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Abstract—In the context of programming education, so-called
auto-graders allow learners to receive automated feedback on
their submissions. Because assessing learners’ code typically
involves executing the learners’ untrusted code, this commonly
used mechanism poses a significant security risk for these
systems. Since auto-graders are mostly employed in the context
of large-scale learning environments, such as universities or
Massive Open Online Courses (MOOCs), security considerations
are especially important. In this paper, we first introduce our
auto-grader CodeOcean, which is regularly used in MOOCs
with thousands of active learners, and in university contexts.
As the execution of untrusted code can entail severe security
implications, ensuring that the application contains no security
vulnerabilities is essential. Hence, we partnered with a security
consultancy to assess our auto-grader system landscape through a
professional penetration test. This work presents the findings and
countermeasures resulting from the performed security analysis
for CodeOcean. We contextualize overarching enhancements for
three main categories of threat vectors to auto-grader systems.
Implementing these in any auto-grader system can improve the
security and prevent learners from manipulating the assessment
of their code. We also discuss the potential consequences of
hardening an auto-grader, such as a reduced system performance.
Therewith, we provide valuable recommendations for educators,
researchers, and system designers to improve the security of
auto-graders in the future, supporting their usage in even larger
settings or in the context of exams.

Index Terms—Auto-Grader, Security, Penetration Test, Code
Execution, Programming, MOOC

I. INTRODUCTION

Programming education is often accompanied by practical
coding exercises, allowing learners to apply the newly acquired
knowledge. For this purpose, educators usually provide small
to medium-sized tasks to work on. However, simply providing
the exercises is not yet sufficient for the learning success:
Learners also need feedback on their submissions, pointing
out any potential mistakes. While an educator might be able
to provide this feedback manually for a small group of
learners, it quickly becomes too laborious for larger groups of
learners at universities or within Massive Open Online Courses
(MOOCs). Therefore, assessing learners’ code submissions
and either determining a (final) grade or providing detailed
feedback is often automated in these settings with so-called
auto-graders.

While providing feedback might be considered “enough”
within university courses, learners in other contexts, such as
MOOCs, potentially require additional technical support to get
started with the required tools: Some auto-graders designed for
novices also provide a web-based educational programming
environment, allowing learners to start programming directly
through their browsers. This approach relieves beginners from
installing any programming tools on their devices and thereby
removes a major hurdle in the beginning [1]. However, it
also poses security challenges, when learners’ untrusted code
is executed by the auto-grader on an own server [2]. These
security challenges induced by the execution of untrusted code
need be properly mitigated by the auto-grader through various
security best-practices. In the past, failing to do so has even led
to severe security breaches across various products. Examples
include the commercially-offered auto-grader Gradescope [3],
self-developed auto-graders in the university context [4], [5]
or possibilities for students to manipulate their scores [6].
Therefore, in the research paper at hand, we contribute security
recommendations generalized from a professional security
analysis of our auto-grader CodeOcean.

The remaining parts of the paper are structured as follows:
First, we provide an overview of the possible architectures
of auto-graders and the respective attack vectors before intro-
ducing our system CodeOcean in Section II. Following, we
relate our work to previous research in Section III. Then, we
cover general methodologies for security analysis and specific
details about the penetration test conducted against our system
in Section IV. In Section V, we highlight relevant results and
sketch out the necessary steps taken to mitigate the issues.
Section VI discusses the findings and mitigation strategies
under consideration of performance implications and points
out areas for future work. Finally, Section VII concludes our
work.

II. BACKGROUND AND STATUS QUO

Executing arbitrary code is among the key features of auto-
graders, and forms the base for assessing learners’ submis-
sions. While code written by instructors might be considered
as trusted (depending on the security model), code written
by learners should be considered untrusted [7]. Potentially,
a learner could submit malicious code for execution, and
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therewith attack the auto-grader, other users, or simply cheat.
Therefore, providers of auto-graders generally choose one of
two methods for code execution [7]:
Client-Sided Execution in which all code executions are

local and restricted to a learner’s browser.
Server-Sided Execution in which code is transferred to the

server systems provided by the educational platform and
usually executed in dedicated sandboxed environments.

