
published as: Thomas Staubitz, Hauke Klement, Jan Renz, Ralf Teusner, Christoph Meinel: Towards Practical Programming Exercises and
Automated Assessment in Massive Open Online Courses, In Proceedings of 4th Annual IEEE International Conference on Teaching,

Assessment, and Learning for Engineering (TALE), 10-12 December 2015, Zhuhai
2015 ANNUAL IEEE INTERNATIONAL CONFERENCE ON TEACHING, ASSESSMENT, AND LEARNING FOR ENGINEERING

Towards Practical Programming Exercises and

Automated Assessment in Massive Open Online
Courses

Thomas Staubitz1, Hauke Klement2, Jan Renz1, Ralf Teusner1, Christoph Meinel1
Internet Technologies and Systems

Hasso Plattner Institute, University of Potsdam
Potsdam, Germany

1Firstname.Lastname@hpi.de, 2Firstname.Lastname@student.hpi.de

Abstract—In recent years, Massive Open Online Courses
(MOOCs) have become a phenomenon presenting the prospect of
free high class education to everybody. They bear a tremendous
potential for teaching programming to a large and diverse
audience. The typical MOOC components, such as video lectures,
reading material, and easily assessable quizzes, however, are not
sufficient for proper programming education. To learn
programming, participants need an option to work on practical
programming exercises and to solve actual programming tasks. It
is crucial that the participants receive proper feedback on their
work in a timely manner. Without a tool for automated
assessment of programming assignments, the teaching teams
would be restricted to offer optional ungraded exercises only. The
paper at hand sketches scenarios how practical programming
exercises could be provided and examines the landscape of
potentially helpful tools in this context. Automated assessment
has a long record in the history of computer science education.
We give an overview of existing tools in this field and also explore
the question what can and/or should be assessed.

Keywords—MOOC, Massive Open Online Courses,
Programming, Assessment, Automated Assessment

I. INTRODUCTION AND MOTIVATION
Massive Open Online Courses (MOOCs) provide a scalable

and socially interactive learning experience. High-quality
courses, covering various subjects, are made freely available to
anyone connected to the Internet. MOOCs 1 have a tremendous
potential to introduce a large and diverse audience to the basics
of programming. Introductory courses in CS and engineering,
which are already offered by the majority of MOOC providers,
are regarded to be an adequate means to attract students into

1In general, the literature differentiates between cMOOCs and xMOOCs. We
use the term MOOC in short for xMOOC. For a detailed distinction between
cMOOC and xMOOC please see e.g.
https://eleed.campussource.de/archive/10/4074

the subject [43]. Other courses aim at introducing teachers to
new topics that can improve the appeal of their teachings [27].
In our own experience introductory programming courses
attract large amounts of participants from all ages and all
backgrounds. At the time of writing, we have offered two
programming courses aiming at beginners. One in Python,
another in Java. The Python course was marketed as a course
for school children but in the end attracted participants from
age 11 to 82. Within the scope of an initiative to create new
jobs in the digital sector, the European Commission published
a study [11] investigating the demand and supply of MOOCs
related to web skills. Results of an associated survey show that
IT professionals consider MOOCs the best way to learn such
abilities. The responses to the survey also indicate that learners
are less interested in theoretical content but value practical
experience. According to the study, neither the standard
formulas of academic courses nor the prevalent MOOC format
are optimal for teaching web-related skills. Instead, survey
participants noted the importance of learning-by-doing
practices. Berges et al. [8] report that in courses on object
oriented programming (OOP) students show radical differences
in the way several groups of concepts are grasped. Particularly,
they differentiate between the students understanding of these
concepts and their ability to apply them practically. Learning to
program does not only involve acquiring complex knowledge
but also related practical skills [35]. Therefore, gaining
programming expertise requires rigorous practice [43].

Programming assignments can help students to become
familiar with programming languages and tools, and to under-
stand how the principles of software design and development
can be applied in practice [12]. On-campus programming
courses usually make use of practical assignments that build up
on theoretical content presented in lectures. These assignments
are regarded to be an indispensable part of the educational
framework [32] and are used for assessment by the majority of

CS academics [39]. According to Feldman and Zelenski [16]
the major part of students’ learning outcomes in a beginners’
programming course originates from completing programming
projects. The most important deficits of novice programmers
relate to designing problem solutions and express them as
actual programs. Frequent practical programming exercises are
a common way for addressing these issues [35]. A complete
solution to a programming task is considered to be an
important step in building the confidence of student
programmers [12]. These are just a few examples that indicate
the importance of practical exercises in different areas of
programming education.

Traditionally, MOOCs are composed of video lectures,
reading material, and assessment tools that are limited to a set
of automatically gradable assignment types, such as quizzes.
However, these means are not sufficient for teaching
programming, which requires practice, feedback, and code
assessment. According to Neuhaus et al. [32], the current
generation of MOOC platforms is well suited for presenting
teaching material, but it provides only inadequate possibilities
for hands-on experiments. Supported assignments are
essentially non- interactive and do not allow a step-by-step
development of solutions. However, in order to enable a more
holistic learning process, MOOCs need to integrate activities
that allow active experimentation and that relate to concrete
experience [20]. Willems et al. [48] state that the
implementation of systems that allow the assessment of
practical exercises can be a great challenge for course creators
and platform designers. Nevertheless, the authors see the
ability to offer classes with a high share of practical tasks and
assignments as a key feature of MOOC platforms, which will
have a crucial impact on a platform’s competitive position.

