
Exploring the Effectiveness of Web-based

Programming Environments for MOOCs: A

Comparative Study of CodeOcean and OpenJupyter

Mohamed Elhayany

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

Mohamed.Elhayany@hpi.de
https://orcid.org/0000-0002-7689-7622

Sebastian Serth

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

Sebastian.Serth@hpi.de
https://orcid.org/0000-0003-1236-6600

Christoph Meinel

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

Christoph.Meinel@hpi.de
https://orcid.org/0000-0002-3410-3193

Abstract—Programming courses offered by openHPI, the

European MOOC platform of the Hasso Plattner Institute,

feature hands-on programming exercises to support learners in

practicing the newly acquired skills. These exercises are

facilitated by two tools: CodeOcean and OpenJupyter.

CodeOcean is user-friendly and suitable for beginners, while

OpenJupyter is more advanced and used in data science courses.

In this paper, we compare and discuss the advantages and

limitations of both tools, providing recommendations for

instructors and researchers in programming courses. We also

address technical details, such as scalability and execution

environments. Furthermore, we explore future research

possibilities, particularly in learner collaboration and

automated feedback. Our work supports learners in acquiring

knowledge and testing it at their own pace, with individualized

feedback and minimal technical requirements, contributing to

an open education landscape in programming education.

Keywords—MOOC, Programming, Web-based Environment,

Auto-Grader, Data Science, CodeOcean, OpenJupyter

I. INTRODUCTION

The widespread adoption of Massive Open Online
Courses (MOOCs) has transformed how individuals acquire
new skills and knowledge. Learners are no longer limited to
traditional classroom settings but can access a vast array of
courses online, at their own pace and convenience [1]. One of
the European providers offering these courses is openHPI1, the
MOOC platform of the Hasso Plattner Institute (HPI). The
platform provides learners with digital literacy skills, covering
both programming fundamentals and advanced topics.

Within the openHPI platform, introductory programming
courses are particularly popular. These courses enable learners
to apply and test their newly acquired knowledge through
embedded programming exercises. To help learners develop
practical skills, these courses feature hands-on programming
exercises, in addition to video-based knowledge acquisition.
Depending on the course context, two tools are used to provide
exercises: CodeOcean and OpenJupyter. CodeOcean is a
user-friendly environment for executing code and receiving
peer support, geared towards beginners. In contrast,
OpenJupyter is designed for more advanced learners in data
science courses. Together, these tools complement each other
and offer a comprehensive learning experience for learners of
different levels.

In this paper, we present a comparison of these two tools
and discuss their respective advantages and limitations. Our

1 https://open.hpi.de

analysis provides a recommendation for course instructors and
researchers in the field of programming courses. Furthermore,
we provide technical details on the scalability of the coding
environments, including the number of parallel users
supported and the requirements for isolated execution
environments. Finally, we provide an outlook on current and
future research, focusing on learner collaboration and
automated feedback. By providing a comprehensive overview
of these two programming exercise tools, we aim to contribute
to an open education landscape in programming education.
Our work supports learners in acquiring and testing
knowledge at their own pace with individualized feedback and
a minimal, technical setup.

II. BACKGROUND AND RELATED WORK

Our work is surrounded by the existing research around
openHPI as a MOOC platform and other auto-graders.

A. Background: openHPI

openHPI is an online learning platform that offers Massive
Open Online Courses (MOOCs). Our MOOCs provide
learners with access to high-quality educational resources,
such as videos, quizzes, and interactive coding exercises. Each
course is structured around a specific topic, consisting of
several modules that build upon another (see Fig. 1). Usually,
these modules are made available on a weekly basis. In a
programming course, learners acquire points through weekly
homework and programming exercises. Learners achieving at
least 50% of all points are rewarded with a graded Record of
Achievement. All courses on openHPI are designed to be
accessible to a broad audience, regardless of prior experience
or expertise in the field. These courses are taught by
experienced instructors from Hasso Plattner Institute and are
available to individuals worldwide, regardless of their
location. To further lower the entry barrier for learners
interested in learning programming, those courses feature one
of our setup-free programming environments.

Fig. 1. Structure of a module consisting of multiple topics and an exam.

B. Related Work

Past studies have shown that acquiring programming skills
is easier for learners when hands-on exercises are available to

20
23

 IE
EE

 L
ea

rn
in

g
w

ith
 M

O
O

CS
 (L

W
M

O
O

CS
) |

 9
79

-8
-3

50
3-

15
59

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
LW

M
O

O
CS

58
32

2.
20

23
.1

03
06

22
8

them [2], especially in contrast to multiple-choice quizzes [3].
Hence, learners need access to a programming toolchain,
including a compiler or interpreter for the respective
programming language. From a practical perspective,
however, teaching teams cannot support learners to configure
the respective tools on their local machine, as this would
consume too many resources [2]. Consequently, learners
benefit from a ready-to-use environment provided by MOOC
instructors.

