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Abstract
In this paper we propose a solution that detects sentence bound-
ary from speech transcript. First we train a pure lexical model
with deep neural network, which takes word vectors as the only
input feature. Then a simple acoustic model is also prepared.
Because the models work independently, they can be trained
with different data. In next step, the posterior probabilities of
both lexical and acoustic models will be involved in a heuristic
2-stage joint decision scheme to classify the sentence boundary
positions. This approach ensures that the models can be up-
dated or switched freely in actual use. Evaluation on TED Talks
shows that the proposed lexical model can achieve good results:
75.5% accuracy on error-involved ASR transcripts and 82.4%
on error-free manual references. The joint decision scheme can
further improve the accuracy by 3∼10% when acoustic data is
available.
Index Terms: Sentence Boundary Detection, Parallel Models,
Deep Neural Network, Word Vector

1. Introduction
Sentence boundary detection, or addressed as punctuation
restoration, is an important task in ASR (Automated Speech
Recognition) post-processing. With proper segmenting, the
readability of the speech transcript is largely improved and
some downstream NLP (Natural Languages Processing) tasks,
such as machine translation, can also benefits from it [1, 2, 3].
In actual use, subtitling for example, the quality of the auto-
matically generated subtitles might increase when the sentence
boundaries detected are more accurate [4]. Perhaps it is still not
good enough in user’s point of view, but at least a semi-finished
subtitle with better quality can definitely help the human subti-
tle producer.

Many efforts have already been made in sentence bound-
ary detection. Generally the researchers focus on two types of
resources: lexical features in the textual data and acoustic fea-
tures in audio track. Most of the lexical approaches take LM
scores (Language Model), tokens or POS tags (Part-of-Speech)
of several continuous words as the features to train the lexical
model [5, 6, 7, 8]. And the frequently used features in acoustic
approaches include pause, pitch, energy, speaker switch and so
on [9, 10, 11]. However, multi-modal approaches using both
lexical and acoustic features are more popular.

In this paper, we first analyze the structure of those existing
multi-modal solutions and propose our own sentence boundary
detection framework. Then we introduce the independent lex-
ical and acoustic models used in our framework and explain
the 2-stage joint decision scheme in detail. These contents can
be found in Section 2∼4 respectively. In the following evalu-
ation phase, we evaluate the performance of proposed lexical
models with both ASR and manual transcripts, test the acoustic

models on ASR-available TED Talks and run experiments about
our 2-stage joint decision scheme with different combination of
models. In the end comes the conclusion.

2. Multi-Modal Structure Analysis
The structures of multi-modal solutions can be different and
have been discussed before [12]. Some researchers propose a
single hybrid model, which takes all possible features, no matter
lexical or acoustic, together as the model input [13, 14, 15, 16],
as shown in Figure 1-a. Some others apply a structure of
sequential models, in which the output of model A is fed
into model B, as shown in Figure 1-b, where model A ac-
cepts either lexical or acoustic features only, while model B
takes the other type of features together with model A’s output
[17, 18, 19, 20, 21].

But all approaches with these two structures have a limi-
tation: the training data must be word-level synchronized tran-
scripts and audios, which largely limits the range of data collec-
tion. Many reports claimed that the classification performance
can be largely influenced by the scale of training data. Further-
more, if ASR transcript is used as training data, the inevitable
ASR errors, some of which are acoustically understandable but
lexically ridiculous, such as misrecognizing “how can we find
information in the web” as “how can we fight formation in the
web”, will definitely downgrade the functionality of the lexical
model trained.

However, a structure of parallel models, as shown in Figure
1-c, can overcome this limitation. Models can be trained sepa-
rately with different data. It means the lexical model can take
any kind of textual materials as training data, which is almost
endless, extremely easy to prepare and could be grammatically
error-free. For the acoustic model, all available training data of
previous two structures are still available. The next step is to
fuse their posterior probabilities.

