
Establishing an Expandable Architecture for a Tele-Teaching Portal

Maria Siebert

Hasso Plattner Institut
Universität Potsdam
Potsdam, Germany

maria.siebert@hpi.uni-potsdam.de

Franka Moritz

Hasso Plattner Institut
Universität Potsdam
Potsdam, Germany

franka.moritz@hpi.uni-potsdam.de

Christoph Meinel

Hasso Plattner Institut
Universität Potsdam
Potsdam, Germany

christoph.meinel@hpi.uni-potsdam.de

Abstract—The complexity of web applications becomes a
big problem, when applications are growing. Especially if new
algorithms should be tested and compared, it is important to be
able to separate the newly implemented functions from the core
system. It is not enough to use standard frameworks to handle
this, but to plan a maintainable structure for the application.

This paper describes how a maintainable structure can be
planned and implemented by using the Django framework
while trying to avoid a big programming overhead.The new
architecture for the main features and its advantages and
disadvantages is described together with an example for a
rating plug-in. An outlook on the possibilities for future
developments using this architecture is provided as well.

Keywords-plug-in architecture, tele-teaching, Django, rating

I. INTRODUCTION

When designing a real world internet application, which

is used by a big amount of users, it is important to have a

stable basis to start with. It is important to assure at all time,

that the primary functions work well and extra functions do

not disturb the functionality.

As the tele-teaching portal is an academic project, it is

also important to be able to compare different solutions and

test new algorithm. For a tele-teaching portal there are two

main research fields. On the one hand there are all kinds

of interaction with the users. User interactions is one of

the aspects for future developments in web applications [1].

Therefore there has to be an easy solution for the integration

of community features like rating [2] or tagging [3]. Thereby

this function should be integrated into the core functionality

for a generation of a seamless usage experience.

On the other hand a lot of research focuses on improve-

ment of the search of data. For the implementation of search

algorithms for video lectures, a lot of meta data is needed.

This data can be generated from the audio and video data

[4] as well as be provided by the users. Even statistical data

can be used. There is a lot of research which integrates these

different approaches [5]. Nowadays a lot of implementations

using semantic web technologies [6] are proposed.

Therefore this paper will start with some information

about the application and a short definition of plug-ins.

Afterwards the two approaches for the architecture, without

and with plug-ins, are described and the advantages and

disadvantages of the usage of plug-ins are named. At the end

there is an overview of the future work, which is enabled

through the architecture.

A. About the tele-TASK Portal

The implemented tele-teaching portal tele-TASK1 pro-

vides a large amount of lectures and videos, most of them

held at the HPI. The videos are captured with one audio and

two video streams, allowing separated video streams for the

lecturer and the digital presentation. The capturing system,

which is used since 2002, allows to create a huge number

of recordings of lectures without much effort.

The video portal itself is the platform for providing

the generated video content to the whole world, allowing

everybody to view a high percentage of the lectures held at

our institute. Nearly 3000 lectures can be found. To make

it easier for the user to find videos about particular topics,

many of the lectures are split into handy video clips with

extra meta data.

All this data establishes a good basis for doing research

with real data and real users.

B. What is a Plug-in?

Many web-frameworks use the term plug-in, sometimes

also called add-on, even if they don’t offer anything which

could be named plug-in. That is a reason why many web

application developers have a wrong association for this

term. In this paper plug-ins are defined as in classical

software development.

A plug-in can be seen as a special interface description.

This interface defines some functions or classes, which can

be used by developers to extend the basic software. Big

software with a lot of options for usage, use this concept to

make their software more flexible. For example it is possible

to write plug-ins for the web browser firefox, to enhance the

functionalities of the web browser. There is even software,

like eclipse which consists of pure plug-ins[7].

These interfaces enable a developer to write functions,

which will automatically be included inside the system

without any further changes on the core system. However

1http://www.tele-task.de

9th IEEE/ACIS International Conference on Computer and Information Science

978-0-7695-4147-1/10 $26.00 © 2010 IEEE

DOI 10.1109/ICIS.2010.141

323

in the context of web applications the term plug-in is often

used for libraries, which can be “plugged in” a system and

used by the developer, which is not the original idea of a

plug-in.

In fact plug-in architecture means an inversion of control.

Not the author of the plug-in knows, when the plug-in is

used, instead the developer, who writes the interface for the

plug-in knows, what will be done with it and describes the

needed data and functions. But he does not have to know,

how these functions will be implemented. For example the

interface developer writes an interface for data enhancement.

He only knows, that he will get enhanced data, but he does

not know, who will do it and what exactly will be done.

