
Embedded Smart Home - Remote Lab Grading in a
MOOC with over 6000 Participants

Martin Malchow, Jan Renz, Matthias Bauer, Christoph Meinel
Hasso Plattner Institute (HPI)

University of Potsdam
Potsdam, Germany

Email: {martin.malchow, jan.renz, matthias.bauer, christoph.meinel}@hpi.de

Abstract—The popularity of MOOCs has increased consider-
ably in the last years. A typical MOOC course consists of video
content, self tests after a video and homework, which is normally
in multiple choice format. After solving this homeworks for every
week of a MOOC, the final exam certificate can be issued when
the student has reached a sufficient score. There are also some
attempts to include practical tasks, such as programming, in
MOOCs for grading. Nevertheless, until now there is no known
possibility to teach embedded system programming in a MOOC
course where the programming can be done in a remote lab
and where grading of the tasks is additionally possible. This
embedded programming includes communication over GPIO pins
to control LEDs and measure sensor values. We started a MOOC
course called “Embedded Smart Home” as a pilot to prove
the concept to teach real hardware programming in a MOOC
environment under real life MOOC conditions with over 6000
students. Furthermore, also students with real hardware have the
possibility to program on their own real hardware and grade their
results in the MOOC course. Finally, we evaluate our approach
and analyze the student acceptance of this approach to offer a
course on embedded programming. We also analyze the hardware
usage and working time of students solving tasks to find out
if real hardware programming is an advantage and motivating
achievement to support students learning success.

I. INTRODUCTION

MOOCs have enjoyed great popularity for several years
now. Usually a MOOC course is discusses theoretical lecture
topics. In case of the MOOC platform we used, openHPI1,
IT courses such as Web Technologies, Semantic Web Tech-
nologies, or In-Memory Data Management are offered for an
interested public. Using an online programming environment
extends the possibility in a course and the variety of interactive
student tasks. Nevertheless, we faced the problem of interactive
programming in real hardware. Such as an embedded system.
Therefore, we begin the Embedded Smart Home course as
a case study on our MOOC platform, which gives users the
possibility to work in a remote lab on the real hardware. The
hardware used for this approach was based on the Raspberry
Pi2. To attract students to participate in this course we decide
on a smart home and IoT (Internet of Things) focus. Course
participants had the option to use their own hardware at home
or to use the remote lab. Both options can grade their results
and thereby offer the necessary points for a certificate or proof
of participation.

1https://open.hpi.de/
2https://www.raspberrypi.org/

Finally, the Embedded Smart Home Course has over 6000
enrollments. This high amount of students leads to high traffic
on the remote lab. To handle the requests a smart request han-
dling was implemented, which will be described in the section
“Approach”. Furthermore, besides further course statistics the
section “Evaluation” shows that the used approach to handle
requests for 6000 enrollments is adequate. Finally, we discuss
“Results and Future Work” for the approach and how it can be
improved for other scenarios and interactive MOOC courses
online.

II. RELATED WORK

An early approach on a virtual remote lab to demonstrate
network security issues was the “Cyber Security Virtual Lab”
[1]. This approach was using the VNC technology to connect
to a virtual sandbox machine to test in a given network
technologies security issues. The student get an idea which
security risk exists and how to detect them to avoid attacks by
enemies. This approach is a self assessment option only and
no grading for the solved tasks can be issued.

An early approach on grading practical programming in
the MOOC environment is Code Ocean [2]. Code Ocean is
connected to a MOOC using Learning Tools Interoperability
(LTI). This enables the MOOC platform to redirect to Code
Ocean. The student will solve the task in Code Ocean and
grade their programming results using programming language
specific test frameworks. One major advantage of Code Ocean
is that the platform is independent on the programming lan-
guage.

There are already several concepts on using remote labs
in MOOCs [3][4][5]. This concepts already describing the
handling of remote labs in MOOCs. Nevertheless, there is a
lack of a huge student basis and the system were not designed
as course that students can build up their lab also at home. This
is also a reason for our decision to use cheap and common
hardware like the Raspberry Pi.