Gotoh et al. and Liu et al. trained models with different
feature sources separately and interpolated their posterior prob-
abilities for the final prediction [22, 23]. Lee and Glass applied
log-linear model to combine outputs from different models [24],
so did Cho et al. [25]. Pappu et al., on the other hand, used lo-
gistic regression model for the fusion [26]. All these approaches
offer predictions in one step and need an activation dataset to
adjust fusion model parameters.

However, we would like to apply a 2-stage scheme. Dif-
ferent from some earlier multi-pass attempts [10, 27], which
first predict punctuation positions and then distinguish punctu-
ation mark types, the two stages in our decision scheme is like
“segmenting” and “sub-segmenting”. Therefore the lexical or
acoustic model can be updated or switched freely in actual use.
Details will be introduced in Section 4.
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Figure 1: Three types of multi-modal structures

3. Proposed Models
3.1. Lexical Model

Word vectors are learned through neural language models [28].
Then a word can be represented by a real-valued vector, which
is much lower dimensional when comparing with the traditional
one-hot representation of words. It is suggested that the seman-
tic distance between words can be measured by the mathemat-
ical distance of corresponding word vectors [29, 30]. Cho et
al. has included word vector in punctuation prediction task to-
gether with many other lexical features [25]. However, the solo
usage of word vectors has already been proven effective in vari-
ous NLP applications [31, 32, 33] and will make the data prepa-
ration much easier. Therefore, word vector is used as the only
feature for our lexical model.

The training data are extracted from punctuated textual
files, which will be first transformed into a long word sequence
with a parallel sequence of punctuation marks. Then an m-
words sliding window will traverse the word sequence to cre-
ate samples. The classification question is that whether there
is a sentence boundary after the k-th word of a sample. Orig-
inally we introduced three categories to represent boundaries:
Comma, Period and Question. All other punctuation marks will
be switched into one of them or just ignored based on their func-
tionalities. However, these categories can be combined freely
when needed. “O” is used for “not a boundary” samples.

Then each word in the sample will be represented by an
n-dimensional word vector which is stored in a pre-trained dic-
tionary. A default vector will be taken as the substitute of any
words out of the vocabulary. As the result, we obtain an m× n
feature matrix as the lexical model input for the sample. During
the training process, the value of all word vectors is kept static.
The whole process is illustrated in Figure 2.

We choose a typical deep neural network for lexical train-
ing. Its structure is comparatively simple, with three sequential
fully-connected hidden layers of 2048, 4096 and 2048 neurons
respectively. Therefore, the computational cost for the training
is not very high. In order to avoid co-adaptation, “dropout” is
implemented on these layers, which randomly hides some neu-
rons along with their connections during the training process
[34]. Softmax function is applied for the output layer.

In this approach we propose the lexical model with two con-
figurations, addressed as LMC-1 and LMC-2 (Lexical Model
Configuration). Both of them use publicly available word vec-
tors: LMC-1 uses GloVe.6B.50d vector set1, as explained in
[35], while LMC-2 applies Word2Vec-Google-300d2. Gener-
ally, LMC-1 is a light configuration while LMC-2 involves more

1http://nlp.stanford.edu/projects/glove/
2https://code.google.com/p/word2vec/

Figure 2: The process of data generation for lexical training

Table 1: Two configurations of our lexical training. (“Voc.”, “n”
, “m” and “k” represent vocabulary, vector dimension, sliding
window size and supposed boundary position respectively)

Config. Word Vector Sample Size
Source Voc. n m k

LMC-1 GloVe 400k 50 5 3
LMC-2 Word2Vec 3M 300 8 4

data. The detailed settings can be found in Table 1. We use
the word “this” as the default substitute for out-of-vocabulary
words, since most of them are proper nouns which exist in spe-
cial context only, such as “Word2Vec” we mentioned above, and
“I use this in...” is grammatically similar to “I use Word2Vec
in...” in purpose of sentence boundary detection. The neural
network is constructed by CAFFE framework [36].