While the former, client-sided approach does not require
dedicated security measurements or further resources for code
executions, support for other programming languages besides
JavaScript might be limited [8]. Even though recent devel-
opments such as WebAssembly (also known as WASM) or
JavaScript transpilers enable support for other languages or
even virtual machines in the browser [9]–[12], some limita-
tions still apply. For example, existing implementations do not
support third-party libraries [13] or fundamental concepts such
as threads or network access [10], [14]. Resource-constrained
devices, such as older smartphone or tablets, might also
yield an unsatisfying performance [7]. In addition, the client-
sided approach requires that any test cases are also executed
in the learners’ browser, thus exposing this grading-related
information, which in turn also eases cheating. Therefore, such
a design is not suitable for a graded exams (in schools or uni-
versities), which usually requires a tamper-proof environment.

The second approach of server-side code executions does
not come with these limitations, but drastically increases the
amount of attack vectors as untrusted code is now executed
on servers provided by the learning environment. Therefore,
this approach requires additional efforts to protect the auto-
grader from malicious actions (see Section III). Usually, the
execution of untrusted code in an own system is considered
a major security risk. In cybersecurity contexts, attacks able
to execute code on a foreign server are considered one of
the most serious vulnerabilities to date [15]. Yet, server-sided
auto-graders offer that feature by design. Hence, an extensive
security architecture to ensure isolation of the environment,
preventing any executions beyond a pre-defined sandbox is
crucial [5]. While some auto-graders in this category started
with programming-specific isolation features (see Section III),
many tools nowadays employ general purpose sandbox tech-
nologies. Those range from user-level programs to kernel fea-
tures to dedicated virtual machines. As those approaches differ
in their level of isolation and complexity, their performance
and usage of system resources differs, too [2]. Regardless of
the specific technology involved, all approaches aim to prevent
an untrusted application to break out of pre-defined sandbox
(sometimes referred to as a container escape), potentially
harming the system.

A. Common Attack Vectors for Web Applications

Since many auto-graders are web-based [16], the general
attack vectors for web applications apply to auto-graders, too.
While a detailed analysis of such attack vectors is beyond
the scope of this paper, those include insufficient access
controls, injections, misconfigurations, or outdated software

components. According to the OWASP Top 10, these lead
the list of security issues in web applications [17]. Another
common attack vector is path traversal, a vulnerability that
could give an attacker access to an arbitrary file outside the
common web server directory [18]. Such vulnerabilities might
be exploited in both, the application server and in the auto-
grader components in charge of executing learner code (i.e.,
inside the sandbox).

B. Specific Attack Vectors for Auto-graders

In addition to the aforementioned attack vectors also present
for “regular” web applications, we categorize attack vectors
for auto-graders as identified in previous literature [4]–[6] as
follows:
Server-Sided Attackers could aim to break out of the pre-

defined sandbox, either by actually executing arbitrary
code (or programs) on the same machine or by using the
auto-grader’s network to reach other hosts. A container
escape might compromise the host, e.g., by misusing
the compute resources for crypto-currency mining or
could otherwise impact the availability of the service for
other users. Undesired network attacks can be further
divided based on their target, such as the internet (e.g., to
send spam mail) or the internal network accessible from
the auto-grader (e.g., to access other internal resources,
potentially causing data leaks).

Client-Sided Depending on the feature set of the auto-grader,
attackers could also try to exploit client-side errors. For
example, if learners can share arbitrary content with
their peers that is not appropriately escaped, a traditional
cross-site scripting (XSS) attack commonly found in web
applications [19] could lead to an information leak or
an account take-over. In the context of auto-graders, we
consider this type of attack to be even more critical: Some
tools allow learners to learn the basics of web program-
ming, giving them control over the resources embedded in
a website that could contain malicious components. Such
an XSS attack can target supportive fellow learners or
members of the teaching team through social engineering,
based on the support or sharing features of the auto-
grader used. It is important to be aware of this potential
vulnerability and take necessary measures to prevent such
attacks.

Grading Even without deep cybersecurity knowledge, learn-
ers could be motivated to cheat and thereby improve
their scores. Instead of solving the given task on their
own, they could employ different cheating mechanisms.
For example, a learner could aim to access hidden test
cases (or even a sample solution if provided), and thereby
achieve a personal advantage. Those cheating attempts
become an even larger issue for graded exams using auto-
graders, e.g., in university contexts, where the learners’
motivation to gain a better grade might be higher.