This concept of plug-ins is known from many other

problems. Many projects[8][9] describe how they implement

their own plug-in architecture or use existing interfaces.

Nevertheless it is hardly known to web developers and most

big web frameworks do not include mechanisms for using

a plug-in architecture. So it is required to build it by hand.

II. CLASSICAL APPROACH FOR A TELE-TEACHING

PORTAL

The tele-TASK portal has been running for some years

now, and has undergone some major changes. In summer

2009 there was the chance to do a complete restart using new

technologies. This restart allowed to redesign the database.

On top of the experiences with the old portal, there was

also the decision to build more modules and separate the

functions. In this section at first there is a short description

of the used framework Django. Afterwards follows the

description how the project would have been built without

a plug-in architecture.

A. The Concept of Django

Django2 is an open source web application framework. It

is based on the python programming language and imple-

ments the MVC3 pattern. To be precisely it is called MTV-

pattern in Django, because the parts of the application are

named model, template and view.

These three terms describe the most important parts of

the Django system. The following short descriptions give an

overview of the characteristics of Django to understand the

following sections.

Models

Models are the representation of the data, which can

be stored in different types of databases. Therefore it is a

mapping of database tables to classes and table entries to

objects. Models also provide the possibility to add helper

functions. For example it is possible to create a function

which converts a date into another format.

2http://www.djangoproject.com
3MVC-Pattern: Design pattern: Model-View-Controller postulates the

separation of the application in data, program logic and display

They also help with the abstraction of some database

design pattern and hide overhead database tables, like con-

nection tables between two data tables.

Views

The task of the view is to collect the required data

and provide it. Therefore it is possible to create a string

containing the HTML code or use a template, which is

a HTML file with special template syntax. The second

approach is the usual one. Using templates, a view gets the

data from the models and prepares it for the template, which

will be rendered.

The views are also the access point for the URLs. In a

special config file there are definitions which URL will call

which view with the specified parameters. The config file

also provides the possibility to create abstract names for the

precise URLs, so that the developer does not have to know,

which URLs will be used in the end. The developers only

use the names for the URLs.

Templates

Normally templates are plain HTML files with a few

template tags for variable output and loopings over lists. It

is also possible to do some extra formatting on the variables

using filters, such as transforming the format of a time

stamp. Another possibility to extend templates is the usage

of template tags. With the help of these tags, it is possible

to insert every type of function inside the template.

Internally in Django, templates are interpreted as trees,

consisting of different nodes. Each template tag creates a

new node in the tree. It is possible that these template tags

are nested. Thus a complex tree of tags can be produced.

Because of this structure, each template tag has to produce

exactly one node which implements a render function.

Furthermore it is allowed, that this generated template node

contains other template nodes as children.

B. Structure of a Modularized Application for the tele-TASK
Portal Without a Plug-in Architecture

When designing an application it is a good concept to

create modules for the different tasks. An important feature

of these modules is access limitation and loosely coupling.

As we tried to separate the modules by tasks, the result was

modules like the login and profile managing module mytt,

the search module or the module for rating (see figure 1).

Using a non-plug-in solution, there will be a bidirectional

connection between almost all modules.

This happens because on the one hand the core pages

including the main entrance page of the application need

to have references to the enhancement modules pages, so

that the user of the application can reach all functions. A

case in point is the search dialogue on the main page for

an easy access of the search function. It is also possible

that additional modules provide information, which should

324

core

search rating

mytt

Figure 1. Extract of the structure without using plug-ins

be displayed on the core pages. For instance the ratings of

a lecture should be visible and perhaps editable on the page

of the lecture.

On the other hand the additional modules have to use the

data of the basic modules. It is obvious that most modules

use the data of videos or lectures for their own functions.

They will also use functions of the core module for editing

and displaying the data to get a consistent application.

The modules do not only communicate with the core

module, but also with each other. For example there will

be a search for play lists included inside the normal search

for lectures and videos. It should also be possible to order

the search results using the ratings of the content. The

mytt module will be required as connection point by every

other module, which provides special functions for logged-in

users.

The resulting problem is, that for every new module you

have to change existing other modules. It is obvious, that

this will exponentially increase the complexity of the whole

application. It is also not possible to remove a module or

exchange it without touching the other components.

III. CONCEPT FOR A PLUG-IN ARCHITECTURE

The idea for the extendable application is, that the basic

modules do not have to know anything about the specialized

modules. In the end there will be a hierarchy of modules like

in figure 2.

core

utils

search

rating

mytt

Figure 2. New structure of modules with plug-ins

As you can see, only specialized modules use data and

interfaces of the more common modules. The basic modules

only provide plug-in points, which can be used by the

specialized modules.