In order to provide an attractive and supporting platform for
teaching programming to the masses, MOOCs have to fit the
requirements of programming education. While MOOCs can
deliver course contents to tens of thousands of students,
providing appropriate tools for practice and offering assessable
practical programming assignments usually exceeds their built-
in capabilities.

Our general research examines the question how to extend
MOOC platforms in order to provide richer technical support
for hands-on learning and collaboration, which are key aspects
in terms of addressing the criticism that MOOCs, too often, are
based on questionable teaching strategies, such as behaviorism
[4], [37].

In this context, the paper at hand defines a starting point
regarding the question how MOOCs can integrate practical
programming assignments in a manner that meets the demands
of novice programmers, provides an efficient and easy-to-use
solution for the teaching teams, and satisfies the inherent
scalability requirements of large-scale e-learning environments.
We sketch the landscape of existing tools that are potentially
helpful in addressing the tasks of providing practical
programming exercises and automated assessment.
Furthermore, we explore the literature on the long record of
automated assessment solutions in the history of computer
science education

II. COMPONENT LANDSCAPE
We identified basically four fundamentally different

scenarios to provide practical programming tasks with
automated assessment in MOOCs.

• Scenario 1: The user installs some sort of development
software locally. The platform only provides the
description of the exercise and, if necessary, required
additional materials. The user in return uploads her
solution to the platform for automated assessment.  

• Scenario 2: Instead of using locally installed
development software, third party online coding tools
are employed. Apart from that, scenario 2 is identical
to scenario 1.  

• Scenario 3: The platform itself features a development
environment. Exercises are provided and assessed in
this environment. Code execution and assessment is
handled on the server side.  

• Scenario 4: Identical to scenario 3 except for client-
side code execution.  

Each of these scenarios has its benefits and drawbacks. The
main benefit of scenario one, two, and four is that there are
hardly any scalability problems as execution is handled on the
client-side and assessment can be handled asynchronously. For
courses addressing beginners, scenario one could benefit from
employing specialized coding tools with an educational
background, such as BlueJ2 or Greenfoot3. For courses
addressing more advanced target groups, scenario one would
enable the participants to work with their preferred and familiar
tools. The main drawback of scenario one, particularly for
beginner’s level courses, is the heterogeneity of operating
systems, code editors, IDEs, compilers, interpreters, additional
libraries that need to be installed, which is predestined to cause
an increased amount of support requests that can hardly be
handled. This effect can be diminished by providing a virtual
machine that already contains all required prerequisites.
Scenario two needs to take in consideration that the third party
tool should be prepared for sudden increases of user numbers,
when promoted in a MOOC. Another major drawback of the
first and the second scenario is that only the final results of the
participant’s development process will be stored at the server to
be analyzed in post course research projects. A major benefit of
scenarios three and four is that they allow collecting partial
solutions and reproducing the iterations of a learner’s
development cycle. This can provide valuable insights into
students’ problem-solving strategies.

The following discusses the four scenarios in more detail
and introduces some tools that might be helpful or inspiring for
one or the other of these scenarios.

Web-based development tools as suggested in scenario two,
three, and four provide homogeneous, installation-free
development environments. By eliminating the need for setup
and configuration, they lower students’ barriers to start
programming [45]. Since participants of a MOOC already have

2 http://www.bluej.org/
3 http://www.greenfoot.org/door

access to a web browser, web-based development tools are
virtually predestined in this context [51]. Furthermore, the
web-based nature of MOOC platforms enables a tight
integration of web-based special-purpose tools. Web-based
development environments can either be provided by bringing
dedicated tools into operation (scenario three and four) or by
leveraging third-party tools that are already existent (scenario
two).

Dedicated development tools are supplied as tightly
integrated parts of the MOOC platform. Tight integration can
also be achieved if the development tool is only loosely
coupled with the platform, e.g. by employing the Learning
Tools Interoperability (LTI)4 standard for data exchange
between MOOC platform or Learning Management System
(LMS)5 6. Embeddable JavaScript code editors, such as Ace7
and CodeMirror8 could serve as the basis for such a dedicated
development tool. They offer rich code editing capabilities that
are comparable to those provided by native desktop editors.

Dedicated development tools can be distinguished based on
their approach for the execution of learners’ code. Student-
written code is either executed in the client’s web browser or
transmitted to the server for remote execution.

Executing a learner’s code on her own machine is a
resource-efficient approach since no server-side resources are
claimed for code execution. Furthermore, there is no need for
security considerations in terms of dealing with potentially un-
trustworthy code. Moreover, since no client-server round trips
are involved, client-side code execution promotes interactivity
and avoids potential delays during high-demand periods before
assignment deadlines [28]. Using the learner’s web browser as
execution platform is particularly suitable for teaching client-
side web technologies, such as Hypertext Markup Language
(HTML), JavaScript, and Cascading Style Sheets (CSS), since
interpreters for these languages are built into browsers. The
major drawback of client-side code execution is its limitation to
browser-supported programming languages and APIs as well
as special JavaScript-based derivatives of non-native
languages, such as ClojureScript9, Opal10, and Skulpt11, which
are in-browser implementations of Clojure12, Ruby13, and
Python14 .