For us, investing in the security of auto-graders in all three
categories is essential to ensure the integrity of the service
for all users and to provide a reliable mechanism for grading



assignments. Otherwise, learners (or attackers) can abuse the
system, as happened with university-developed systems [4]–
[6] or the commercial auto-grader Gradescope. The latter
system, which supports more than just programming assign-
ments, is used by more than 3.2 million students around the
world1 and had several vulnerabilities: According to student
reports, it has been possible to manipulate the grading process
since 2016, either by revealing hidden test cases [3], [20],
[21] or by directly writing the submitted score [3], [21],
[22]). In addition, the system was already vulnerable to client-
side threats, including XSS attacks [20], and suffered from a
series of server-side vulnerabilities, ranging from unrestricted
access to the underlying computing resources [20] to the
establishment of a reverse shell [3], [21]. However, we want
to emphasize that Gradescope is not the only auto-grader
vulnerable to these kind of attacks, as an analysis of various
educational auto-graders at universities shows [4]–[6].

C. Architecture Overview of our Auto-Grader CodeOcean

Tailored for beginners, we provide our own auto-grader
called CodeOcean since 2014 [23], which we have been using
regularly in MOOCs ever since. Its architecture is heavily
influenced by security and scalability considerations, allowing
it to be used in programming courses with more than 17,000
active learners so far. As shown in Figure 1, a micro-service
architecture has emerged over time [2], mainly consisting
of the CodeOcean web application, the Poseidon executor
middleware, and a multi-node Nomad cluster. All code execu-
tions are run in Docker containers, utilized as a sandboxed
environment and without any network connectivity, within
the Nomad cluster. In this context, the Poseidon executor
middleware is responsible for providing each learner with a
new, previously unused container (and deleting those from
inactive learners). The chosen components, namely the Nomad
cluster and the Docker containers, were identified through a

1More information: https://gradescope.com

previous study comparing the performance, resource usage
and isolation capabilities among various alternatives [2]: For
our use case, the selected combination represented the most
suitable combination of all requirements without the resulting
architecture suffering from any known security vulnerabilities.

During the subsequent development, we primarily focused
on mitigating server-side attack vectors and preventing client-
side attacks by learners. The auto-grader was designed for
novices voluntarily enrolling in a MOOC on their own and not
a graded university context. Therefore, preventing technical
cheating to improve one’s grade was a secondary considera-
tion. We further expected that those learners who were able
to access the hidden test cases and leverage them to their
advantages were already ahead of most of the learning goals
we had defined for beginner courses anyway. Therefore, in
the recent developments, we prioritized other security risks,
such as privilege escalation, account take-overs, or information
leaks. These technical measures were well considered and
secured by appropriate (basic) safeguards.

III. RELATED WORK

For many years, server-sided security considerations of
auto-graders have been subject to research. For example,
programs executed by the Java Virtual Machine (JVM) can
employ specific security mechanisms, i.e., the Java Security
Manager, and thereby limit potential actions [24]. Regardless
of the specific programming language used, Docker Containers
can be used as a sandbox [25], which supposedly eliminates
the need for isolation through virtual machines [26]. Docker
containers use Linux kernel features to provide an isolation
between processes and restrict file system usage, originally
intended to ease portability by providing reproducible envi-
ronments across different systems [27].

With regard to manipulating the automated grading of
learner submissions, four different categories of threat vectors
were identified in previous research [6]: Those attempts ranged
from discovering auto-grading internals, such as inspecting
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Fig. 1. System components of our auto-grader CodeOcean (see [2] for details). While the learner-facing web server manages all files for an actual execution
(using a PostgreSQL database) and defines the command to execute, the executor middleware Poseidon is responsible for copying the desired files to an
execution environment. All executions of learners’ untrusted code are performed in Docker containers, which are managed by a distributed Nomad cluster.



test cases, over fetching a solution to overwriting the scoring
functionality. Depending on the test setup, a cheating attempt
might also fake some characteristics of a solution, e.g., by
mocking a required recursion step [6]. This also becomes
especially important in the context of (coding) competitions,
where participants might be interested in overcoming the
execution time limit for a given scenario [5].

Considering these specific attack vectors of auto-graders
and the use cases (ranging from grades in universities to
coding competitions), security researchers have also conducted
structured analyses to strengthen auto-graders against those
malicious actions. For example, Pudney et al. identified several
vulnerabilities during a penetration test performed against
auto-grading systems at their university [4]. They found sev-
eral vulnerabilities in the sandboxed environments, which were
partially caused by outdated software versions, but also by
inadequate architectural decisions [4]. Further, the authors
discovered multiple opportunities to cheat or impersonate
as another user, and were able to prevent other users from
submitting their solutions to the auto-grader [4]. Finally, the
authors suggest extending the test scope to other auto-graders,
which we do with the paper at hand.

