
published as: Thomas Staubitz, Jan Renz, Christian Willems, Johannes Jasper, Christoph Meinel: Lightweight Ad Hoc Assessment of Practical Programming

Skills at Scale, In Proceedings of 5th Global Engineering Education Conference (EDUCON2014), 3-5 April, 2014, Istanbul

2014 IEEE 5th Global Engineering Education Conference

Lightweight Ad Hoc Assessment of Practical
Programming Skills at Scale

Thomas Staubitz, Jan Renz, Christian Willems, Johannes Jasper, Christoph Meinel
Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

{thomas.staubitz, jan.renz, christian.willems, meinel}@hpi.uni-potsdam.de
johannes.jasper@student.hpi.uni-potsdam.de

Abstract—There is a great demand for hands-on training in
engineering education. In the context of a Massive Open Online
Course (MOOC), assessing these experiments manually by teaching
assistants is not possible owed to the high number of participants
and the resulting workload for the teaching team. Systems for
machine-based assessment of coding tasks are existing, but not
necessarily available publicly, or not prepared to handle the massive
amount of users in a MOOC. Definitely, they are not available “ad
hoc”, but require a certain amount of effort to be integrated in
the MOOC platform or to be made available for the students in
another way. Time and money to provide the required effort is not
always available.

This work presents a lightweight solution for the assessment
of practical programming exercises, based on third party online
coding tools. The solution was introduced as a part of openHPI’s
Web-Technologies course. The basic idea is to prepare a task in
an available online tool, along with a piece of code that is able to
evaluate the participant’s solution. In case of success the participant
is provided with a password, which in return serves as the answer
for a fill-in-the-gap question in a standard quiz as provided by the
openHPI MOOC platform, and thus allows for automatic online
assessment based on practical coding exercises.

Keywords—MOOC, Hands-on Experience, Online Assessment,
Javascript, HTML, Scalability

I. INTRODUCTION

openHPI is Germany’s largest MOOC platform with a spe-
cialization in ICT engineering. Run by the Hasso Plattner Insti-
tute (HPI) in Potsdam, it has offered seven courses on various
ICT topics since September 2012—hosting between 7,000 and
17,000 enrolled users per course.
This paper is mainly based on the experience that has been
made while delivering the course Web-Technologies, which was
offered in June and July 2013 as a follow-up to the course
Internetworking with TCP-IP. 7,350 users were enrolled at the
time of the final exam. 3,172 of these enrolled users were
active participants. On openHPI active participants are defined
as those users, who have submitted at least one discussion post
or one homework [1]. 1,727 of those active participants were
eligible for a graded certificate. Like all courses on openHPI,
Web-Technologies followed a schema of a six-week course with
several ungraded self-tests and one graded homework per week.
According to this schema, the courses are concluded with a final

exam, which also is graded. For each of these graded assignments
a certain amount of points can be achieved by the participants.
To be eligible for a graded certificate, a participant has to achieve
at least 50% of the overall maximum course score [2]. As a part
of this course, the teaching team offered HTML and Javascript
tutorials of a more hands-on approach in form of screen casts
with coding demonstrations and a corresponding transcript. The
participation in these tutorials and exercises was optional. In
this context, a new way of assessing the participants’ learning
progress, based on online execution of small coding tasks,
using an existing external web tool, has been introduced. The
motivation behind this decision will be discussed in section II.
Furthermore, the methodology of this approach will be discussed
in detail in section III. Section III-D will report about the
experience that has been made with this model and some caveats
that have to be considered. In section IV the impact that solving
the practical assignments had on the users’ results in the final
exam will be analyzed. Finally, an outlook on the steps that are
planned for the future will be given.

II. ASSESSMENT OF PRACTICAL ASSIGNMENTS IN A
MOOC CONTEXT

A. Demand for Hands-on Exercises

Practical experiments are essential parts of on-campus
courses. In an international survey amongst computer science
academics—conducted in 2003—74% of the participants stated
that they use practical work to assess their students [3]. Assess-
ment for these experiments are essential, not only to motivate the
students to work on these tasks, but even more to provide them
with feedback if their effort was successful or not. Timely feed-
back is a very important mechanism to encourage participants to
keep up their work, particularly if they encounter problems or
do not find an instant solution [4].

Although practical assignments can be hard to implement for
e-learning solutions and online courses, there is still a great de-
mand. When the instructors of the first course on openHPI asked
for missing features and content items, a remarkable number of
users explicitly asked for practical experiments and exercises.
The teaching team of the second course on “Internetworking”
introduced a set of experimental hands-on exercises [5]. Even
though, these exercises were voluntarily and resulted only in a

small number of extra points (compared to the required effort),
between 80 and 85 percent of the active participants took part
in each of these exercises. The “Internetworking” course had a
total of 2,761 active participants (out of 9,891 registered users
at the time of the final exam). In a survey with more than
1,000 participants after the conclusion of that course, 4 out of 5
students evaluated the hands-on tasks as very useful (43.6%) or
rather useful [5].