Compared to its client-side equivalent, server-side code
execution offers much more flexibility since the set of
executable programming languages is virtually unlimited.

4 http://www.imsglobal.org/toolsinteroperability2.cfm
5 LTI is supported by a wide variety of LMS.
6 http://www.imsglobal.org/cc/statuschart.cfm
7 http://ace.c9.io/
8 http://codemirror.net/

9 http://clojurescript.net/
10 http://opalrb.org/ 
11 http://www.skulpt.org/
12 http://clojure.org/
13 https://www.ruby-lang.org/
14 https://www.python.org/ 

Moreover, code evaluation for both exploration and assessment
is performed in one place and can use the same procedure.
Additionally, sending partial solutions for execution to the
server allows reproducing the iterations of a learner’s
development cycle and can provide valuable insights into
students’ problem-solving strategies. The advantages of server-
side code execution come at the cost of increased
computational load and feedback latency. Furthermore, careful
security considerations are necessary.

Web-based development tools can also be realized without
the need for self-hosted solutions. Instead of providing
dedicated development environments and allocating platform
resources, programming MOOCs can leverage third-party
services for several or even all aspects of the development
process [17], [39]. Software as a Service (SaaS) and Platform
as a service (PaaS) providers typically offer free plans for
starters, which fit the needs of MOOC participants and can
provide the tools that are needed for practical programming
assignments. For instance, novice programmers’ demands
could be covered based on third-party services by leveraging
Cloud915 as a web-based IDE, GitHub16 for code hosting and
issue tracking, Heroku as execution platform, and Travis CI17
for continuous testing.

Not only does this approach save the resources of the e-
learning platform, but it also enables learners to gain practice in
working with tools and services that are used by professionals.
According to Fox and Patterson [17], deploying their projects
in the same scalable environment as used by professional
developers supplies learners with valuable experience.
Moreover, the approach can provide students a feeling of
accomplishment when shipping working code that can be used
by people other than their instructors. Relying on freely
available online services involves the drawbacks that learners
are required to register with third-party companies, that
individual tools are spread over different platforms, and that
MOOCs following this approach are highly dependent on the
availability and reliability of external parties.

Third party educational web-based tools, such as Code-
wars18 and CodingBat19 can assist the teaching teams as they
already supply collections of practical programming problems
to be solved in the web browser. These tools do not provide a
course framework, but they can support novices on their way to
mastery by offering an engaging opportunity to practice.

Educational programming games are designed to maximize
the appeal of learning to program. Learners’ motivation is
raised by using inciting game elements, such as increasingly
challenging levels, scores, and leaderboards. CodeHunt20 [41]
is a web-based coding game, aimed at teaching programming at
scale. It challenges students to complete skeletal methods,
given in either Java or C#, so that they satisfy a hidden

15 https://c9.io/ 
16 https://github.com/
17 https://travis-ci.org/
18 http://www.codewars.com/
19 http://codingbat.com/ 
20 https://www.codehunt.com/

specification, which is only given by input/output (I/O) pairs.
Similarly, Xiao and Miller [50] describe a multi-player online
programming game that is aimed at teaching novice CS
students’ best practices for collaborative programming in large
software projects.

Online development tools such as CodePen21, jsFiddle22,
and repl.it23 have no primary educational objective, they pro-
vide developers with in-browser programming environments
for impromptu development and execution of short programs.
Such platforms’ use cases include trying out libraries, con-
structing minimal programs for troubleshooting, and sharing
code snippets. While CodePen and jsFiddle focus on the
combination of Javascript, CSS, and HTML, repl.it supports a
little wider variety of languages.

Full-featured web-based integrated development environ-
ments (IDEs) are mentioned in research [1], [19], [47], [49] and
are available as open-source software or hosted solutions, for
example by Cloud924, Codio25, and Nitrous.IO26. Web- based
IDEs usually make use of traditional desktop user interface
(UI) patterns, such as menu bars, file trees, content tabs,
context menus, and drag-and-drop operations. Besides
sophisticated code editing capabilities, such applications’
features may include customizability, project management,
version management, and full Linux environments for building
and executing applications. Since computationally intensive
tasks are performed on a remote server, low-end PCs and
mobile devices can be used as development machines.

Web-based IDEs often facilitate the deployment of
applications to infrastructures supplied by PaaS providers, such
as Google App Engine27, Heroku28, and Microsoft Azure29.
Therefore, anybody with modest software development skills is
able to deploy applications to the Cloud with small effort and
low budget [1].

Another feature that is predestined for web-based IDEs is
collaborative editing, as known from Etherpad30 and Google
Docs31. Multiple developers who are working at the same time
are provided with a consistent view of a project since they
receive real-time updates of their collaborators’ changes.
Collaborative coding facilitates side-by-side pair programming,
benefits communication and team knowledge sharing, and may
increase productivity and software quality [19].