With this structure there is no problem extending the

application with new functions without touching any of the

core modules. It is also easily possible to remove a plug-in

module, which is not needed by any other modules, therefore

is a leaf of the hierarchy tree.

To get such a structure, two changes of the concepts

are needed. The first one is the extension of the views,

by providing an interface for templates and a plug-in class

mechanism. The second one is a design approach for the

extension of data.

A. Extending the view

Django has no built-in concept for designing plug-ins

for extending the views. It is a task for the developer to

implement his own plug-in system.

A good approach to start with is to look at the program-

ming language Python, in which Django is implemented. In

Python there are a lot of ideas on how to design a plug-

in system. An easy solution is to use the knowledge of a

class about its subclasses. With this idea, everything you

need is just a base class, which is capable of querying all

its subclasses. An implementation of this approach can be

found in listing 1.

1 class PluginBase(type):
2 def __init__(cls, name, bases, attrs):
3 pass
4

5 def get_plugins(self):
6 plugins = list()
7 for sc in self.__subclasses__():
8 plugins.append(sc)
9 add = sc.get_plugins()

10 for s in add:
11 plugins.append(s)
12 return plugins

Listing 1. Simple version of class PluginBase

This listing contains only a small snippet. Of course it is

better, to do some extra checking if the subclass is really

suitable and well formed.

1 import settings
2

3 for installedApp in settings.INSTALLED_APPS:
4 try:
5 __import__(installedApp + ".plugins")
6 except Exception, e:
7 [...]
8

9 # Find template names of plug-ins
10 [...]

Listing 2. Function for loading plug-ins

The problem is, that a class has knowledge only about

those subclasses which have been used or included some-

where in the application. So the most convenient way

to assure all subclasses are known is initializing them

325

when starting the Django server. Therefore we use the

INSTALLED APPS setting (see listing 2), which contains

all available modules and is used for other initializations as

well.

Then every known plug-in is accessible and can be used

inside a Python function or class. For addressing a plug-in

from the template it is required to write a special template

tag.
Preparation for template tags: A template tag is a func-

tion which returns a template node object. These objects

offer the necessary render function, which usually creates

HTML data for displaying inside the web browser.

1 class PluginTemplateNode(template.Node):
2 pluginTemplateName = "base"
3

4 def __init__(self, data, tName = ’’):
5 if data:
6 self.data = template.Variable(data)
7 else:
8 self.data = None
9 self.templateName = tName

10

11 def render(self, context):
12 data = None
13 if self.data:
14 data = self.data.resolve(context)
15 if self.templateName and len(self.

templateName) > 0:
16 t = get_template(self.templateName)
17 return t.render(context)
18 return ’’
19

20 __metaclass__ = PluginBase

Listing 3. class PluginTemplateNode

Therefore it is important, that each plug-in class, which is

used for a template plug-in, inherits from the template node

class. So it is convenient to write a base class like Plugin-

TemplateNode (see listing 3), with some handy functions,

which uses PluginBase as meta class.

1 {% show_plugin ’LectureInfo’ lecture %}

Listing 4. Using plug-ins inside templates

The class variable pluginTemplateName is used, to get a

unique identifier for using in the template tag. In listing 4

the usage of a plug-in for additional infos about lectures

is show. The corresponding PluginTemplateNode class will

have the value LectureInfo for pluginTemplateName.

Because plug-ins can create more than one template node

but only one template node is allowed to be returned by a

template tag, it is the easiest solution to have a template

node which collects all of the plug-in template nodes and

renders them, when its own render function is called (see

listing 5).

With these two classes a general template tag can be writ-

ten easily by retrieving all plug-in classes which inherit from

PluginTemplateNode and append them to a PluginColNode
object, which will be returned by the template tag.

1 class PluginColNode(Node):
2 def __init__(self):
3 self.plugins = list()
4

5 def append(self, node):
6 self.plugins.append(node)
7

8 def render(self, context):
9 renderresult = ’’

10 for p in self.plugins:
11 if isinstance(p, PluginTemplateNode):
12 res = p.render(context)
13 if res is not None:
14 renderresult = renderresult + res
15 return renderresult

Listing 5. class PluginColNode

B. Extending the Models

It is not enough to only extend the view of the application,

because it is a normal use case to have additional data. The

normal database approach is to construct a new table and

add a foreign key to the existing table to connect the data.

As long as you only want to extend one table this is a valid

construction. If you want to extend more than one table with

the same feature you have to use a generic relation (see

figure 3).