In contrast to previous work by fellow researchers, our
focus was on testing a large-scale auto-grader that has been
constantly used and developed by more than 100,000 learners
in different contexts since 2014. Originally designed as a
research prototype, CodeOcean has recently seen adoption by
other universities and in the context of enterprise MOOCs,
highlighting the relevance of a security analysis. To our knowl-
edge, no such in-depth analysis of an auto-grader, followed
by a scientific evaluation of the underlying issues, has been
conducted to date.

IV. METHODOLOGIES FOR SECURITY ANALYSIS

Proper security analysis is fundamental to engineering any
software project and application. It describes applying dif-
ferent types and forms of (structured) analysis to existing
or conceptual software or hardware to derive potential flaws
in the security of the architecture or implementation [28].
Many current research approaches promise more accessible
and extensive analysis of a software (and hardware) landscape,
such as using Graph-based solutions [29], [30], or Machine
learning-based methods [31], [32].

A. Types of Vulnerability Assessment

Generally, a vulnerability assessment contains static and
dynamic code analysis as well as manual testing. During static
analysis, automated tools scan software code for common or
known vulnerabilities caused, e.g., by using unsafe operations
of the respective programming language. During dynamic
analysis, the software is often run in isolated environments
in which its behavior is observed. At the same time, different
inputs are entered to test the robustness of the software towards
errors potentially caused by various (user) inputs. Once the
software is deployed onto its server infrastructure, tools such
as vulnerability scanners, which automatically assess, e.g., all

open endpoints of the system, can be used. Such tools auto-
matically enumerate known vulnerabilities or known concepts
for vulnerabilities inside the system.

Vulnerability scanners provide a good cost-effective starting
point to achieve an overview of a system’s security. However,
they are limited to enumerating known types of vulnerabil-
ities. To identify in-depth vulnerabilities and issues within
a system, manual penetration tests by cybersecurity experts
can be employed [33], [34]. During a penetration test, the
tester manually investigates software and systems in-depth,
uncovering issues that automated testing usually does not
discover.

B. Penetration Test against our System

In 2022, we contracted a professional company to perform
a penetration test on our auto-grader. To ensure that no
production systems, such as our online education platform,
were impacted by the penetration test, we scheduled the testing
period when no active programming courses required our auto-
grader. The penetration test took three three weeks and was
conducted by a dedicated team of three security specialists.

1) Assessment Scope: Through the penetration testing of
our auto-grader CodeOcean, we wanted to uncover potential
vulnerabilities in all aspects of the platform’s lifecycle. This
included the development process and Continuous Integration
(CI) pipeline, the current version of our software, the inte-
gration with external platforms (such as Learning Manage-
ment Systems), and our production deployment. Regarding
our custom software, the test explicitly covered the learner-
facing web server, the executor middleware Poseidon, and the
Docker images used to run and grade learners’ code. This
also included the actual code executions performed through
the Nomad orchestrator, considering potential interference
with the regular operation of our service, or manipulating
executions to a better grade through cheating. Furthermore,
we were interested in hearing the experts’ opinion about a
potential integration of network access we previously pro-
hibited in all exercises. Hence, we allowed the penetration
testers to access the network. Finally, the integration of the
Learning Tools Interoperability (LTI) standard [35] for the
communication with external systems, the drafting of emails
with user-generated content, and the admin login procedures
were also under test, since those components play a crucial
role in the authentication of any user. Older versions of
our open-source software, potentially operated by partners,
or any learning management system used to integrate with
CodeOcean were explicitly not part of the testing. Similarly,
the scope did not include any dedicated training of teaching
team members (i.e., regarding their account security or social
engineering attacks).