21 http://codepen.io/
22 https://jsfiddle.net/ 
23 http://repl.it/ 
24 https://c9.io/ 
25 https://codio.com/ 
26 https://www.nitrous.io/

27 https://appengine.google.com/
28 https://www.heroku.com/ 
29 http://azure.microsoft.com/ 
30 http://etherpad.org/
31 https://docs.google.com

III. AUTOMATED ASSESSMENT
Design Challenges—High-quality assignments are seen as

a vital part of a successful course [16]. While manual
assessment allows compensating for poor assignment design,
the use of automated assessment techniques increases the need
for carefully designed assignments [33]. The creation of
automatically assessable programming assignments is
considered a challenging task that requires special attention [2].
Whereas automated assessment saves instructors’ time by
outsourcing formerly manually performed grading activities, a
considerable amount of the gained time should be allocated for
designing and implementing resources for automated
assessment. While efforts may only be shifted from grading
activities to design activities for small class sizes, the trade-off
increasingly shows its strengths with rising student numbers.
Whenever assessment is performed without human
intervention, the assignment specification should be provided
as unambiguous as possible. Ambiguous specifications permit
different interpretations, which can lead to technically valid
student solutions being rejected by an automatic grader. Within
programming, interpretation is key to success, which is why
assignment instructions must guide interpretation precisely for
successful automated assessment [12]. In contrast, careless
formulation of assessment criteria can result in improper
assessment [33]. Therefore, ambiguity must be minimized in
order to increase fairness and quality of assessment [34].
Cerioli and Cinelli [9] even regard an extremely precise
problem specification, which allows a completely predictable
behavior of implementations, as a prerequisite for automated
grading based on functional correctness. However, a
reasonable balance between the risk of misinterpretation and
excessive detail has to be found because wordier specifications,
which point out every detail, can result in trivial assignments
lacking any demand to reason about the problem [34]. Besides
addressing the problem of ambiguity, the definition of
pedagogically sound test cases is a time-consuming activity [9]
that requires both expertise and experience [43]. Pieterse [33]
names test data ”the Achilles’ heel of any system that applies
automated assessment of programming assignments”. In order
to enable accurate assessment and prevent incorrect solutions
from passing the evaluation, tests must be designed well.
Otherwise, learners might submit deficient solutions but remain
unaware of their incorrectness.

Approaches—for performing automated assessment of
programming assignments can be categorized into dynamic
approaches, which require execution of the program under test,
and static approaches, which do not. While most approaches
focus on evaluating the functional completeness and correct-
ness of a program, others aim at evaluating aspects of quality
and style.

I/O-based Assessment–refers to assessing a program solely
by using a standard I/O interface. The program under test is
supplied with predefined values and is verified to produce
expected output values. The advantage of this approach is its
versatility. I/O-based assessment can be applied to any
program using an I/O interface and to any programming
language that can be executed on the same test environment
[24]. Moreover, test cases may be reused across multiple
languages since a universal interface is sufficient for their

execution. A shortcoming of the approach is that it may fail to
give an appropriate mark if a student program’s output does not
exactly match the expected format [33]. Therefore, I/O- based
assessment techniques are not usable if strict format
requirements are not feasible or if freedom in formatting should
be allowed. However, implementing I/O handling that is robust
to irrelevant output differences, such as whitespace and
orthographic mistakes, is a challenge [12]. Due to lacking
insights into the inner mechanics of a code submission, I/O-
based assessment is limited to testing side effects that are
exposed in the form of program output. For the same reason,
I/O-based assessment is not qualified for providing the learner
with feedback regarding why her submission deviates from the
specification.

Assessment Using Industrial Testing Tools–In-depth feed-
back can be provided by utilizing industrial-strength testing
tools and frameworks. Such tools are widely used, are actively
developed, and can supply deeper insights into the program
under test. Since testing is an established practice in industry,
myriads of testing frameworks exist for virtually every
programming language and application domain. Ihantola et al.
[24] name three classes of industrial testing tools that are used
by automated assessment systems: xUnit-based frameworks,
acceptance testing frameworks, and web testing frameworks.
xUnit is a collective term for numerous testing frameworks that
derive their design from SUnit [5], an influential testing
framework for Smalltalk, which is considered ”the mother of
all unit testing frameworks” [13]. Widespread xUnit deriva-
tives include CUnit32 for C, HUnit33 for Haskell34, and JUnit35
for Java. These language-specific testing frameworks enable
assessment techniques that can evaluate the functionality of
entities smaller than a complete program, such as single
classes, methods, and even statements [2].

