,ok}(t)
(15)

Combined with the idea of decreasing the value of often
used tags a calculation algorithm is shown in formula 18. The
part 4s∗T (oi, ok) is the stretching factor for the calculation,
which depends on the structure of p2 as described in the
section before.

p1 =

∑
t∈(Toi

∩Tok
)

w{oi,ok}(t)∑
t∈(Toi

∪Tok
)

w{oi,ok}(t)
(16)

p2 =
1

max

(
1,

∑
t∈(Toi

∪Tok
)\(Toi

∩Tok
)

w{oi,ok}(t)

)
(17)

sT (oi, ok) = 100 · p1 · p2 · s∗T (oi, ok) (18)

The problem is, that this formular will have small values
in most cases, because the number of equal tags between two
objects is small in most cases. That is why it is better to use
a smaller decreasement than linear, for example a logarithmic
one (see exchange of the second part of the formula in formula
19).

p2 =
1

max

(
1,

∑
t∈(Toi

∪Tok
)\(Toi

∩Tok
)

log(w{oi,ok}(t))

) (19)

This results in good similarity results concerning tags for
different types of objects. It is important to have a huge basis
of tags for better results, but when tags are available, they
are a good indicator, so the tag calculation should get a high
weight.

F. Saving results for faster calculations

Calculating the similarity of all objects every time an object
is requested will result in a big overhead. Therefore it is useful
to save intermediate results of a calculation in the database.

In our project we have a database table, which contains most
of the text fields, which should be compared. Therefore it is
useful, to have an extra table, which contains the similarity
measure of the entries in this table. This table can be updated,
each time a text is added, changed or deleted.

Such an additional data table would reduce the cost of
calculation, because like for most web sites, there are more
data reading than data changing tasks.

IV. COMBINING CALCULATIONS WITH DIFFERENT MEANS

In the following section it is shown, how the result of the
implementations of every single calculation algorithm for the
different aspects of data can be combined to get a single result
for each comparison.

For combining the values generated by the different cal-
culation functions, different possibilities of calculating mean
values are available. These possibilities will therefore be
introduced and compared.

A. Arithmetic Mean

The arithmetic mean is the best known algorithm for cal-
culating average values. It is calculated through summing up
all the values and dividing the result through the number of
values (see formula (20)).

x̄a =
1

n

n∑
i=1

xi =
x1 + x2 + · · ·+ xn

n
(20)

The arithmetic mean is useful, if you want to combine a
lot of values in the same range. It is also used in combination
with negative values and it is the mean, which is used the most
often. But it is not always the best choice, so for different kinds
of scenarios other mean algorithms should be used.

B. Geometric Mean

The geometric mean can be used for the calculation of the
mean growth. If n is the number of values, it is the nth root
of the product of all values (see formula (21)).

x̄g = n

√√√√ n∏
i=1

xi = n
√
x1 · x2 · . . . · xn (21)

A big problem with the geometric mean is the usage of
the value zero. This value will result in the overall value of
zero and will therefore eliminate all other values. That is why
we decided, to change the calculation algorithm by setting
all zero values to the value one. This does not influence the
overall result that much, because the values are stretched to
100 and the difference between zero and one is not that big.

C. Harmonic Mean

The harmonic mean is typically used for calculating mean
values of percentage values. Therefore the number of values
is divided by the sum of the reciprocal of every value (see
formula (22)).

x̄h =
n

n∑
i=1

1
xi

=
n

1
x1

+ 1
x2

+ · · ·+ 1
xn

(22)

The harmonic mean also has a big problem with zero values.
The problem is, that 1

0 is not defined, therefore if the value
zero exists, the harmonic mean cannot be calculated. Therefore
it is defined, when looking at the limit value towards zero, that
the harmonic mean becomes zero, if one value is zero.

That is a problem, because for most of our objects, at least
one calculation will have a value of zero, but other calculations
will have higher values. This would result in a big number of
results of zero, which we do not want to have.

D. Root Mean Square
For calculating the root mean square, the root of the sum

of the squares of every value divided by the number of values
is calculated (see formula (23)).

x̄r =

√√√√ 1

n

n∑
i=1

x2
i =

√
x2
1 + x2

2 + · · ·+ x2
n

n
(23)

The root mean square is used for calculations where the
top values are more important, because they have a higher
influence on the overall result.

The root mean square has a problem with negative numbers.
When using the square of a value the algebraic sign get lost.
Therefore it is not possible to use it for values in the interval
of [−100, 100] without modifications.

E. Comparison of the Different Means
Each mean has its own purpose. When comparing the results

of the mean calculation the following fact is known:

min(x1, . . . , xn) ≤ x̄h ≤ x̄g ≤ x̄a ≤ max(x1, . . . , xn) (24)

We are still evaluating, which mean will be generating the
best results. It is not decided which mean will become the
final candidate. Because of missing implementations of some
possibilities to calculate intermediate results, we have not done
a complete evaluation, which mean produces the best results.
Therefore we implemented all of these calculation algorithms
and are able to switch between them easily.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Case 1 0 0 0 10 10 10 20 40 80 100
Case 2 0 0 0 0 0 0 0 80 90 100
Case 3 0 0 20 20 20 20 20 20 70 80

Case 1 Case 2 Case 3
arithmetic mean 27 27 27
geometric mean 9,56 3,85 14,3
harmonic mean 2,94 1,42 4,3
root mean square 43,24 49,05 37,02

TABLE I
EXAMPLE FOR CALCULATION OF DIFFERENT MEANS

When looking at the table I of possible data and considering
the problems of the harmonic and the geometric mean, it is
more likely that at the end either the arithmetic mean or the
geometric mean is used. The effect of the geometric mean of
preferring higher values makes it the better candidate for the
final calculation algorithm.