B. Assessing Practical Assignments at Large Scale

xMOOCs, as the openHPI courses, typically implement as-
sessment based on computer-gradable quizzes, such as multiple-
choice or fill-in-the-blank questions. This is a necessary limi-
tation, since manual grading done by teaching assistants does
not scale for a massive audience1. The need for computer-
gradable exercises is a first challenge when enhancing MOOCs
with practical assignments. The second challenge is posed by
the requirements concerning scaling. Common solutions include
running the experiments on the students’ own computers or
providing a cloud-driven environment. Yet, both approaches
make auto-grading even harder. Another disadvantage of experi-
ments on students’ machines is the heterogeneous environment.
Different operating systems or software stacks cause individual
errors and problems. A comprehensive environment for hands-
on assessment in the context of MOOCs should also respect
the social character of this kind of courses, which makes the
assessment prone to cheating since students could easily share
results of practical tasks on social networks. During Coursera’s
Scala course, offered by Martin Odersky in 2012, this scenario
became reality. The course staff felt the necessity to tackle this
issue in an email announcement to all course participants [6].
For this reason, the practical exercises should be customized
for each student. The paper at hand presents a lightweight and
quick approach for the realization of practical assignments and
therefore cannot match all the above requirements.

TABLE I. NUMBER OF HANDED IN SUBMISSIONS (FOR A MORE
DETAILED DESCRIPTION OF THE EXERCISES SEE SECTION III)

Assignment # of submissions success-rate

Bonus 1: HTML: Add list entry 1,240 94%

Bonus 2: HTML: Edit class attributes 1,230 92%

Bonus 3: Javascript: max() 1,198 91%

Bonus 4: Javascript: square() 1,147 93%

Bonus 5: Javascript: sum() 1,108 85%

Bonus 6: Javascript: cookies 1,037 84%

Bonus 7: Javascript: isPrime() 953 85%

Bonus 8: Javascript: fibonacci() 920 85%

Total: 8,833

During the last couple of years many efforts—such as e.g.
WebToTeach, Ceilidh, Assyst, Web-Cat, or ELP to mention
just a few—have been made to automate the evaluation of

1Peer reviewing is deliberately not taken into account here.

programming tasks. (see e.g. [7] for an overview of these efforts).
Enabling automated grading of programming tasks in a MOOC
system, such as openHPI, requires time, effort, and money. The
two most important reasons why this was not an option for
openHPI’s Web-Technologies course were:

• The openHPI platform does neither provide an environ-
ment to run code, nor to assess it.

• The introduction of programming tasks into MOOCS
still had an experimental character, lessons had to be
learned before integrating such a feature in the platform.

• The development of a full featured online coding en-
vironment and its integration into the existing platform
would have required a great deal of time. This time was
not to be spent before the practicability of hands-on tasks
in MOOCs was tested.

So, implementing a customized solution for the Web-
Technologies course at openHPI—automated or peer-review-
based—was out of question in terms of effort and timing. A
leaner solution had to be found. Third-party, web-based coding
tools recommended themselves as a quick and cheap alternative.
Three general categories of available tools have been identified
and will be discussed in section III-C.

TABLE II. NUMBER OF USERS THAT SUBMITTED A CERTAIN AMOUNT OF
BONUS TASKS

of submitted tasks # of users

1 20

2 33

3 54

4 40

5 73

6 86

7 56

8 894

Total: 1,256

In the Web-Technologies course, an aggregate of 8,833 sub-
missions (see table I for details) for all practical assignments
were handed in by the participants. 1,256 participants (39.6%)
out of 3,172 active participants submitted a solution for at least
one of the practical bonus exercises. 894 (71.2%) out of these
1,256 participants submitted solutions for all eight bonus tasks
(See table II). Given that a maximum of 16 points—which is
equivalent to the amount of points for a single homework—for
all eight bonus tasks was available, and that the participants had
to invest considerably more time to earn these points compared
to the homework, these numbers are quite good.

III. THE SOLUTION THROUGH EXECUTION ASSESSMENT
PATTERN (STEAP)

The basic idea is to prepare a programming problem in a
publicly available online tool, along with a piece of code that

is able to evaluate the participant’s solution. This evaluation
code returns a password if the participant’s solution provided
the correct results. The participant can now copy this password
and paste it in a fill-in-the-gap question in a standard quiz on
the openHPI MOOC platform, which also serves as the starting
point for the whole procedure (see figure 1).

Course
Participant

Bonus task
Logged in user starts bonus
task in openHPI

Quiz screen in openHPI
with link to external
application and text field to
enter password

jsFiddle

Enter password

clicks on
link to

external
tool

External Tool in
separate window/tab

edits source code until
password is displayed

R2D2

copies password
to input field in
openHPI quiz

Submit

A

B

C
U

ser subm
its result and gets credited

points if the passw
ord is correct

D

Fig. 1. Schematic view of workflow in STEAP

A. Implementation

A simple STEAP task consists of three parts:

• a well-defined task or problem,

• the possibility to solve the given problem by editing and
executing code in an instantly easily available online
tool,

• a piece of code to evaluate the participant’s solution.