2) Testing Approach: Provided with a regular learner ac-
count to access different programming exercises, and a teacher
account for our production environment, we started the pen-
etration test with an introduction to the system and pointed
the testers to the relevant source code. First, the team started
by discovering the possibilities of our auto-grader through



implementing typical exercises, thereby getting an overview of
the involved components and potential attack vectors. Then,
throughout the test, we highlighted some atypical exercises
drafted for single courses or research experiments, where we
knew that more uncommon features were used. Later, the
testers switched their focus to the functionality exclusively
designed for teachers, also investigating whether a privilege
escalation could be performed. Since the experts also had
access to the code and a locally hosted version of the auto-
grader, they also attempted to draft vulnerable requests, not
possible through the regular user interface. Simultaneously,
we observed the test with our regular monitoring tools. We
considered this a practice run for spotting potential irregulari-
ties in monitoring that could be helpful during actual attacks.
Thereby, we were able to identify and resolve the most severe
issues exploited by the experts even before they were formally
reported to us. The formal detailed report with all findings and
reproduction steps for the attacks concluded the assessment pe-
riod. Once we had implemented appropriate security measures
for the outlined issues, the hardened application was retested
to ensure that our mitigation was working as expected without
introducing new vulnerabilities.

V. GENERALIZED FINDINGS OF THE PENETRATION TEST

As part of the penetration test, we learned about a total
of 23 findings affecting our auto-grader CodeOcean with all
components used for regular operation. different types of vul-
nerabilities, were discovered. Those vulnerabilities included
vulnerabilities common in web applications, such as XSS
or programming errors, listed in the OWASP Top 10 [17],
but also included dedicated attack vectors for auto-graders.
Table I presents an overview of all findings identified for
the respective categories of issues, ranging from manipulation
of Grading results over Server-Sided issues such as weak
authentication tokens to Client-Sided vulnerabilities such as
Cross-Site-Scripting (XSS).

For example, one of the issues commonly affecting web
applications was caused by insecure configurations of a third-
party library that also affected other projects [36]. Another
could be solved easily by applying programming best-practices
for secure software, such as limiting the validity period of
authentication tokens to a shorter period of time, rather then
the previously chosen two-week period. While we consider a
detailed list of all findings not to provide valuable insights
beyond our own system, we will focus on a few surprising
highlights in the remainder of this work. Therefore, we gener-

TABLE I
AN OVERVIEW OF THE 23 FINDINGS IDENTIFIED,

DIVIDED INTO THE RESPECTIVE CATEGORIES OF ISSUES

Severity Server-Sided Client-Sided Grading
4: Very High 2 0 0
3: High 2 1 0
2: Medium 2 6 0
1: Low 7 1 2

alize the findings uncovered in our penetration test to support
other maintainers of auto-grader solutions in assessing their
environment. We present one generalized issue for each of
the three categories, which we consider to be a representative
example and relevant for other systems as well.

A. Server-Sided: Securing Execution with Sandbox Runtimes

As introduced in Section II-C and in line with similar auto-
graders, we chose Docker containers to isolate code executions
from each other and protect our host infrastructure. By default,
Docker uses the execution engine runc, which in turn uses
capabilities of the Linux kernel [26]. Therewith, the Docker
ecosystem has a comparatively “large” attack vector, since
vulnerabilities in the Linux kernel were previously exploited
to escape from the container boundaries [37]. By employing
a sandboxed runtime such as gVisor2, the risk can be reduced
further [26], [37]. gVisor integrates with Docker by providing a
replacement for runc that filters system calls before passing
them to the Linux kernel. Hence, gVisor provides a kernel
isolation to the application executed in the sandbox [26], and
therewith reduces the attack vector in comparison to the plain
Linux kernel. While gVisor might still be vulnerable to some
attacks (similar to any other software), it has been shown
to successfully defeat a vulnerability otherwise leading to a
container escape [37].

Generally, we found adding gVisor to our auto-grader as
being rather simple. For us, installing and configuring gVisor
was possible without major changes to our existing code
base, allowing an seamless integration. However, after the
integration, we also identified two non-security related bugs.
The first was caused by a different reporting of out-of-memory
errors by gVisor compared to Docker, which we used to
display a corresponding alert to learners. The other one was
actually a bug in gVisor, preventing JVM-based languages
to receive any input from an interactive shell. This bug
was fixed after we reported it upstream, allowing our auto-
grader to run as expected on gVisor since then. As gVisor
induces a new level of security, it unfortunately also induces
performance penalty. Our monitoring showed that when gVisor
was active, the performance of code executions dropped on
average by around 20% (~650ms), with some outliers being
about 30%-50% slower (up to 1.5 seconds). This performance
impact of enabling gVisor might be mitigated by leveraging
native hypervisor technologies using bare-metal machines3,
which, however, is not yet achievable in our private cloud
environment.