As first evaluation we introduced as additional tasks of a
“Java” and “Web technologies” the remote programming of
an 16x16 LED matrix [6][7]. To control the matrix students
programmed in the course programming language (Java and
JavaScript) arrays and were able to control the content of
the LED matrix in several colors. Due to the overwhelming
feedback we decided to offer the Embedded Smart Home
course described in the following “Approach” section.

published as: Martin Malchow, Jan Renz, Matthias Bauer, Christoph Meinel: Embedded Smart Home - Remote Lab Grading in a 
MOOC with over 6000 Participants, In Proc. of the 2017 Annual IEEE Systems Conference (SysCon '17),
24-27 April, 2017, Montreal (Canada) 



III. APPROACH

This section describes the MOOC approach of the “Em-
bedded Smart Home” course. The purpose of this course was
to teach the basics of the Internet of Things (IoT) and give
users the opportunity to implement software for a real device
and run this software on a the real device with visual feedback.
Additionally, students should have the possibility to buy their
own hardware and work on the real device.

A. Course Structure

The “Embedded Smart Home” MOOC workshop running
on the openHPI platform was structured in 2 course weeks plus
an introduction week and an excursion week. The introduction
week started already one week before the course officially
began. This week was meant to be an introduction for students
using their own hardware at home. In this week we discussed
how to install the Raspbian3 debian based operation system
on the Raspberry Pi. After installing the operating system,
four videos were recorded describing how to connect all
hardware with the Raspberry Pi by use of a bread board.
This bread board connections are shown in Figure 1. The
first video describes the connection of the Buttons and LEDs.
Followed by the second video showing the connection of
the analog to digital converter (ADC) , the humidity sensor
and the temperature sensor. The third video describes how
to connect the 16x2 LCD display module. The last bread
board video shows connecting instructions for the outside
temperature sensor and the window switch. About 700 of the
6000 enrolled students decided to buy the real hardware to
interactively build the hardware parallel to the course. As an
additional hardware option we offered students the possibility
to buy an PCB (printed circuit board) shown in Figure 2 which
eases the process of connecting the Raspberry Pi with the
hardware, as compared to the previously described bread board
version. More than 400 students decided to buy the additional
PCB for this course to reduce the wiring complexity.

Fig. 1. Raspberry Pi connection with bread board.

After the introduction the course starts with Week One.
The first week starts with basic information about the main

3https://www.raspbian.org/

Fig. 2. PCB embedded smart home.

topic “Embedded Smart Home”. First the term “Internet of
Things” was introduced and use cases of this technology were
discussed. This was followed by a video about “Smart Home”
in general and the use of “Raspberry Pi”. After this short,
general introduction we start focusing on programming. Since
openHPI had already offered an Python4 MOOC around half
a year earlier, and Python is also used for programming the
Raspberry Pi we decided to refer to this course if students
needed more training in Python. We informed the students
already a couple weeks that they should use this course to
refresh their Python knowledge to be ready for the “Embedded
Smart Home” course. For Programming and automatic code
checks and grading we used the open source software Code
Ocean5, developed by the openHPI Team. In Week One the
usage of the Code Ocean platform was described. Additionally
we describe how to read a button status, a sensor value by use
of an analog to digital converter (ADC), and how to display
data on the 16x2 LCD display. The interactive programming
tasks where users got points for a certificate are discussed in
Section III-B.

After introducing all basics for programming the Raspberry
Pi in the “Embedded Smart Home” context with the selected
hardware, Week Two focus on the entire system in observing
the home to achieve a healthy indoor climate. To reach this
goal all sensors, LEDs, and the LCD display have to be
observed constantly. All necessary components are visualized
in Figure 3. Additionally, in the second week the functionality
of a web server and the basic creation of a web server in
Python was explained to offer all measured data for an external
observing service or interactive smartphone apps. This data
will be used mostly for services described in the last excursion
week. The LEDs will be used to indicate if a window action
is necessary. A red LED indicates that an user action is
required and a green LED indicates everything is fine and no
action is necessary. First of all the temperature sensor has to
be analyzed. Depending on the current indoor and outdoor
temperature the window should be closed or opened. Closing
of the window is necessary when the temperature is between
10-15 ◦C and if the window is open for more than 20 minutes
this will be indicated by a red LED. The time frame changes
depend on the outside temperature. For example when the
temperature is below -5 ◦C the red LED will switch on when