1) Task: The participants were given several programming
tasks of increasing difficulty in form of a quiz within the
openHPI course platform. The task (see Fig. 2) described a

problem that was to be solved as well as the structure of the
solution.

2) Solution: The problem description contained a link to a
JSFiddle page2 that had been prepared for these purposes. There,
the participants had the opportunity to write and test code to
solve the given task in an editor within their web-browser (see
Fig. 3-[1]).

3) Evaluation: The concept behind the STEAP tasks is that
solving the task requires the student to modify and to execute
the code—plain reading and understanding of the code is not
sufficient. The participant is forced to do practical, hands-on
exercises, experiment with the code snippets, and construct
her expertise out of practical experience. The evaluation of
the participants’ solution is implemented through a series of
test cases that ought to allow for all possibilities. This piece
of code executes the provided solution and checks whether it
behaves as expected. For the given example, the evaluation code
called the function isPrime with exemplary numbers, each time
checking if the participant’s code solves the problem correctly.
For the test numbers 2, 3, 5 and 7 the isPrime function was
supposed to say true. For the numbers 4, 9 and 15, however,
it was supposed to say false as these are not prime numbers.
As unexperienced programmers often do not check certain edge
cases, the evaluation code also checked the numbers 0 and 1,
which have to be treated separately in the solution code. If all
the test numbers returned the correct result, the password was
released. On the other hand, if one or more test cases fail—
the isPrime function returns an unexpected result—the password
stays hidden. There were no restrictions regarding the number of
attempts. Participants can run their code as often as required and
refine it if necessary. Note, however, that the quiz on openHPI
has a time restriction. Only within this period—usually one
hour—is the participant able to enter the password in the quiz
form in order to gain credit for the exercise.

In order to prevent the participants from only covering the
test cases, the evaluation code is obfuscated3 (see Listing 3-[2]).
Note that obfuscated code can be restored, provided a certain
effort (see section III-D for a discussion of this aspect). If the
participant has solved the task, she is rewarded with the display
of a password, which in turn is the solution for the quiz that is
containing the task description from step 1. Obviously, this kind
of evaluation is binary. Either the participant is able to retrieve
the password or not. There is no way to provide points for partial
solutions. This aspect will be discussed in more detail later.

Assignments of the more cognitive reading and understanding
kind have also been provided in homework and the final exam.
The results of two of these assignments have been used to

2What JSFiddle is and why it was chosen by the teaching team, will be
described in more detail in section III-C. The example given in Fig. 3 can be
found online at http://jsfiddle.net/openHPI/nFxVh/

3Obfuscated code is still functional and can be executed by a computer. It
obscures its functionality to a human reader by using strong compression and
complex syntax.

evaluate the impact of the practical programming tasks on the
performance of the participants (see section IV).

Given is the following website, which provides some
Javascript code and two HTML form fields on JSFiddle:
http://jsfiddle.net/openHPI/nFxVh/
Write a function isPrime(num), which takes a number num
and checks if that number is a prime number. The function
is expected to return true if num is a prime number and
false if not. [...] When you have found a correct solution,
a password will be displayed in JSFiddle’s result window,
which you can enter into the input field below this text.

Fig. 2. Exemplary Javascript programming task in the openHPI course Web-
Technologies (translation from German original).

function isPrime(num) {

//enter your code here [1]

}

//Obscured evaluation code [2]

eval(function(p,a,c,k,e,r){e=function(c){return

c.toString(a)};if(!’’.replace(/^/,String)){while

(c--)r[e(c)]=k[c]||e(c);k=[function(e)

{return r[e]}];e=function(){return’\\w+’};c=1};

while(c--)if(k[c])p=p.replace(new RegExp

(’\\b’+e(c)+’\\b’,’g’),k[c]);return p}(’k m()

{8 a=6(2)&&6(3)&&6(5)&&6(7)&&!6(4)&&!6(9)&&

!6(r)&&!6(0)&&!6(1);8 b="l";b="j"+b;8 c=n.

o(\’p\’);c.q=(a?"d f g h iöe, s t u "+b:"d f g h v

w iöe")}’,33,33,’||||||isPrime||var|||||

Sie|st|haben|die|Aufgabe|gel|BK1k|function|ad87|

check|document|getElementById|solution|innerHTML|

15|das|Passwort|ist|noch|nicht’.split(’|’),0,{}))

Fig. 3. Javascript coding task (1) and obfuscated evaluation code (2).