Acceptance testing–refers to an industrial testing technique
that is based on customers specifying test scenarios that have to
be passed so that user stories are considered to be correctly
implemented. This testing approach helps customers and
developers to foster a common understanding of how software
under development should work once it is finished. Acceptance
testing frameworks, such as Cucumber36, FitNesse37 , and
Lettuce38, usually rely on easily understandable plain-text
domain-specific languages (DSLs), similar to natural language.
This allows non-technical stakeholders to contribute their
domain knowledge by providing scenarios that specify
navigation through the application, inputs to the application,
and expected outputs [17]. Scenarios are turned into executable
tests whose successful execution is to be achieved. When used
for student assessment, acceptance testing offers the advantage
that a single specification can serve as both assessment basis
and exercise instructions since it is given in easily
understandable form and expected to be complete. Web testing

32 http://cunit.sourceforge.net/
33 http://hunit.sourceforge.net/
34 https://www.haskell.org/ 
35 http://junit.org/
36 http://cukes.info/ 
37 http://www.fitnesse.org/ 
38 http://lettuce.it/ 

frameworks, such as Selenium39 and Watir40, are useful tools
for assessing web application exercises. Instead of accessing
low-level application programming interfaces (APIs), web
testing tools test web applications using their public web
interfaces. This can either be done by controlling a real web
browser in an automated fashion or by simulating a web
browser by means of Hypertext Transfer Protocol (HTTP)
requests.

Assessment of Testing Skills–Modern software development
processes, such as Scrum [38] and Extreme Programming (XP)
[6], promote test-first practices, which help to discover design
flaws as early as possible in the development cycle and
underline the value of regression tests for continuous delivery.
When novice programmers are assessed using traditional
automated approaches, they are neither encouraged nor
rewarded for performing testing themselves since an automated
grader verifies their programs’ correctness anyhow. As a result,
learners might not reflect upon the behavior of their code, but
they might solely focus on providing a solution that satisfies
the automated approach [14]. However, efficient automatic
testing approaches should not invite students to get careless.
Instead, students should learn to design and test their programs
thoroughly before submitting them [2]. In this sense, Edwards
[14] argues that students need to acquire software testing skills.
He suggests exposing students to test-driven development
(TDD), so that they perform more testing and eventually
appreciate its value for the development process. Moreover, a
testing-oriented assessment approach empowers students with
the responsibility of demonstrating their own programs’
correctness and validity. As a result, the learning experience is
enhanced and learners produce higher-quality code. According
to Pieterse [33], the application of test-based assessment
combined with training in software testing can provide a
learning experience where students learn to favor robust and
precise solutions over improvised ones. The term meta testing
refers to a test-based assessment approach that evaluates
students’ software testing skills. Instead of providing learners
with prepared tests, be it explicitly as visible part of an exercise
or implicitly as the basis for program evaluation, this approach
demands learners to write tests themselves. They are required
to submit working program code along with proper tests.
Grading can be based on judging the extent to which the
student-written code fulfills the accompanying tests, the tests’
level of quality, and the fraction of code covered by tests.
Additionally, the teacher might incorporate her own tests into
the assessment in order to validate that the student’s
submission indeed satisfies the exercise specification.

Assessment of GUI Applications–Even though focusing
solely on command-line interface (CLI) applications may be
perfectly sufficient for conveying programming skills, such an
educational approach may be seen as uninspiring by learners to
whom graphical applications are familiar and much more
attractive than CLI-based ones [12]. Instead, students are
interested in learning how to build programs with GUIs [15].
Likewise, applications that produce animations or perform 3D

39 http://www.seleniumhq.org/
40 http://watir.com/

rendering are usually appealing to learners. However, GUI
applications are difficult to assess since I/O redirection, as used
for the assessment of CLI applications, is not applicable.
Developing software tests for programs involving significant
GUIs is ranked beyond the typical abilities of students and
educators [40]. A response to this problem are educational GUI
libraries, such as presented by English [15] and Thornton et al.
[40]. These libraries are designed for novice programmers and
provide built-in means for automated testing and assessment.
Moreover, the latter framework is explicitly aimed at allowing
students to write tests themselves. Therefore, it can enable
automated assessment for GUI applications that follows a
TDD-based assessment approach.

Assessment of Style–Besides functional completeness and
correctness, there are further aspects that are crucial to the
quality of software, such as its complexity, extensibility, and
maintainability. Writing code in good style is important be-
cause program code is read much more often than it is written
[36]. Since software projects are usually carried out in groups,
developers need to follow established coding conventions that
facilitate a common understanding among them and guarantee
a certain degree of quality. In general, good coding style pro-
motes readability, absence of errors, security, extensibility, and
modularity [36]. However, novice programmers are reported to
commonly perceive programming style as less significant [3]
and to have little appreciation for best practices, which are
required for successful long-term multi-person programming
projects [50]. Therefore, programming style is an important
issue to teach beginning programmers. It is often neglected in
education, though [3]. Automated techniques can help to
involve programming style into the assessment process. In
contrast to functionality, which is usually assessed by
executing a program submission, properties of style are
typically collected using static evaluation approaches. A
common practice for judging a student program’s quality is
detecting so-called code smells, such as unused variables,
redundant logical expressions, and implicit constants [42].
Furthermore, automated style evaluation can examine
programs’ adherence to given coding guidelines in terms of
indentation size, mandatory source code documentation, and
more [3]. High-complexity program submissions can be
detected by employing software metrics, such as Halstead’s
complexity measures [21] and McCabe’s cyclomatic
complexity [31], and by comparing their structure to that of a
model solution [42].

Peer Assessment–There are program characteristics that are
hard to assess automatically, however; for instance, quality of
comments, meaningfulness of variable names, and adherence
to good practices, such as the Single Responsibility Principle
[30]. Evaluating such subtle or complex software properties
requires the trained eye of a human assessor. Peer assessment
could be a possible alternative in such cases. It is beyond the
scope of this paper, however.