4https://www.python.org/
5https://github.com/openHPI/codeocean



TABLE I. INDOOR CLIMATE HUMIDITY RECOMMENDATIONS

Cold Weather (below 5 ◦C)
22-24 ◦C 30-40% relative humidity
19-21 ◦C 40-50% relative humidity
16-18 ◦C 50-60% relative humidity

Mild Weather (5-15 ◦CC)
22-24 ◦C 40-50% relative humidity
19-21 ◦C 50-60% relative humidity
16-18 ◦C 60-70% relative humidity

the window is open for more than 3 minutes indicating that
the window should be closed. There are also indicators to
show that it is necessary to open the window. Especially in
winter the humidity should meet special ranges for an healthy
indoor climate. The recommended relative humidity range for
different temperatures can be found in Table I. The main
programming task was to perform actions with the hardware
components to achieve an healthy indoor climate.

Raspberry PiTemperature
Sensor (inside)

Temperature
Sensor (outside)

Humidity Sensor Window SensorButton

LED (red)LED (green)

Display

Fig. 3. Abstract connections.

Finally the “Excursion Week” offered a deeper view into
the world of the smart home. First the future of smart home
and security issues were discussed. Students who bought real
hardware got new ideas about how to enhance their system
with online services. In this particular course we were focusing
on openHAB6 which enables users to collect data from the
embedded device on a server and make them accessible over
the web and by Android and iOS App.

B. Programming Tasks

During a MOOC course students have the possibility to
get a certificate depending on their achievement. To reach
points qualifying the student for a certificate the theoretical
homework questions in Week One and Two must be answered.
Additionally, the Python programming tasks can be solved at
home or at the distance lab described in the following Section
III-C. After solving the tasks at home or inside the distance
lab, Python unit tests will grade students code in Code Ocean.
This unit test grading process will calculate points that are
transferred from Code Ocean to the actual MOOC platform
openHPI.

The programming tasks in week one are:

• Task 1.1 - Write an application that turns on the red
LED.

6http://www.openhab.org/

• Task 1.2 - Write an application that switches the red
LED on and the green LED off when the window
is closed. When the window is open the green LED
should be on and the red LED off.

• Task 1.3 - Write an application that read the tempera-
ture sensor value from the ADC and calculate with the
given information the applied voltage and the resultant
temperature in degree Celsius. Write the result on the
command line in the given format.

• Task 1.4 - Write an application that read the humidity
sensor value from the ADC and calculate with the
given information the applied voltage and the resultant
relative humidity. Keep in mind that the temperature
is necessary to determine the relative humidity. Write
the result on the command line in the given format.

• Task 1.5 - Read the given functions carefully. Write an
application that writes “Hallo openHPI!” on the LCD
display. The space should be interpreted as a new line.

• Task 1.6 - Write an application that writes the actual
room temperature in the given format on the LCD
display.

Fig. 4. Display state solving Task 2.3.

The programming tasks in week two are more complex and
depend on several sensor values, the last task also introduced
the JSON exchange format to connect external services:

• Task 2.1 - Write an application that measures the
humidity and window state. If the window is open
the green LED is on and the red LED is off. The
same LED indication is shown when the window is
closed and the relative humidity is below or equals
50% relative humidity. When the humidity is higher,
the red LED should be on and the green LED off
indicating that opening the window is required.

• Task 2.2 - Write an application that extend the accu-
racy of the previous task by use of the recommended
room humidity displayed in Table I.

• Task 2.3 - Write an application that extends the
functionality of the previous task by use of the LCD



display. In the first display line print the indoor
temperature, the relative humidity, and the outdoor
temperature. Additionally, print in the second line
“open window”, when necessary. A possible running
solution is visible in Figure 4.

• Task 2.4 - Write an application that extends the
functionality of the previous task by use of the outdoor
sensor to decide if closing a window is necessary.
The window should be closed when it is open and
the outdoor temperature is below 18 ◦C. Print the
message “close window” on the second display line
when necessary.

• Task 2.5 - Write an application that reads all sensor
data and print it JSON formatted in the console as
shown in the example.