Table1
ID

some attributes

...

Table2
ID

some attributes

...

GenericObjectTable
ObjectTyp

ObjectId

some other attributes

...

ManagementTable
ID

NameOfTable

Figure 3. Database structure for generic relations

This concept, which is part of the Django distribution,

allows to create a foreign key to multiple database tables by

saving the type of the table and the id of the object. Because

Django handles all database requests, the database structure

and the management table are invisible to the application

developer and generic foreign keys can be used almost like

normal foreign keys.

C. Example: Rating-Functionality as Use Case for Plug-ins

The rating functionality is one feature that ought to be

implemented as plug-in in a tele-teaching portal, because

it is no core functionality and should therefore only be

implemented in a module that can be switched on to work

with the core application (see figure 4). In the context of

the rating of media items rating is the quantification of the

personally perceived quality of an item.

326

Figure 4. on the top: rating disabled - thereunder: rating enabled

In the tele-teaching context there are several layers where

rating can be applied. Usually a tele-teaching portal consists

of lecture recordings that are mostly embedded in a larger

context, for example the course which runs a whole semester.

Furthermore the lectures are often subdivided into smaller

pieces. This is done in order to facilitate the usage of mobile

players where the content needs to be downloaded, for

pod-casting and also to simplify a more precise meta-data

collection and search. As all the three layers include tele-

teaching content, all of them should be rateable individually.

A rating will be stored in the database with the help of

a new model that extends the core model base. The model

rating combines the information of the rated content item,

information about the user who posted the rating, the date

when it was posted and the value of the rate (see figure

5). The content item is referenced via the combination of

contentType and objectID. This so-called generic foreign key

enables a flexible referencing of different content types on

the application. That results in a rating functionality that

could easily be adapted to not only work with series, lectures

and segments but also with new content types like play lists.

Lecture
ID

some attributes

...

Series
ID

some attributes

...

Rating
contentType

objectId

rating

profile

Segment
ID

some attributes

...

Figure 5. Database structure for rating

There are multiple places where the ratings can be used

to enhance the user interface. The result of the rating should

be shown in all places where the content items that can be

rated are previewed, like the search page and overview pages

in the video archive and its categories. The possibility to

rate should also be given on all pages related to the content

item, like the lecture details page and the video display page.

This is necessary to ensure easy access and visibility of the

functionality for the users. The rating interface checks the

login status to forbid participation of anonymous users.

For the users to manage their actions in the personal area

of the portal, called MyTT, an interface for managing ones

own votes is required. Deleting and altering of votes should

be allowed here.

The functionality for all plug-ins is implemented by

extending the core view collection with new views. An

interface from which all plug-ins might inherit is imple-

mented within the core part of the application. There are

two different plug-ins that offer the display of rating results

and the rating interface with one interface implemented in

the core application for each of them. One plug-in only

displays a smaller version of the rating results on overview

pages (see image 4). The second plug-in implements both a

normal-sized display of the results and the rating interface.

It is used on all detail pages for content items and videos.

The integration of the functionality into the standard

templates works via the usage of template tags. At the place

where the output of the rating is supposed to appear, a

template tag which calls the rating plug-in and passes the

content item whose rating should be displayed is included

(see listing 6).

1 <div class="ratings">
2 {% show_plugin ’Rating’ lecture %}
3 <div>

Listing 6. Integration of the rating plug-in via template tag

MyTT offers its own plug-in interface for the integration

of sub-pages. One interface function realizes a menu link in

MyTT, the other a visual link button in the interface. Both

link to the plugged-in sub-page. Two rating plug-ins inherit

from these functions to integrate the ”Manage my Ratings”

interface into MyTT.

IV. ADVANTAGES AND DISADVANTAGES

As every technology plug-ins have their advantages and

disadvantages and it depends on the use case if it is a good

choice to use them. We gained these facts by collecting the

experiences of the 10 developers in our teams, who started

with different knowledge about architecture.

The following disadvantages became apparent within the

project:

• Learning Tasks: The time for orientation is increased.

A new developer has to learn the basic concepts of

plug-ins and must be taught to follow the rules for new

implementations. Therefore higher development skills

are needed.

327

• Overhead for small tasks: A small link can need a

whole function or class to be implemented instead of

just changing the HTML file.

• High complexity for small projects: If there are only

one or two functions, which are capable for plug-ins

and it is known, that the application won’t grow, plug-

ins are not needed.

On the other hand there are a lot of advantages:

• Easy on and off switching of functionality: If any plug-

in produces errors, it can easily be disabled. Disabling

defective plug-ins works automatically as well. It is also

possible to replace functions with better implementa-

tions.