Automated Assessment Tools—Automated techniques
have been used for the assessment of programming
assignments almost as long as programming has been taught
[33]. Automated assessment approaches are used to keep
teachers’ workload within reasonable limits despite growing
student numbers [45]. This way, the time required for

assessment activities can be cut down without reducing
quantity and quality of practical exercises. Furthermore, the
amount of time that instructors can spend on mentoring and
supporting students is increased [44]. Automated program
evaluation can also be beneficial to students. While human
graders and especially teams of multiple graders usually judge
subjectively and inconsistently, automated assessment can
provide objective and consistent evaluation [2]. Furthermore,
students are provided with immediate feedback, which is an
important benefit in programming education. Receiving instant
feedback is particularly useful for novice programmers since
misconceptions are uncovered as early as possible [46]. The
concept of providing feedback at any time and any place
applies notably well to virtual courses [29], such as MOOCs,
and provides learners a unique advantage [10]. Since
assessment resources are virtually unrestricted, automated
grading allows students to increase mastery by iteratively
improving and resubmitting their homework [18].

Systems that automatically assess students’ programming
assignments have been designed and used for over fifty years.
Systematic overviews of assessment systems’ approaches and
capabilities have been published by Ala-Mutka [2], Douce et
al. [12], and Ihantola et al. [24]. Douce et al. present a
historical overview of automated assessment systems that
focuses on systems that are based on executing tests in an
automated fashion. The authors classify these systems into
three generations. The first generation covers the initial
attempts to automate the assessment of programming
assignments. In general, first-generation systems were
specifically tailored solutions that required modifications to
compilers and operating systems (OSs), demanded a great deal
of expertise, and were limited to the usage in their particular
setting. The very first system has been described by
Hollingsworth [23]. Its purpose was to evaluate programs
written in assembly language, which had to be handed in on
punched cards. The system was not only useful for saving
teacher resources but also for allocating computing resources,
which were severely limited at that time. The second
generation of automated assessment systems is characterized
by the adoption of automated tools and utilities, provided by
increasingly advanced OSs and tool sets. The systems could be
operated by instructors and students using a CLI or a graphical
user interface (GUI). Second-generation systems introduced
more sophisticated assessment strategies involving multiple
assessable properties, such as correctness, efficiency, and style.
Several systems also include management capabilities for
courses and assignments. Well-known representatives of
second-generation systems are ASSYST [25], BOSS [26], and
Ceilidh [7]. Third-generation automated assessment systems
took advantage of advancing web technologies. They comprise
features such as web interfaces, increasingly sophisticated
testing approaches, interactive feedback, richer content
management features, and plagiarism detection. Systems of the
third generation include instances of second-generation
systems that continued to develop, such as BOSS, and
successors of former systems, such as CourseMarker [22],
which evolved from Ceilidh. While Douce et al. assign state-
of-the-art automated assessment systems to the third
generation, their work cannot cover trends that emerged after
2005, for instance the growing demand for practical

assignments in e-learning. In that respect, Ihantola et al. [24]
report an increasing interest in extending LMSs with automated
assessment capabilities in order to fit the special needs of CS
education better. For the same reason, programming MOOCs
should be provided with modern capabilities for automatic
code assessment.

IV. FUTURE WORK
In the meantime, we already made some progress in the
development of an automated assessment tool. We will de-
scribe the architecture decisions that allow for a scalable
solution, our first experiences using the tool with about 10.000
patient users and the resulting learnings in future papers.
Additionally, to that, we will also analyze the submissions we
got from the first Java course conducted with that tool with
regard to common errors. In courses yet to come, we will also
offer enhanced direct interaction between course participants
concerning their code, by allowing them to request comments
on tricky parts and offering a synchronized video chat. The
insights gained there are expected to give hints to improve the
assignment descriptions, lecture videos and didactical
approaches in general.

V. CONCLUSION
Practical programming tasks are essential for programming

courses. Particularly, in the context of MOOCs automated
assessment of these tasks is a must, as due to the high
enrollment numbers manual assessment is not feasible for
teaching teams. Peer Assessment might serve as an alternative,
however, e.g. in contexts where automated assessment would
require too much effort in preparation. Automated assessment
solutions are well established and have a long history, which
dates back to the early days of computer science education.
Several approaches or scenarios to tackle this task have been
identified. Comparing the benefits and drawbacks of the
approaches that have been introduced in Section II, we
conclude that we need a flexible solution that is able to handle
things differently depending on a course’s main target group.
Beginners benefit more from a browser based environment
relieving them from the agony of installation hassles. More
advanced users, on the other hand, will prefer to stick with the
familiar tools that they already have installed. In terms of
server load a ”code local–assess remote” approach has the
advantage that it not necessarily would require a real-time
handling of the assessment. The solutions of the users could as
well be queued. Particularly in more advanced contexts, a
certain relay in the feedback is not desirable but tolerable.

The landscape of existing programming languages is wide
spread and still growing. Providing a new programming
environment for each course is not desirable. We, therefore,
suggest to develop a versatile tool that is able to automatically
assess a variety of programming languages and can deal with
local and remote coding scenarios.