B. Advantages of the STEAP Methodology

STEAP enables teachers to easily employ available, free
online tools for the purpose of evaluating practical assignments.
It can be used in combination with any system that is managing
learners. Be it a classical Learning Management System, such as
e.g. Moodle or Canvas, or a system that is specialized to manage
MOOCS such as e.g. openHPI or edX. The only requirement
is that this system provides the possibility to edit automati-
cally graded simple multiple-choice or fill-in-the-gap questions.
The methodology—or at least the lightweight implementation
presented in this work—should not be employed where fraud
resistance plays an important role, however (see section III-D).
STEAP enables students to test their practical skills in an
environment that has been prepared by the teacher according
to the special demands of the given task. Basic, immediate,
automated feedback is given to the student. This mechanism
needs to be improved in the future, however, to provide a more

detailed feedback (see also section III-D). STEAP has its limits
in this regard as any feedback needs to be specified in the task
itself, and therefore, will cause a high workload for the teachers if
a very detailed feedback is required unless there is a community
that can help out the learner, as given in a MOOC context.

C. Categories of Available Online Tools for Practical Assign-
ments

We have identified three general categories of available tools
that more or less fit the purposes of the teaching team.

1) Full-featured Online Courses: Tools in this category,
offer complete courses to certain hands-on programming topics.
Including text- or video-based explanations, a predefined set of
exercises and means to solve these exercises online. CodeA-
cademy4 is an example for a tool in this category.

2) Online Tools with a Fixed Problem Set: Tools in this
category typically provide a fixed set of problems, which are
evaluated by the tool one way or the other, but no additional
course-like material. CodingBat5 is an example for a tool in this
category. It offers an impressive list of problems in Java and in
Python. The CodingBat evaluates the results based on the results
of predefined unit tests. CodeLab6, the commercial follow up
project of WebToTeach [8] is an other tool in this category.

3) Free-form Coding Tools: Finally, tools in this category
offer a means to write and run code. There is neither a given
problem set nor a course structure attached.

Tools from the first two categories are not suited for the
intended purpose. A common problem with all these tools
was, that the teaching team had no influence on the problem
set. There was no way to inject the evaluation code. These
tools provide evaluation mechanisms of their own, which do
not provide a means to return the results to the openHPI
platform. A possible solution for this issue is the Learning
Tools Interoperability (LTI) specification by the IMS Global
Learning Consortium, which also signs responsible for e.g. the
Common Cartridge (CC) Format. LTI allows teaching/learning
tools to interact with systems that are, amongst other duties,
managing learners, such as Learning Management Systems or
MOOCs. This idea will be taken up again in section V.

Employing a tool that is able to give a more specific feedback
to the users, such as CodingBat or WebToTeach, would be
desirable. Unfortunately, in the given setting, the usage of such a
tool was not manageable for the intended purposes. The teaching
team decided in favor of JSFiddle7, a tool of the third category—
free-form coding tools. JSFiddle is a tool that allows participants
to quickly and easily write HTML, CSS, and Javascript code
online, view and share the results and keep a version-controlled

4see http://www.codecademy.com/
5see http://codingbat.com/
6see http://www.turingscraft.com/
7see http://jsfiddle.net

history of their steps. Besides Javascript and CSS it also supports
CoffeeScript and SCSS. A broad variety of Javascript libraries,
such as jQuery8 or MooTools9 can be used. Within the web
community JSFiddle has a high reputation and is one of the 2,000
most frequently used websites [9]. Its main window is separated
into four areas, three of them serve the purpose of editing HTML,
Javascript, and CSS code, while the fourth displays the rendered
result when the user finishes editing and clicks the Run button
(see Fig. 4).

Fig. 4. Screenshot of the JSFiddle programming environment. The left column
allows for settings of the used software libraries. The upper-left window is used to
edit HTML code, in the upper-right window CSS rules can be defined. Javascript
code can be edited in the lower-left window. The final result is displayed in the
lower-right window.

Hereby, the practical programming exercises actually run on
the students’ computers—not causing any performance bottle-
neck on the server—the training environment, however, is still
homogeneous due to the mandatory use of a 3rd party, web-based
tool.

D. Lessons learned

1) Version history in JSFiddle: One of the problems that the
teaching team faced was that JSFiddle automatically stores the
version history of a project. JSFiddle provides the user with an
Update and a Run button. A click on the Update button is not
required for solving the task—a click on the Run button would be
sufficient to unveil the password if the solution has been found,
but it can also not be avoided, as the teaching team obviously
had no influence on a third party tool’s GUI. The history of
a JSFiddle project contains all updates of all users. Different
versions can be accessed by simply changing the version number
in the URL. The version number is appended to the identification
of the code snippet. The original code from the example above
had the URL http://jsfiddle.net/openHPI/nFxVh/1/, a later ver-
sion would have the URL http://jsfiddle.net/openHPI/nFxVh/2/.
The teaching team made use of this feature in one very special
case of an advanced object-oriented Javascript exercise. In this
exercise where participants could not earn points at all, the

8see http://jquery.com
9see http://mootools.net/

history was used to provide them with hints to the solution.
Generally, however, this is not what you want in such a context,
as each update operation of a participant creates a new version
of the task, which then also can be accessed by every other
participant—if they experiment hard enough with the URLs.