C. Experiment Setup

1) Circuit Layout: As already described in Section III-A
we offered a PCB to the students for purchase. This board
shown in Figure 2 is also used for our remote lab. We decided
on this board since it is more stable and robust for use in the
remote lab. This remote device is available in our office so that
we can actually see the activities of the students. To design
this board we used the Software eagle7. The circuit layout
showing all connected hardware with the 40 pin connector of
the Raspberry Pi is visualized in Figure 5.

Fig. 5. Circuit embedded smart home.

After PCB assembly we soldered all electrical parts and
connectors for external hardware. External hardware like the
outdoor temperature sensor or Raspberry Pi is connected to the
board with a cable and the fitting connector. After mounting

7https://cadsoft.io/

all parts on the PCB the board is ready to use for personal
usage or can be used in the virtual lab. For the virtual lab
additional steps are necessary. These are described in the
following section.

He
llo

W
or

ld

DI
SP

LA
Y

source code source code

application outputapplication output
+ image

Humidity 
Sensor

Temperature 
Sensors

Buttons

LEDs

Window 
Sensor

Fig. 6. Remote lab set up schematics.

2) Setup Remote Lab: The remote lab is accessible during
the course by the already mentioned platform Code Ocean.
The detailed execution process to run an application in the
remote lab is shown in Figure 6. In the first step Code Ocean
collects all programming files of the student and sends the
file content in a special JSON format to the embedded system
management server. This server collects the JSON data and
checks the availability of the Raspberry Pi using a critical
section to avoid multiple access of the embedded device by
several users. If several users want to access the Raspberry
Pi the critical section can reached by one user only. The
other user has to wait until the first user leaves this critical
section. The waiting time normally is recognized as a longer
request time by the users. Since one user uses the system for
a maximal time of five seconds, the waiting time should be
reasonable. The execution time for the user is also limited to
five seconds so that the system is not constantly blocked when
a students construct an endless loop. When a student requests
access to a critical section a connection to the Raspberry Pi
will be established. This established connection will be used
to sent the files JSON formatted to the Raspberry Pi. The
Raspberry Pi extracts the file content from the JSON string
and writes this files to the storage of the Raspberry Pi. The
JSON string also contains information about the main file
which will be executed with python in the next step. This will
start the application remotely on the Raspberry Pi. Finally,
the application output will be sent back over the embedded
system management server and Code Ocean to the student.
Additionally, the embedded system management server shoots
an image of the Raspberry Pi, the LCD display, and the LEDs.
This image will be attached to the answer for the student and
will be displayed in Code Ocean. The images gives the student
visual feedback and programming errors will be highlighted
by the returned console output containing standard output and
error output. After every request to the Raspberry Pi a clean
up of the GPIO Pins will be performed and user files will be
deleted.

IV. EVALUATION

In this section we will discuss the evaluation results of the
hardware availability in the course, learners engagement, and
learners feedback to the course.



A. Availability

When providing a remote lab in an salable learning envi-
ronment one of the major issues is that the scalebility of the
overall learning journey should be kept all the time. While
virtual solutions can be scaled easily by providing additional
IT resources a remote lab must be accessable all the time
with a very low to now waiting time to match the learners
experience. They might be cases where a lab is booked for
interactive time slots where a waiting time or a prebooking of
time slots is acceptable, but in our case the interaction of the
learner with the system is based on a long time-span in the
code editor and a very short code execution within the remote
lab environment.

Fig. 7. Response time of the remote lab

86,598 executions have been processed. 34.5 % of all
executions have been processed within one second. 8.6 %
took longer than five seconds. 51.808 executions including
the usage of the camera module, which an average an time
of 2.5 seconds. So while a majority of the requests could
be performed within an short timeframe there is room for
improvement. This includes optimizing the process of taking
the picture itself which could be improved by using a video
stream instead of taking single pictures.

B. Learners Engagement

Fig. 8. Age distribution of learners

5.704 learners have been enrolled for the course during
course middle. 2274 users never showed up after the course

started ("no-shows"). 330 questions have been asked in the
forum, 384 answers have been given. Over 1,000 comments
have been posted in the forum. 101 helpdesk issues have been
opened. At the end of the course 602 certificates have been
issued, which leads to an success rate of 11.08 %. This rate is
relative low compared to other hands-on coding courses. This
might be due to the fact that many users wanted to play around
on own hardware that was sold out. However as shown in the
item discovery chart many learners discovered large parts of
the course, so content consumption was good.