REFERENCES
[1] T. Aho, A. Ashraf, M. Englund, J. Katajamäki, J. Koskinen, J. Lau-

tamäki, A. Nieminen, I. Porres, and I. Turunen. Designing IDE as a
Service. Communications of Cloud Software, 1(1), 2011.  

[2] K. Ala-Mutka. A Survey of Automated Assessment Approaches for
Programming Assignments. Computer Science Education, 15(2):83–
102, 2005.  

[3] K. Ala-Mutka, T. Uimonen, H.-M. Järvinen, and L. Knight. Supporting
Students in C++ Programming Courses with Automatic Program Style
Assessment. Journal of Information Technology Education, 3, 2004.  

[4] T. Bates. What’s right and what’s wrong about Coursera-style MOOCs,
2012. [Online; accessed 18-April-2015].  

[5] K. Beck. Simple Smalltalk Testing: With Patterns. The Smalltalk Report,
4(2):16–18, 1994.  

[6] K. Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley Professional, 2000.  

[7] S. Benford, E. K. Burke, E. Foxley, and C. A. Higgins. The Ceilidh
System for the Automatic Grading of Students on Programming
Courses. In Proceedings of the 33rd Annual on Southeast Regional
Conference, ACM-SE 33, pages 176–182, New York, NY, USA, 1995.
ACM.  

[8] M. Berges, A. Mühling, and P. Hubwieser. The gap between knowledge
and ability. In Proceedings of the 12th Koli Calling International
Conference on Computing Education Research, Koli Calling ’12, pages
126–134, New York, NY, USA, 2012. ACM.  

[9] M. Cerioli and P. Cinelli. GRASP: Grading and Rating ASsistant
Professor. In Proceedings of the ACM-IFIP IEEIII 2008 Informatics
Education Europe III Conference. Venice, Italy. Citeseer, 2008.  

[10] A. Chauhan. Massive Open Online Courses (MOOCS): Emerging
Trends in Assessment and Accreditation. Digital Education Review,
25:7–17, 2014.

[11] European Commission. Support Services to Foster Web Talent in
Europe by Encouraging the Use of MOOCs Focused on Web Talent,
2014.

[12] C. Douce, D. Livingstone, and J. Orwell. Automatic Test-Based Assess-
ment of Programming: A Review. Journal on Educational Resources in
Computing (JERIC), 5(3):4, 2005.

[13] S. Ducasse. SUnit Explained. Technical report, University of Berne,
Institute of Computer Science, 2003.

[14] S. H. Edwards. Improving Student Performance by Evaluating How
Well Students Test Their Own Programs, 2003.

[15] J. English. Automated Assessment of GUI Programs using JEWL. ACM
SIGCSE Bulletin, 36(3):137–141, 2004.

[16] T. J. Feldman and J. D. Zelenski. The Quest for Excellence in Designing
CS1/CS2 Assignments. ACM SIGCSE Bulletin, 28(1):319–323, 1996.

[17] A. Fox and D. Patterson. Crossing the Software Education Chasm.
Communications of the ACM, 55(5):44–49, 2012.

[18] A. Fox, D. Patterson, R. Ilson, S. Joseph, K. Walcott-Justice, and R.
Williams. Software Engineering Curriculum Technology Transfer:
Lessons learned from MOOCs and SPOCs. Technical report, EECS
Department, University of California, Berkeley, 2014.

[19] M. Goldman, G. Little, and R. C. Miller. Real-Time Collaborative
Coding in a Web IDE. In Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology, pages 155–164.
ACM, 2011.

[20] F. Grünewald, C. Meinel, M. Totschnig, and C. Willems. Designing
MOOCs for the Support of Multiple Learning Styles. In Scaling up
Learning for Sustained Impact, pages 371–382. Springer, 2013.

[21] M. Halstead. Elements of Software Science. Elsevier Science Inc., 1977.
[22] C. Higgins, T. Hegazy, P. Symeonidis, and A. Tsintsifas. The Course-

Marker CBA System: Improvements over Ceilidh. Education and
Information Technologies, 8(3):287–304, 2003. 

[23] J. Hollingsworth. Automatic Graders for Programming Classes. Com-
munications of the ACM, 3(10):528–529, 1960. 

[24] P.Ihantola, T.Ahoniemi, V.Karavirta, and O.Seppälä. Review of Recent
Systems for Automatic Assessment of Programming Assignments. In
Proceedings of the 10th Koli Calling International Conference on
Computing Education Research, pages 86–93. ACM, 2010. 

[25] D. Jackson and M. Usher. Grading Student Programs using ASSYST.
ACM SIGCSE Bulletin, 29(1):335–339, 1997. 

[26] M. Joy, N. Griffiths, and R. Boyatt. The BOSS Online Submission and
Assessment System. Journal on Educational Resources in Computing
(JERIC), 5(3):2, 2005. 

[27] J.S.Kay and T.McKlin. The Challenges of Using a MOOC to Introduce
“Absolute Beginners” to Programming on Specialized Hardware. In
Proceedings of the First ACM Conference on Learning @ Scale, pages
211–212. ACM, 2014.