2) (Missing) Internationalization of external tools: As the
Web-Technologies course was offered in German, JSFiddle’s
missing internationalization was another issue that had to be
faced. In the context of a dedicated programming course, this
does not necessarily pose a problem as a certain proficiency in
English is required anyway in this field. In the given context of
an introductory course on a variety of web-technologies, some
of the participants had minor problems with that. This is not
considered to be a major problem in the context of programming,
however.

3) Availability of external tools: More seriously was the fact
that some participants reported problems with JSFiddle’s avail-
ability. Some spot checks by the teaching team confirmed these
reports. Especially, in close view of an approaching deadline
this turned out to be problematic. In this case, it can be taken
for granted that it was not caused by load peaks on our side.
The maximum number of participants working in parallel on the
hands-on tasks was 31410. If the number of participants working
in parallel on hands-on tasks is expected to be higher, this is a
factor that needs to be considered. Contacting the provider of
the chosen tool and discussing the plan might be a good idea as
not every tool that is available online is necessarily designed to
handle large amounts of users.

4) Browser compatibility: When third party tools are used
in the context of the WWW, browser compatibility always is an
issue to be considered. Nevertheless, jsFiddle has turned out to
be a tool that is compatible with a wide variety of browsers.
Obviously, Javascript needs to be enabled in the user’s browser
and certain browser plug-ins, such as e.g. NoScript or Internet
Security tool suites need to be disabled in this context. Content
authors that aim to incorporate “fancy” or exotic libraries into
their experiment should test the setup with the 3rd-party tool
extensively.

5) Fraud resistance: The solution presented in this work is
not very fraud resistant. As shown above, participants were easily
able to find the results of other participants with a little effort.
Unsurprisingly, participants with a more advanced knowledge of
Javascript also have been able to de-obfuscate the evaluation
code and come into possession of the solution passwords11.
Sharing results via social networks, also was easy to do as all
participants worked on identical problems. It was decided to
ignore these issues for the time being, as

• it was assumed that participants were more interested

10This is the number of participants that started to work on the task on openHPI
within 1 hour. We had no way to measure how many users were actually using
JSFiddle during this time period

11see e.g. the following discussion (in German language) on openHPI:
https://openhpi.de/courses/7/discussion_topics/3205

in completing a challenge and learning rather than in
earning points12,

• participants were only able to earn a few bonus points,

• participants with the technical expertise to restore the
original evaluation code would also be skilled enough
to solve the questions at hand.

6) Binary assessment: This type of assignment allows only
a binary assessment of the assignments. Either it works, and
the participant can retrieve the password, or it does not and she
cannot retrieve the password. Neither is it possible to grant points
for partially correct solutions nor is it possible to assess the
quality of the found solution.

E. Transferability

1) Transferring the programming exercises to other program-
ming languages: The chosen approach is based on two major
features, namely the opportunity to edit and run code in a
homogeneous online environment. This means that participants
are not required to install any programming tools on their local
machines. This aspect becomes increasingly important when
considering other programming languages as many of these
require a great deal of configuration. The basic concept of
editing the code and presenting the results online is transferable
to any programming language. Also running the code on the
server is possible, as any soft- and hardware can be simulated in
virtual environments. Websites with online editors and compilers
already exist13 and could be used for the STEAP approach.
Note, however, that in contrast to Javascript, most programming
languages cannot be interpreted by the users’ browsers, but
have to be compiled on the server. The created programs would
therefore run on that server and use its resources (e.g. memory or
processing time). As discussed in section III-D, the availability
of such online services could be affected in times of high usage.

Another means to ensure the homogeneity of the coding
environment is the use of virtual machines. Such machines can
be pre-configured by the teaching team to meet the students’
needs and provide any necessary tool for the task at hand. In
contrast to server sided evaluation, however, virtual machines
are downloaded and run on the users’ local machines, thus
preventing availability problems.

2) Transferring the methodology to be used for non-
programming tasks: The concept of STEAP—provide a task in
a third party environment and test the result with a password—is
well applicable not only to programming challenges.

12Even considered that the certificate that is issued by openHPI does not have
an “official value", such as ECTS points, etc. this admittedly turned out to be a
rather starry-eyed assumption. Concluding from often arising discussions about
points in the forums or the help desk, points are valued rather high amongst
certain subsets of our user community.

13see e.g. compileonline.com/

In the described openHPI course, a topic in the lectures was
HTTP14. In order to provide a deeper understanding, the teaching
team decided to provide practical exercises on HTTP headers. A
HTTP header is meta information that is sent along every HTTP
request to web servers. In tutorials accompanying the course, we
taught how to manipulate HTTP headers and what effects this
has. The HPI-owned site tele-task.de was prepared to react to
the word “openHPI” in the participant’s user-agent, which is a
HTTP header designed to provide information about the web-
browser in use (e.g. indicating a mobile operating system). If
a course participant accessed the tele-TASK website with such
a manipulated user-agent string, the site issued a password that
should be used to answer a related question in the openHPI quiz
environment.