3.2. Acoustic Model

In this approach we also apply two models to handle acoustic
information. Different from the 4-classes lexical model, acous-
tic model outputs only 2 classes: boundary or not boundary.
Our first acoustic model is a simplest one. For a word Wi in
the ASR transcript, we simply calculate the pause duration p
between Wi and Wi+1 and use a variant of Sigmoid function:

Pa =
1− e−4p

1 + e−4p
, p ∈ [0,+∞) (1)

to project p into Pa, while Pa ∈ [0, 1). Approximately when
the pause is longer than 0.28 second, it will be acknowledged as
a sentence boundary by this simplest model, which we would
like to address as “Pause”.

The second acoustic model takes more features into consid-
eration. Pitch level and energy level are extracted from audio
files by aubio3 and Yaafe4 toolkits. Then based on the time tags
in the ASR transcripts, an average pitch level or energy level
can be achieved for each recognized word. Similar to LMC-2
in lexical model, we also apply an 8-words context to form a
sample, which classifies whether there is a sentence boundary
after the 4th word.

Therefore, each sample for the second acoustic model con-
tains 25 features: pitch and energy value for each word and 9
pauses available in the 8-words context. The features will also
be fed into a neural network with 3 fully-connected layers for

3http://aubio.org/
4http://yaafe.sourceforge.net/
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Figure 3: The workflow of proposed Joint Decision Scheme

training. Based on the features involved, we address this second
acoustic model as “PPE” (Pause, Pitch & Energy).

4. 2-Stage Joint Decision Scheme
As already mentioned in Section 2, the relation between the two
stages of proposed joint decision scheme is like “segmenting”
and “sub-segmenting”. Stage-1 takes the posterior probabilities
of both lexical and acoustic models as input and detects the sen-
tence boundary position (Hard Boundary). Then the complete
word sequence can be split by these positions into segments.
Each segment will be further checked by the adjusted lexical
model output for potential sub-segmenting (Soft Boundary) in
stage-2. Figure 3 illustrates this procedure.

In stage-1, acoustic model output is the foundation. Ide-
ally the sentence boundaries in the speech should always re-
sult in something detectable in acoustic features, especially the
pauses. But actually the speaker may hesitate or be interrupted
by unexpected events. These phenomena result in false positive
sentence boundaries from acoustic analysis. Therefore, lexi-
cal probability is employed here to “filter” those false positive
boundaries. The basic idea is that if an acoustically supposed
boundary position is strongly opposed by the lexical model, it
will be denied. And the lexical denial threshold is associated
with the confidence of acoustic prediction by a simple linear
function. Here we use Pa and Pl to represent the posterior
probability of “being a boundary” from acoustic and lexical
model respectively, then a hard boundary will be confirmed if
1− Pl < Pa × 0.25 + 0.7 and Pa > 0.05.

In stage-2, only lexical model output is used. The goal here
is to recover the sentence boundaries which have no acoustic
hint. Since many boundaries have already been detected in
stage-1, we set very strict restriction on stage-2 classification.
Therefore, the posterior probability is adjusted by

P ′l = Pl × e(
L
L̂
−λ) × d× (L− d)

(L
2
)2

(2)

where L is the length of the input segment, d is the distance
between current word and previous detected boundary, L̂ is the
expected length between adjacent boundaries and λ is the re-
striction coefficient. This adjustment generally reduces the Pl.
In practice the value of L̂ and λ are fixed and the extent of re-
ducing becomes smaller when L gets larger and d approaches
L/2, which means a soft boundary is supposed to be found in
the middle position of a long input segment. In extreme case,
the adjustment might even increase Pl, but L needs to be more
than λ times larger than L̂, which happens rarely. Generally,
only positions with very strong lexical evidence to be bound-
aries can be acknowledged after the adjustment as (2).