[28] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen. A Study of the
Difficulties of Novice Programmers. ACM SIGCSE Bulletin, 37(3):14–
18, 2005.

[29] L. Malmi, A. Korhonen, and R. Saikkonen. Experiences in Automatic
Assessment on Mass Courses and Issues for Designing Virtual Courses.
ACM SIGCSE Bulletin, 34(3):55–59, 2002.

[30] R. C. Martin. Agile Software Development: Principles, Patterns, and
Practices. Prentice Hall PTR, 2003.

[31] T. J. McCabe. A Complexity Measure. IEEE Transactions on Software
Engineering, 2(4):308–320, 1976.

[32] C. Neuhaus, F. Feinbube, and A. Polze. A Platform for Interactive
Software Experiments in Massive Open Online Courses. Journal of
Integrated Design and Process Science, 18(1):69–87, 2014.

[33] V. Pieterse. Automated Assessment of Programming Assignments. In
Proceedings of the 3rd Computer Science Education Research
Conference on Computer Science Education Research, pages 45–56,
2013.

[34] J. Renz, T. Staubitz, C. Willems, H. Klement, and C. Meinel. Handling
Re-grading of Automatically Graded Assignments in MOOCs. In Global
Engineering Education Conference (EDUCON), 2014 IEEE, pages 408–
415. IEEE, 2014. 

[35] A. Robins, J. Rountree, and N. Rountree. Learning and Teaching
Programming: A Review and Discussion. Computer Science Education,
13(2):137–172, 2003. 

[36] S. Rogers, S. Tang, and J. Canny. ACCE: Automatic Coding
Composition Evaluator. In Proceedings of the First ACM Conference on
Learning @ Scale, pages 191–192. ACM, 2014.

[37] R. Schulmeister. The position of xmoocs in educational systems. eleed,
10(1), 2014.  

[38] K. Schwaber. Scrum Development Process. In Business Object Design
and Implementation, pages 117–134. Springer, 1997.  

[39] T. Staubitz, J. Renz, C. Willems, J. Jasper, and C. Meinel. Lightweight
Ad Hoc Assessment of Practical Programming Skills at Scale. In Global
Engineering Education Conference (EDUCON), 2014 IEEE, pages 475–
483. IEEE, 2014.  

[40] M. Thornton, S. H. Edwards, R. P. Tan, and M. A. Pérez-Quiñones.
Supporting Student-Written Tests of GUI Programs. ACM SIGCSE
Bulletin, 40(1):537–541, 2008.  

[41] N. Tillmann, J. de Halleux, T. Xie, and J. Bishop. Code Hunt:
Gamifying Teaching and Learning of Computer Science at Scale. In
Proceedings of the First ACM Conference on Learning @ Scale, pages
221–222. ACM, 2014.  

[42] N. Truong, P. Bancroft, and P. Roe. Learning to Program Through the
Web. ACM SIGCSE Bulletin, 37(3):9–13, 2005.  

[43] A. Vihavainen, M. Luukkainen, and J. Kurhila. Multi-faceted Support
for MOOC in Programming. In Proceedings of the 13th Annual
Conference on Information Technology Education, pages 171–176.
ACM, 2012.  

[44] A. Vihavainen, T. Vikberg, M. Luukkainen, and M. Pärtel. Scaffolding
Students’ Learning using Test My Code. In Proceedings of the 18th
ACM Conference on Innovation and Technology in Computer Science
Education, pages 117–122. ACM, 2013.  

[45] B. Vogel-Heuser, S. Rehberger, T. Frank, and T. Aicher. Quality
Despite Quantity - Teaching Large Heterogenous Classes in C
Programming and Fundamentals in Computer Science. In Global
Engineering Education Conference (EDUCON), 2014 IEEE, pages 367–
372. IEEE, 2014.

[46] M. Vujošević-Janičić, M. Nikolić, D. Tošić, and V. Kuncak. Software
Verification and Graph Similarity for Automated Evaluation of
Students’ Assignments. Information and Software Technology,
55(6):1004–1016, 2013.

[47] Q. Wang, W. Li, and T. Xie. Educational Programming Systems for
Learning at Scale. In Proceedings of the First ACM Conference on
Learning @ Scale, pages 177–178. ACM, 2014.

[48] C. Willems, J. Jasper, and C. Meinel. Introducing Hands-On Experience
to a Massive Open Online Course on openHPI. In IEEE International
Conference on Teaching, Assessment and Learning for Engineering
(TALE2013), pages 307–313. IEEE, 2013.

[49] L. Wu, G. Liang, S. Kui, and Q. Wang. CEclipse: An Online IDE for
Programing in the Cloud. In IEEE World Congress on Services
(SERVICES) 2011, pages 45–52. IEEE, 2011.

[50] D. Xiao and R. C. Miller. A Multiplayer Online Game for Teaching
Software Engineering Practices. In Proceedings of the First ACM
Conference on Learning @ Scale, pages 159–160. ACM, 2014.

[51] J. L. Zachary and P. A. Jensen. Exploiting Value-Added Content in an
Online Course: Introducing Programming Concepts via HTML and
JavaScript. ACM SIGCSE Bulletin, 35(1):396–400, 2003.