In order to design a task that follows the STEAP concept,
it must only produce an unambiguous result—not necessarily
electronically—that can be entered into a quiz form. Other
examples for hands-on exercises conducted with the STEAP
pattern are described in [5]. The course participants had to
understand headers of e-mails, the responses on a query to a
DNS server, or analyze network traffic on their own computer.

IV. EVALUATION AND FEEDBACK

Within the Web-Technologies course, week four was dealing
with the topic web programming. Comparable questions in the
homework of week four and the final exam have been selected
to evaluate if working on the STEAP tasks had any influence
on the users’ performance. Week four’s homework had to be
submitted before the STEAP tasks were available. The final exam
was available after the STEAP tasks had to be submitted. Fig. 5
and 6 show the questions that have been compared.

Our assumption was, that those users who worked their
way through all the STEAP tasks would have better results
for the monitored question in the final exam—compared to
their colleagues who did not work on the STEAP tasks and/or
compared to the monitored control question in the homework of
week four.
To prove this assumption the amount of points that the users
achieved for these questions have been compared.

The following tables show the results of this evaluation. Only
the results of those users that submitted both—homework of
week four and the final exam—have been considered. In the
following, this subset of participants will be called the test group.
The columns in all following tables are to be read as:

• col1: The number of submitted STEAP tasks, per user
in col2 to col4,

• col2: The number of users who sported better results for
the questions in the final exam than for the equivalent
questions in the homework of week four. The number
in parentheses shows the percentage of the number of

14The Hypertext Transfer Protocol is used for requesting web-sites from web
servers.

users in this column vs. the sum of all columns in this
row,

• col3: The number of users whose results for the equiv-
alent questions in homework four and final exam were
the same,

• col4: The number of users whose results in the final
exam were worse, compared to their results for the
equivalent questions in homework four.

As the vast majority of the participants in the test group have
taken either no bonus task or all bonus tasks we aggregated this
value in two groups:

• Participants who submitted less than four bonus tasks
(control group),

• participants who submitted four or more bonus tasks
(experimental group).

We started by comparing all the users in the test group.
Quite contrary to our assumptions, an even larger percentage
of participants that did not work on any STEAP tasks improved
their performance than those who did.

TABLE III. COMPARISON OF THE RESULTS OF ALL PARTICIPANTS IN THE
TEST GROUP

col1 col2 col3 col4

< 4 246 (36%) 341 (49%) 105 (15%)

≥ 4 265 (25%) 705 (65%) 109 (10%)

Then, to figure out if the participants background in IT had
any impact on the results, we evaluated the participants separated
by this value. Background in IT is a profile setting on openHPI,
which optionally can be specified by the participants. The options
for this setting are:

• Undefined, None, Beginner, Advanced, and Expert.

The groups Undefined and None have been merged as the second
group was of negligible size.

Tables IV to VII show the results of the users in the test
group separated by their background in IT.

TABLE IV. COMPARISON OF THE RESULTS OF THOSE PARTICIPANTS IN
THE TEST GROUP WITH AN UNDEFINED OR NO BACKGROUND IN IT.

col1 col2 col3 col4

< 4 48 (33%) 79 (54%) 20 (14%)

≥ 4 57 (22%) 171(66%) 30 (12%)

TABLE V. COMPARISON OF THE RESULTS OF THOSE PARTICIPANTS IN
THE TEST GROUP WITH A BEGINNER’S BACKGROUND IN IT.

col1 col2 col3 col4

< 4 62 (38%) 68 (42%) 32 (20%)

≥ 4 63 (37%) 84 (49%) 25 (15%)

TABLE VI. COMPARISON OF THE RESULTS OF THOSE PARTICIPANTS IN
THE TEST GROUP WITH AN ADVANCED BACKGROUND IN IT.

col1 col2 col3 col4

< 4 111 (40%) 130 (46%) 40 (14%)

≥ 4 111 (24%) 308 (67%) 43 (9%)

TABLE VII. COMPARISON OF THE RESULTS OF THOSE PARTICIPANTS IN
THE TEST GROUP WITH AN EXPERT BACKGROUND IN IT.

col1 col2 col3 col4

< 4 25 (25%) 64 (63%) 13 (13%)

≥ 4 34 (18%) 144 (76%) 11 (6%)

The most significant observation here was that the majority of
users, regardless of their background, achieved the same amount
of points in the final exam as in the homework of week four.
Therefore, as a final step, we removed those users from the
evaluation that had achieved the full amount of points for the
probed question in homework four yet, again distinguished by
the users’ background in IT.
The consideration behind this move was that those who earned
the full amount of points for the first monitored question yet,
had no headroom to improve their results anyway and, therefore,
rather distorted the result. Tables VIII to XI show the results of
this operation. While the absolute numbers still do not differ too
much between those users who have taken the STEAP tasks and
those who did not, the percentages provide a more optimistic
view here.