F. Adding Weights to the Mean Calculation

It is obvious that different functions will provide a different
quality of results. Therefore we use the possibility to weight
the result of the calculation function.

For the arithmetic mean, a weighted mean, which could use
any real number as weight is defined. But to allow the usage
of weight for every type of mean calculation it is better to
allow only natural numbers.

When using natural numbers as weight, each algorithm can
be extended with this weights easily by duplicating the values
for the calculation. For example if we have the values 20 with
the weight of 2 and 40 with the weight of 3, we calculate the
mean of the values 20, 20, 40, 40, 40 instead.

We decided to set the weight of 3 as default weight for all
individual similarity calculations. So it is possible to degrade a
function if it has only weak results. To grade a good function
higher it is possible to use higher weights.

V. CONCLUSION AND FUTURE WORK

We showed in this paper, how it is possible to combine
single calculation algorithm to an overall similarity calculation
result and how a single calculation can be done.

The next task is to implement functions for different types
of meta data that complement the recommendation algorithm
with further data. This meta data can include transcripts
from optical character recognition [11], transcripts from audio
analysis [12] as well as administrator or user generated meta
data. For the user generated meta data several concepts known
from social web portals [13] can be exploited for tele-teaching
as well.

Afterwards we have to evaluate, which mean calculation
algorithm creates good results. Therefore we have to find good
relations manually and to check if these relations are found
automatically as well. We will also allow the users of our
portal to rate the similarity of different objects, to get a better
overall opinion, which objects are similar to each other.

As pointed out in [14] it could also be possible, that it
is better to use a subset of similarity calculation functions for
generating the overall result. We have to evaluate, if this effect
will also appear with our data.

We also want to separate these relations in different classes.
In tele-teaching context, we have two big groups of relations.
On the one hand there are lectures which can be seen as prepa-
ration for the actual lecture, like basic knowledge, which is
used in the lecture. On the other hand there are lectures which
are more detailed and therefore provides more knowledge.
Both types are interesting in a tele-teaching portal, because
both scenarios could occur.

To get better results we also want to provide better functions
to compare words. It is obvious that a simple comparison
will miss a lot of similarities, because the same word is often
written differently, for example when using singular and plural
form of the word. Therefore it is useful to stem the word and
compare the stems.

On the other hand, there are the problems of homonyms
and synonyms. Therefore the semantic meaning of the word

is important. It is possible to enhance the data with semantic
data to get better results.

When the similarity algorithm will produce good results it
should be included in a recommendation system to provide
better user experiences.

REFERENCES

[1] L. Wang and C. Meinel, “Detecting the Changes of Web Students’
Learning Interest,” pp. 816–819, 2007.

[2] L. H. P. I. Wang and C. H. P. I. Meinel, “X-Tracking the Changes of
Web Navigation Patterns,” pp. 772–779.

[3] T. Gruber, “Collective knowledge systems: Where the Social Web meets
the Semantic Web,” World Wide Web Internet And Web Information
Systems, vol. 6, pp. 4–13, 2007.

[4] M. G. Noll and C. Meinel, “Design and Anatomy of a Social Web
Filtering Service,” Cooperative Internet Computing - Proceedings of the
4th International Conference (CIC 2006), no. July, pp. 69–93, 2006.

[5] A. Lau and E. Tsui, “Knowledge-Based Systems,” Knowledge-Based
Systems, vol. 22, pp. 324–325, 2009.

[6] G. Adomavicius and A. Tuzhilin, “Toward the next generation of
recommender systems: a survey of the state-of-the-art and possible
extensions,” IEEE Transactions on Knowledge and Data Engineering,
vol. 17, no. 6, pp. 734–749, Jun. 2005.

[7] F. Fouss and M. Saerens, “Evaluating Performance of Recommender
Systems: An Experimental Comparison,” 2008 IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence and Intelligent Agent Technology,
pp. 735–738, Dec. 2008.

[8] V. Schillings and C. Meinel, “tele-TASK - Teleteaching Anywhere
Solution Kit,” in Proceedings of ACM SIGUCCS, Providence, USA,
2002.

[9] M. Siebert, F. Moritz, and C. Meinel, “Enriching E-Learning Meta
Data with User Generated Playlists,” in 5th International Conference for
Internet Technology and Secured Transactions (to appear). London,
UK: IEEE Computer Society, 2010.

[10] D. Birsan, “On Plug-ins,” Queue, no. March, 2005.
[11] H. Sack, “Automated Annotation of Synchronized Multimedia Presen-

tations,” in In Workshop on Mastering the Gap: From Information
Extraction to Semantic Representation, CEUR Workshop Proceedings,
Berkeley, CA, USA, 2006.

[12] S. Repp and C. Meinel, “Automatic Extraction of Semantic Descriptions
from the Lecturer’s Speech,” in Proc. 3rd ICSC, I. Press, Ed., Berkeley,
CA, USA, 2009, pp. 513–520.

[13] C. Brooks, S. Bateman, J. Greer, and G. Mccalla, Lessons Learned using
Social and Semantic Web Technologies for E-Learning. IOS Press,
2009, ch. 14, pp. 260–278.

[14] M. Hirota, S. Yokoyama, N. Fukuta, and H. Ishikawa, “Constrained-
based Clustering of Image Search Results Using Photo Metadata and
Low-level Image Features,” in Ninth IEEE/ACIS International Confer-
ence on Computer and Information Science Article. Yamagata, Japan:
IEEE Computer Society, 2010.