• Different status for development and running system:

It is possible to develop functions and have the code

inside the project, but to disable them for the live

application.

• Module separation: The modules are separated, there-

fore it is easier to outsource some tasks, by defining

the interfaces. Furthermore this allows the production

of smaller and larger versions of a system without any

changes in the implementation.

• Less knowledge of the system needed: Developers for

plug-ins need no knowledge of the core system, they

only need the specification for the interfaces, they are

using. This reduces the learning effort. So for bigger

projects this overcompensate the time for understanding

the plug-in concept.

• Decreasing complexity: In bigger projects the design

overhead is relatively small. Furthermore it saves redun-

dant tests inside the templates and views and decreases

complexity of the project.

• Smaller influence on the different development tasks:

Because not every developer has to use every plug-in

it is easier to ignore developments in the initial stage.

In our project, we concluded, that the few disadvantages

do not outweigh the advantages. It needs some time for the

developers to get used to the paradigms. After that phase

the developers think in a different way when designing their

modules and would hardly miss the possibilities they gained.

V. CONCLUSION AND FUTURE WORK

The actual implementation has been integrated into the

portal and is used for over half a year now. The next step is to

encapsulate the functionality of plug-ins into an easy-to-use

project, which can be used project-independent. This project

will be shared with the Django community. This would

allow to gain more experiences with the plug-in architecture.

These experiences should be collected so it can be checked,

whether this approach is capable for other projects as well.

Also one project team at our research group is waiting to

test the architecture themselves.

Aside the plug-in architecture should be a a tool for future

work. There are a lot of ideas, whose implementation is

enabled through the architecture.
A big task is the implementation of the basic search

features. There are two points, where plug-ins are needed.

First there are a lot of different types of objects, which can

be searched. In the core system there are series, lectures,

segments and persons, but later there must be also a search

for play lists or other data.
The second point is the definition of how the search should

work. The core search will be capable to search the core

meta data of a lecture or series. But with more meta data

generated in different ways, like audio or OCR analysis, it

is important to enhance the possibilities of the search engine

and to improve the queries.
When this base search functionality is implemented, it

should be used for further enhancements on the base of the

different types of meta data available. It is planned to give

more information about relations between different lectures

or series.
There will be also other possibilities opened up by plug-

ins, like the embedding of more community features, which

will give new approaches for research. We plan to allow the

users to provide more meta data using tags and to evaluate,

if this data is useful for enriching the user experiences of

the portal.

REFERENCES

[1] M. Jazayeri, “Some trends in web application development,” in
FOSE ’07: 2007 Future of Software Engineering. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 199–213.

[2] F. Moritz, M. Siebert, and C. Meinel, “Community rating
in the tele-lecturing context,” in Proceedings of the IAENG
International Conference on Internet Computing and Web
Services (ICICWS’10). Hong Kong: IAENG, 2010.

[3] D. Liu, X.-S. Hua, L. Yang, M. Wang, and H.-J. Zhang, “Tag
ranking.” in WWW, J. Quemada, G. León, Y. S. Maarek, and
W. Nejdl, Eds. ACM, 2009, pp. 351–360.

[4] S. Repp, A. Gross, and C. Meinel, “Dynamic browsing of
audiovisual lecture recordings based on automated speech
recognition.” in Intelligent Tutoring Systems, ser. Lecture Notes
in Computer Science, B. P. Woolf, E. Aı̈meur, R. Nkambou,
and S. P. Lajoie, Eds., vol. 5091. Springer, 2008, pp. 662–664.

[5] M. G. Noll and C. Meinel, “The metadata triumvirate: Social
annotations, anchor texts and search queries.” in Web Intelli-
gence. IEEE, 2008, pp. 640–647.

[6] J. Waitelonis and H. Sack, “Augmenting Video Search with
Linked Open Data,” in Proc. of Int. Conf. on Semantic Systems
2009, i-Semantics 2009, 2009.

[7] D. Birsan, “On Plug-ins,” Queue, no. March, 2005.

[8] N. Pinkwart, “A plug-in architecture for graph based collabo-
rative modeling systems,” in Shaping the Future of Learning
through Intelligent Technologies. Proceedings of the 11th Con-
ference on Artificial Intelligence in Education, F. V. . J. K. U.
Hoppe, Ed. Amsterdam: IOS Press, 2003, pp. 535–536.

[9] R. T. Fielding and R. N. Taylor, “Principled design of the
modern web architecture,” ACM Transactions on Internet Tech-
nology, vol. 2, no. 2, pp. 115–150, 2002.

328