TABLE VIII. COMPARISON OF THE RESULTS OF THOSE PARTICIPANTS IN
THE TEST GROUP WHO HAD NOT ACHIEVED THE POSSIBLE AMOUNT OF
POINTS FOR THE REVIEWED QUESTION IN HOMEWORK FOUR WITH AN

UNDEFINED OR NO BACKGROUND IN IT.

col1 col2 col3 col4

< 4 48 (61%) 18 (23%) 13 (16%)

≥ 4 57 (73%) 9 (12%) 12 (15%)

TABLE IX. COMPARISON OF THE RESULTS OF THOSE PARTICIPANTS IN
THE TEST GROUP WHO HAD NOT ACHIEVED THE POSSIBLE AMOUNT OF

POINTS FOR THE REVIEWED QUESTION IN HOMEWORK FOUR WITH A
BEGINNER’S BACKGROUND IN IT.

col1 col2 col3 col4

< 4 62 (59%) 23 (22%) 20 (19%)

≥ 4 63 (72%) 10 (11%) 14 (16%)

TABLE X. COMPARISON OF THE RESULTS OF THOSE PARTICIPANTS IN
THE TEST GROUP WHO HAD NOT ACHIEVED THE POSSIBLE AMOUNT OF
POINTS FOR THE REVIEWED QUESTION IN HOMEWORK FOUR WITH AN

ADVANCED BACKGROUND IN IT.

col1 col2 col3 col4

< 4 111 (74%) 18 (12%) 22 (15%)

≥ 4 111 (80%) 13 (9%) 15 (11%)

These data are not supporting our assumption very strongly.
Obviously, it cannot be expected that participants get more than

TABLE XI. COMPARISON OF THE RESULTS OF THOSE PARTICIPANTS IN
THE TEST GROUP WHO HAD NOT ACHIEVED THE POSSIBLE AMOUNT OF
POINTS FOR THE REVIEWED QUESTION IN HOMEWORK FOUR WITH AN

EXPERT BACKGROUND IN IT.

col1 col2 col3 col4

< 4 25 (69%) 3 (8%) 8 (22%)

≥ 4 34 (87%) 2 (5%) 3 (8%)

a very brief introduction to the world of programming in a
one week crash course, covering about an hour of video and
a handful of simple programming tasks. We did not conduct a
formal survey to evaluate the participants’ opinion about these
tasks, but in a discussion category in the course’s forum which
explicitly broached the issues of bonus material and the STEAP
tasks, the majority of users reacted very positively15

V. OUTLOOK ON FUTURE DEVELOPMENT

For the coming new openHPI platform better integrated
tools, compatible with the Learning Tools Interoperability (LTI)
specification are in the pipeline—to enable more complex pro-
gramming tasks, better feedback mechanisms, and better fraud
protection. LTI enables the communication between systems that,
amongst others, manage users, such as LMS or MOOCs via web
services. The principle is more or less an automated version
of our workflow. The MOOC or LMS provides a link to the
connected tool. When the link is clicked, the user is sent to the
external learning tool, works on a task there and, on submit,
the result—a value between zero and one—is returned to the
MOOC, where it is added to the users progress. This solution
affords, however, that both tools are compatible with the LTI
specification and support its feature set.

For the more distant future, research on non-binary assess-
ment of programming tasks, based on software metrics and unit
tests, is planned.

VI. CONCLUSION

In terms of cost-value ratio the STEAP Experiment proved
to be a success under the given circumstances. As these cir-
cumstances are quite common, we are sure that our experiments
might prove to be valuable for others as well. The improvised
connection to a tool, such as JSFiddle, via the generation of
passwords is easy to setup and very cheap to implement. If the
teaching team is aware of several pitfalls, its usage is overall
rather uncomplicated. The possibilities are very limited, however.
Although we were not able to show a significant difference in
the performance of those users that submitted solutions for the
STEAP tasks, we are still convinced of the importance to provide
more practical exercises for MOOCs. The generally positive
feedback that we received from the participants supports this
assumption.