Basically the joint decision scheme works with only 2
classes: boundary or not boundary. But if punctuation marks
need to be restored, it can be fulfilled in stage-2 based on the
lexical model in use. Suppose n types of punctuation marks
are available in the lexical model trained, then Pl =

∑n
i=1 Pi.

As long as a position has already been confirmed as a bound-
ary, no matter hard boundary or soft boundary, the i-th type
of punctuation mark will be chosen when Pi is the largest in
{P1, P2, ..., Pn}.

5. Evaluation
5.1. Data Collection

We collected all the data from IWSLT datasets, which can be
found online. For the lexical model, we aim to evaluate its
performance with both ASR transcripts and manual references.
The test set is the “tst2011” package for IWSLT 2012 ASR
Track, which consists of 8 TED Talks and has both ASR and
manual transcripts, containing around 12k words each. The
training dataset consists of the manual transcripts of 1710 TED
Talks and comes originally from the in-domain training data of
IWSLT 2012 MT Track. We further split it into training set
and development set, with 2.1M and 296k words respectively.
Based on the TalkID, we make sure there is no overlapping be-
tween training and test sets. The average length between two
adjacent boundaries in the 2.1M samples of the training set is
7.8, which would be taken as the L̂ in the joint decision scheme,
while λ was set to 3.

For the acoustic model, the range of data selecting is quite
limited. We also used the “tst2011” ASR transcripts as the test
set, with 8 TED Talks in total. And we managed to find 70 other
TED Talks with ASR transcripts and audio files from different
IWSLT datasets as the training data. There is no development
set for acoustic model. We also evaluated the proposed joint de-
cision scheme with “tst2011” test set. Additionally, we built a
special small lexical training dataset with the transcripts of the
70 TED Talks used in acoustic training, which contains approx-
imately 80k instances in total, in order to figure out how the
lexical model can perform with limited training data.

5.2. Lexical Model Evaluation

We would test the lexical model on ASR transcripts and man-
ual references of TED Talks, which are addressed as “TED-
ASR” and “TED-Ref” respectively. In lexical evaluation, we
first reported the statistics when comma, period and question
marks are treated as separate classes, addressed as 4-Classes
test. However, in the sentence boundary detection task, the spe-
cific type of punctuation mark might not be as important as the
punctuation position. Therefore we further combined all punc-
tuated classes together as “Boundary” for a 2-Classes test.

3

This paper is published in Proceedings of Interspeech 2016



Table 2: Lexical Model Evaluation (in Percentage)

Test Set Model Tr-Size 4-Classes 2-Classes
Precision Recall F1 Precision Recall F1

TED-ASR
LSTM-[21] 2.1M 49.1 43.7 46.2 69.3 61.6 65.2

LMC-1 2.1M 54.4 45.6 49.6 77.5 64.9 70.7
LMC-2 2.1M 54.0 52.2 53.1 76.8 74.2 75.5

LMC-2-80k 80k 45.6 23.5 31.0 77.8 40.1 52.9

TED-Ref
LSTM-[21] 2.1M 55.0 47.3 50.8 75.3 64.6 69.5

LMC-1 2.1M 60.3 48.6 53.8 85.8 69.2 76.6
LMC-2 2.1M 60.4 55.8 58.0 85.8 79.3 82.4

Table 3: Acoustic Model and Joint Solution Evaluation (in Percentage)

Models Lexical Acoustic Joint-S1 Joint-S2
(F1) (F1) Precision Recall F1 Precision Recall F1

LMC-1 + Pause 70.7 60.9 82.8 62.3 71.1 79.2 76.0 77.6
LMC-2 + Pause 75.5 60.9 85.5 62.1 71.9 78.8 79.5 79.2