B. Client-Sided: Protecting from Malicious Web Resources

For some exercises, having a program that is limited to
text-based output is not enough. For example, in a course
teaching the basics of modern web development with HTML,
CSS, and JavaScript, server-sided executions of source code

2More information: https://gvisor.dev
3gVisor supports multiple so-called platforms to filter system calls, includ-

ing Linux KVM to leverage the advantages of modern processors for the best
possible performance on bare-metal machines.



is not enough. While the container can still be used for
functional tests with a browser-based regression suite such
as Selenium [38], having a native access to the website
under construction is highly beneficial for learners and more
closely resembles the actual development workflow in this
area. Therefore, our auto-grader allows learners to render their
website as HTML with the option to embed own images, style
sheets or scripts. While we originally rendered the resulting
page for the authoring user through our regular domain, the
penetration test revealed a possibility for an attacker to misuse
this functionality with social engineering skills. By leveraging
a feature to ask peers for help with an exercise, a learner can
make the raw, unrendered code available to fellow learners
and ask ask them to manually copy as well as execute it, sup-
posedly to reproduce a problem. When following this request,
supportive learners would effectively run arbitrary code in the
context of their cookie-based session on CodeOcean, opening
up a whole range of XSS attacks.

We fixed this vulnerability by introducing a new domain for
rendering user-generated content, the so-called render host,
and by leveraging a content security policy4 for our main
site. A content security policy restricts the external resources
allowed to be loaded during rendering of a webpage, thereby
enhancing its robustness to XSS attacks. While the render
host is technically operated by the same web server providing
the regular CodeOcean service, the newly introduced domain
separates the browsing context between the editor and render
host. Therewith, an attacker’s maliciously crafted page can no
longer make authenticated requests to the CodeOcean domain,
since that is now considered a third-party context. Access to
individual pages on the render host is secured through a short-
lived server-generated authentication token appended to the
URL, minimizing the risk that someone else could access the
learner’s creation by accident.

C. Grading: Loose Access Control allows Cheating

Since the programming exercises we designed are primar-
ily targeted at novices, preventing advanced cheating tech-
niques was not our primary goal during development (cf.
Section II-C). Nevertheless, we considered technical cheating
to be a vulnerability during our penetration test to further
reduce its chances of success. Even though we successfully
prevented the exfiltration of the hidden teacher-defined test
cases, learners were previously able to raise their assessment
scores by manipulating the test cases within the execution
environment. Since we previously copied all files (the learner’s
submission and the teacher-defined test cases) with the same
file permission, the code invoked during dynamic unit testing
could overwrite existing, teacher-defined test cases.

To counteract this issue, we first considered making the
directory (including all files) containing the submission read-
only using Linux file permissions before executing any code.
However, we found no combination that would prevent an
advanced learner from circumventing our protection while still

4More information: https://content-security-policy.com

allowing other files and subfolders to be created or modified
as part of an exercise. Therefore, we introduced a new two-
user approach for preparing and running code executions in
our auto-grader: Since then, teacher-defined files are only
writable by the superuser root, whereas all code executions
are performed by a regular, non-privileged user. So far, this
two-user approach covers all our requirements, and restricts
learners from manipulating our scoring routine, which is now
protected by a core concept of the Linux kernel.

D. Other Relevant Findings and Observations

Besides the findings across the three aforementioned attack
vectors, we made some further observations during the pene-
tration testing worth reporting.

1) Monitoring and Error Reporting: Long before consid-
ering a vulnerability assessment, we started integrating an ex-
tensive performance monitoring and error reporting tool chain
into our application. While primarily designed to uncover
performance issues or bugs, we valued the insights during the
penetration test and when validating the impact of changes.
Most importantly, the error reporting allowed us to understand
and fix the most severe issues discovered by the testers even
before receiving their corresponding report.

2) Network Access: While being aware of the security
implications of granting network access, the penetration team
supported us in securing our internal network resources from
being attacked through code executions. Using the container
networking plugins (CNI)5, we created a custom network
bridge, effectively filtering traffic to non-public destinations.
Applying this practice, other internal resources are now well
protected from (malicious) learners with access to networking
functionalities from within the auto-grader. Still, previously
mentioned security risks covering, e.g., learners using our
platform as proxy to perform harmful actions on the internet,
need to be considered. Deriving an appropriate concept for
securing internet access is subject to future research before
rolling out the network support widely in our courses.

3) Development Process: The analysis of our Continuous
Integration (CI) pipeline and otherwise publicly available
development information did not reveal any findings. The only
remark concerned one old Docker image that downloaded
a third-party library through an unencrypted connection at
build time. We mitigated the issue by switching to a secure
connection.