15 see e.g. https://openhpi.de/courses/7/discussion_topics/3154 or
https://openhpi.de/courses/7/discussion_topics/3217

Given the following HTML and Javascript:

<!DOCTYPE html>

<html>

<head>

<title>Wieder eine knifflige Aufgabe</title>

<script type="text/javascript">

var d = document;

function task1() {

var one = d.getElementById("Eins");

var two = d.getElementById("Zwei");

if (one.style.display == "block") {

one.style.display = "none";

two.style.display = "block";

} else {

two.style.display = "none";

one.style.display = "block";

}

}

function task2() {

var teleboard = d.getElementsByTagName("div")[0];

var newTitle = d.createElement("h1");

var newText = d.createTextNode("TeleBoard");

newTitle.appendChild(newText);

teleboard.appendChild(newTitle);

}

</script>

</head>

<body>

<div id="Eins" class="tele" style="display:block">

Eins

Eins

</div>

<div id="Zwei" class="task" style="display:none">

Zwei

Zwei

</div>

<p>Aufgabe1

<p>Aufgabe2

</body>

</html>

Read the source code and try to determine what behavior
will be triggered by the javascript functions task1 and task2.
Please, assign the events (A) to (F) to the first two clicks
on the links Aufgabe1 and Aufgabe2

• (A) The <div>-element with id=“Eins” becomes
visible.

• (B) The <div>-element with id=“Zwei” becomes
visible.

• (C) An <h1>-element will be added to the <div>-
element with id=“1”.

• (D) An <h1>-element will be added to the <div>-
element with id=“1” only if this <div>-element is
currently visible.

• (E) A second <h1>-Element will be attached to the
<div>-element with id=“1”.

• (F) Nothing will happen as an <h1>-element has
been attached yet.

Fig. 5. Question in week four’s homework of the openHPI course Web-
Technologies (translation from German original).

Given the following HTML and Javascript:

<!DOCTYPE html>

<html>

<head>

<title>Schon wieder eine knifflige Aufgabe</title>

<script type="text/javascript">

function task1() {

var one = document.getElementById("Eins");

if (one.childNodes[0].style.color == "red") {

one.childNodes[0].style.color = "green";

} else {

one.childNodes[0].style.color = "red";

}

}

function task2() {

var two = document.getElementById("Zwei");

for (var i = 0; i < two.childNodes.length; i++) {

if (two.childNodes[i].style) {

two.childNodes[i].style.color = "red";

}

}

}

</script>

</head>

<body>

<div id="Eins" class="tele"><a href="http://tele-task.de"

style="color:red">Eins

</div>

<ul id="Zwei">

Erster

Zweiter

<p>Aufgabe1

<p>Aufgabe2

</body>

</html>

Which of the following statements apply for the given code
example?

• Clicks on the link Aufgabe1 color the link in the
<div>-element with id=“Eins” red or green in turn.

• Clicking on the link Aufgabe1 has no effect, as
javascripts cannot be called via event-handlers, such
as onClick. To do this an <input type=“button” />
is required.

• A click on link Aufgabe2 colors all list elements in
the list with id=“Zwei” red.

• Clicks on link Aufgabe2 color all list elements in
the list with id=“Zwei” red and green in turn.

Fig. 6. Question in the final exam of the openHPI course Web-Technologies
(translation from German original).

REFERENCES

[1] C. Willems, J. Renz, T. Staubitz, and C. Meinel, “Re-
flections on enrollment numbers and success rates at the
openhpi mooc platform,” in Proceedings of the European
MOOC Stakeholder Summit 2014, PAU Education, 2014,
pp. 101–106.

[2] C. Meinel and C. Willems, OpenHPI : The MOOC of-
fer at Hasso Plattner Institute, Hasso-Plattner-Institut für
Softwaresystemtechnik: Technische Berichte des Hasso-
Plattner-Instituts für Softwaresystemtechnik an der Uni-
versität Potsdam ; Nr. 80. Potsdam, Germany: University
Press, 2013.

[3] J. Carter, K. Ala-Mutka, U. Fuller, M. Dick, J. English, W.
Fone, and J. Sheard, “How shall we assess this?” SIGCSE
Bull., vol. 35, no. 4, pp. 107–123, Jun. 2003, ISSN: 0097-
8418.

[4] D. M. Teague, A. Poppleton, P. G. Bancroft, and P. Roe,
“Online feedback for novice programmers,” in OLT 2005
Conference: Beyond Delivery, QUT Gardens Point, Bris-
bane, 2005.

[5] C. Willems, J. Jasper, and C. Meinel, “Introducing hands-
on experience to a massive open online course on openhpi,”
in Proceedings of IEEE International Conference on Teach-
ing, Assessment and Learning for Engineering (TALE
2013), Kuta, Bali, Indonesia: IEEE Press, 2013.

[6] private communication, [Announcement sent by Scala
Course Staff, Scala course on Coursera], 2012.

[7] K. M. Ala-Mutka, “A survey of automated assessment ap-
proaches for programming assignments,” Computer Science
Education, vol. 15, no. 2, pp. 83–102, 2005.

[8] D. Arnow and O. Barshay, “Webtoteach: An interactive
focused programming exercise system,” in Frontiers in
Education Conference, 1999. FIE ’99. 29th Annual, vol. 1,
1999, 12A9/39–12A9/44 vol.1.

[9] http://www.alexa.com/siteinfo/jsfiddle.net, [Online;
accessed 26-09-2013].