LMC-2-80k + Pause 52.9 60.9 83.5 58.0 68.5 79.2 65.5 71.7
LMC-1 + PPE 70.7 61.0 77.1 67.4 72.0 75.8 76.6 76.2
LMC-2 + PPE 75.5 61.0 79.7 67.5 73.1 76.5 80.6 78.5

LMC-2-80k + PPE 52.9 61.0 78.4 62.1 69.3 75.9 66.4 70.8

On both test sets we reported the performances of LMC-
1 and LMC-2. Additionally, we also did the tests with the
toolkit introduced in [21], which is addressed as LSTM, with
exactly same datasets. Please note that the model described in
[21] can be divided into 2 stages: stage-1 uses pure lexical fea-
tures, while stage-2 involves pause information as well. In the
lexical model evaluation here, we refered [21] with stage-1 only
and the LSTM model contains hidden neurons in hundred-level.
Besides, we ran a test on TED-ASR with LMC-2 but the spe-
cial “80k” training set. Detailed results can be found in Table 2.
Please note that all stats we reported have excluded the quanti-
tatively dominating “true negative” samples, which means cor-
rectly recognized “not a boundary” occasions. Otherwise the
classification accuracy can reach around 89∼93%.

From the statistics we can easily find out that with same
dataset, both LMC-1 and LMC-2 outperform LSTM approach.
But it should not be neglected that our models contain several
thousands of hidden neurons, which is more complicated than
the LSTM model in [21]. And the performance of LMC-2 is
apparently better than LMC-1, which is also quite understand-
able. The special test with LMC-2 but only 80k training data
on TED-ASR shows clearly that sufficient training data for a
lexical approach in this task is crucially important.

5.3. Acoustic Model and Joint Solution Evaluation

We put the acoustic model evaluation together with the joint
solution in this chapter. The test set is the same as TED-ASR
in lexical evaluation, and the results of the “Pause” and “PPE”
acoustic models can be found in “Acoustic” column of Table 3.
Since there are only 2 classes available for the acoustic models,
we also apply the 2-classes lexical posterior probabilities as the
input for the fusion. Based on the lexical and acoustic models
we proposed, the testing results of 6 possible combinations are
presented in two phases: “Joint-S1” shows the result after the
decision scheme stage-1, and “Joint-S2” is the final result.

The performances of two acoustic models are almost the
same, both of which are higher than LMC-2-80k, but lower
than the others. The results of all combinations after stage-1
are around 10% better than the acoustic benchmark, but when

best lexical performer LMC-2 is adopted, the “Joint-S1” result
cannot compete with the lexical-only performance yet. We be-
lieve it is reasonable, because the stage-1 of the joint decision
scheme generally only filters the false positive acoustic detec-
tions, resulting in a comparatively high precision but low recall
rate, just as shown in Table 3. However, the recall rate can be
largely improved by stage-2. In the end, the performance of a
joint solution is better than either lexical or acoustic model.

In many previous works, the researchers claimed that pause
feature is the dominant acoustic feature in sentence boundary
detection task [21, 22, 37, 38]. It is also what our experiment
tells us. The “Pause” model works as good as “PPE” model
independently, although “PPE” model involves much more in-
formation. When working jointly with lexical model, the com-
binations with a simpler “Pause” model manage to achieve even
better result.

In our parallel model structure, the lexical model is more
important. With fixed acoustic model, the combination with
better lexical model always achieves better result. However,
the differences between the performances become smaller after
fusing the lexical result with the acoustic model output.

6. Conclusions
In this paper we aim to detect sentence boundaries from unpunc-
tuated speech transcripts. First we developed a lexical model
with word vector as only input feature. Then we introduced
two simple acoustic models. These models can be applied inde-
pendently with different training data, but we further proposed
a 2-stage joint decision scheme to fuse posterior probabilities.
Evaluation shows the high accuracy of the lexical model and
the effectiveness of the joint decision scheme. In the future we
intend to upgrade our models for better accuracies and extend
the availabilities with different languages.
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