VI. DISCUSSION AND FUTURE WORK

Even while the penetration test was still being carried out,
we started already fixing the issues discovered. As a side
effect, we also reflected on certain implementation details
and subsequently changed these. For example, the solution
chosen to prevent a manipulation of the automated grading
of learner submissions had several implications: On the one
hand, it made copying files into the Docker container more
complex and also requires a user switch for code executions.

5More information: https://github.com/containernetworking/plugins



On the other hand, we considered the implementation effort as
a chance to improve the internal architecture of the Poseidon
executor middleware in this respect. Simultaneously, the ad-
ditional security measurements negatively affected the perfor-
mance of our auto-grader, even though, for example, the user
switching only has a minor impact of about 200ms (~7%) on
average with gVisor being enabled. Nevertheless, we consider
security of the infrastructure and users to be a top priority that
should not be undermined by (slightly) degraded performance.
Therefore, we also accept the noticeable performance impact
caused by enabling gVisor, which we might be able to further
reduce in the future by using a non-virtualized server for the
Nomad agents.

Besides further securing our infrastructure by restricting
functionality, the penetration test also allowed us to work
on new features. For example, we previously did not equip
the execution environments with any network access (cf. Sec-
tion II-C). The solution developed with the external penetration
testers successfully prevents attack vectors against our internal
resources. As a result of this development, we are now able
to optionally offer internet access to the Docker containers in
selected cases. However, this success represents only a first
partial step in offering public internet access while preventing
the misuse of our systems for cybercrime. Therefore, further
efforts are needed to enable network-based code executions.

A critical comparison of the security analysis and sub-
sequent hardening of our auto-grader CodeOcean with the
available details of other auto-graders generally reveals similar
attack vectors, but partially different mitigation strategies. For
example, manipulating the grading is effectively prevented in
our auto-grader CodeOcean, whereas others have had open
vulnerabilities for years (e.g., Gradescope [3], or various
other university-offered solutions [5], [6], [16]). While fellow
researchers have further compared the performance impact of
security measurements extensively (e.g., for the auto-grader
Submitty6) [39] or identified potential breakouts of the sand-
box employed in custom university-designed auto-graders [4],
we only provide a rough baseline in this regard throughout
the paper at hand. Other server-side attack vectors, especially
in network-enabled scenarios, remain a challenge for auto-
graders, with the safest option being to disable public Internet
access wherever possible. Regarding client-side XSS attacks,
we consider our solution developed for rendering learner-
defined web pages to be secure and reliable, and we are
currently not aware of any other auto-grader that uses a similar
architecture.

Overall, our work has identified several additional consider-
ations that should be taken into account when implementing or
considering security mechanisms for auto-graders. Similarly,
fellow researchers have previously highlighted their experi-
ences in their contexts [4]–[6]. Consequently, attempting to
provide an auto-grader service today would require aggre-
gating best practices from different studies and scenarios.
Hence, future work should target contextualising the various

6More information: https://submitty.org

experiences and deriving an overview for auto-graders, similar
to the OWASP list of common vulnerabilities.

VII. CONCLUSION

Automatically assessing learners’ code with so-called auto-
graders has become common practice in modern programming
education, and is regularly carried out by universities and
in Massive Open Online Courses. However, the server-side
code execution of learners’ untrusted code, as performed by
our auto-grader CodeOcean, is subject to numerous security
considerations. Based on an extensive security analysis of
CodeOcean by security experts, we present generalizable in-
sights for maintainers of other auto-graders in this paper. These
can be categorized into three main threat vectors: (1) Server-
sided attacks, which directly threat the provider’s infrastructure
and could potentially affect any user accessing the system,
might be mitigated through a hardened sandbox environment.
(2) Client-sided attacks, which pose a security risk for the
data integrity of learners and instructors working with the
tool, can be circumvented by a dedicated domain for user-
generated content. (3) Grading related attacks, which aim to
manipulate the scoring routine and thus could grant attackers
an unfair advantage towards certification, are prevented by
stricter access control. For each of the three categories, we
present a typical example uncovered during the analysis of
our auto-grader, reveal our mitigation strategy, and discuss
its impact on system performance. Thereby, we contribute
to a more profound overview of attack vectors and security
considerations, making auto-graders more secure given their
growing popularity.
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