Fig. 9. Item discovery

Fig. 10. Points distribution

The points distribution show an uncommon peak in the
lower part. This might be due to users who just took the graded
tests or users who just took some online coding tasks.

C. Learners Feedback

93 % of the users that submitted the final survey stated
(n: 158) that they would recommend the course. Another
interesting insight from the course survey is the fact that 71
% of the learners downloaded the videos to use them offline
or outside of the mooc enviroment.

During the course we got a lot of positive user feedback
and several users would like to have a follow up course
with Raspberry Pi. This feedback indicated that we are on



a good way to improve students motivation and can support
the learning process. Here is an extract of the translated users
course feedback:

• I like the opportunity to control a Raspberry Pi in
Potsdam over the internet. To see a real picture as
result especially delight me.

• THANK YOU openHPI team please go on. I would
love to see new courses which extends the Raspberry
Pi topic.

• Code Ocean is awesome :-) I really liked the live
programming of a online RasPi. Thank you for this
great infrastructure!!! :-)

V. RESULTS AND FUTURE WORK

In this paper we focusing on the approach of a MOOC
remote lab using an Raspberry Pi. This approach shows that
we can handle over 6000 enrolled students in a MOOC course
on a single Embedded Device. Like described in Section IV-A
only 8.6 % of the requests had waiting times over 5 seconds.
This should be improved for a possible follow up course
by introducing an interactive load balancing on one or more
embedded devices. Furthermore, the course design and idea
of the real hardware MOOC in a remote lab and at home
for the students was luckily chosen. 93 % of the students
would recommend this course. Nevertheless, in the next course
we have to find a better solution with more than one retailer
for the hardware. Due to the sold out situation some people
were unhappy that they do not have the chance to order their
own device. Additionally, we have to analyze how younger
students could be delight for this play full topic. Currently,
most students are 30 and 50 like visualized in Figure 8.

In conclusion this MOOC course is well designed using
the remote lab. There are still some drawbacks which can
be handled in further courses. The feedback and evaluation
indicated that the design of this approach is useful and more
MOOC courses teaching programming should focus on real
hardware.

REFERENCES

[1] C. Willems and C. Meinel, “Online assessment for hands-on cyber
security training in a virtual lab,” in Global Engineering Education
Conference (EDUCON), 2012 IEEE, April 2012, pp. 1–10.

[2] T. Staubitz, H. Klement, R. Teusner, J. Renz, and C. Meinel, “Codeocean
- a versatile platform for practical programming excercises in online
environments,” in 2016 IEEE Global Engineering Education Conference
(EDUCON), April 2016, pp. 314–323.

[3] T. R. Ortelt, S. Pekasch, K. Lensing, P. J. Guï£¡no, D. May, and
A. E. Tekkaya, “Concepts of the international manufacturing remote lab
(mintrelab): Combination of a mooc and a remote lab for a manufacturing
technology online course,” in 2016 IEEE Global Engineering Education
Conference (EDUCON), April 2016, pp. 602–607.

[4] G. Dï£¡az, F. G. Loro, M. Castro, M. Tawfik, E. Sancristobal, and
S. Monteso, “Remote electronics lab within a mooc: Design and pre-
liminary results,” in 2013 2nd Experiment@ International Conference
(exp.at’13), Sept 2013, pp. 89–93.

[5] C. Salzmann, D. Gillet, and Y. Piguet, “Mools for moocs: A first edx
scalable implementation,” in 2016 13th International Conference on
Remote Engineering and Virtual Instrumentation (REV), Feb 2016, pp.
246–251.

[6] M. Malchow, J. Renz, M. Bauer, and C. Meinel, “Improved e-learning
experience with embedded led system,” in 2016 Annual IEEE Systems
Conference (SysCon), April 2016, pp. 1–6.

[7] ——, “Enhance embedded system e-leaming experience with sensors,”
in 2016 IEEE Global Engineering Education Conference (EDUCON),
April 2016, pp. 175–183.