In learning contexts, two main approaches exist to provide
programming environments: Client-side environments solely
executing code in the learners’ browser (e.g., JavaScript [4],
transpiling Java [5], or even providing a full Linux VMs for C
code [6]) or server-based environments, executing learners’
code remotely in a sandboxed environment [7, 8, 9]. Both
programming environments compared in this paper use the
server-side execution mode since this allows adding support
for different programming languages more easily. However,
this execution mode also raises various questions on the
isolation of code executions, which has been investigated by
researchers in the past [7, 10, 11, 12].

III. CODEOCEAN

To encourage structured thinking, problem-solving, and
digital literacy, many see learning programming fundamentals
as an excellent opportunity. For beginner-level programming
courses, we use CodeOcean, an educational programming
environment [13]. It has been utilized in more than 50 courses
and by more than 100,000 learners over the past eight
years [14]. The educational programming environment allows
learners to work on assignments, execute code, and observe
program behavior directly through their web browser without
requiring any local setup. Supported programming languages
include Java, Python, Ruby, R, and Julia.

Learners’ programs are executed in a secure environment
on our infrastructure, and the workload is distributed across
multiple servers [7]. CodeOcean provides tailored feedback to
learners on their code, utilizing exercise-specific tests and
static code analysis [15]. Based on their performance within a
programming assignment, learners can earn points, reflected
in their score on the HPI MOOC platform, that count towards
graded certification. In addition to functional feedback, our
experience suggests that learners benefit significantly from
feedback on their code style, which is well-suited from the
first exercise onwards.

While automated evaluation of learners’ code enables
them to learn at their own pace and receive instant feedback,
some learners may require additional support. Previous work
found that contextual hints are highly valued by most learners
(and especially beginners) [16], while human support from
peers can be requested by learners struggling with a given
task, leading to a significant improvement in their
performance [17]. Data demonstrate that offering both
automated and human support reduces the barrier for learners
to request help and shows that different socio-demographic
groups use these help offerings to varying degrees [18].

With a clear focus on introductory programming courses,
CodeOcean is designed with novices in mind. As a result,
simplicity is the main objective, allowing learners to
concentrate on applying programming concepts, rather than
discovering all features usually available in a professional
development environment.

IV. OPENJUPYTER

JupyterLab, an open-source web-based platform, has
gained popularity in small classrooms as a teaching tool [19].
It offers interactivity, allowing students to experiment with
code, equations, and visualizations in real time, improving the
learning experience and comprehension of complex concepts
[20]. With support for various programming languages,
JupyterLab is versatile for teaching multiple subjects [20].
Collaboration is enabled through built-in version control and
notebook sharing, facilitating teamwork on assignments and
projects. Its web-based nature ensures accessibility from
anywhere with an internet connection, making it convenient
for MOOC students [20].

Recognizing the potential of JupyterLab as a powerful tool
for data science education, a survey was conducted to identify
the specific needs of instructors in various educational
institutions [21]. The survey findings revealed a strong interest
in utilizing JupyterLab as an infrastructure for hands-on
programming exercises, but instructors expressed concerns
about the complexity of server and environment setup,
assignment submissions, grading, and providing timely
feedback to students.

OpenJupyter [22] was developed as a solution to address
these challenges. The tool was created in 2022 and
successfully integrated into the HPI MOOC platform for a
course on applied edge AI, attracting a large enrollment of
over 2,000 learners. Leveraging the power of Docker
containers, OpenJupyter ensures that each learner had a
functionally isolated environment to work in, eliminating the
need for any prior setup or configuration. This approach
significantly reduced the stress on learners and allowed them
to focus on solving exercises without worrying about complex
technical requirements.

The integration of OpenJupyter, leveraging the features of
JupyterLab and Docker containers, offers an advanced
educational platform for teaching data science, particularly in
projects involving large datasets. This integration enables
instructors to customize courses, simplify assignment
submissions, automate grading processes, and deliver timely
feedback, resulting in an enhanced and hands-on learning
experience for data science students. The seamless integration
of OpenJupyter into the educational platform optimizes the
utilization of JupyterLab's capabilities for working with big
datasets, empowering instructors to effectively tackle the
challenges of teaching data science and enabling students to
explore and analyze large datasets with confidence.

V. COMPARATIVE ANALYSIS OF KEY FEATURES

To assess the effectiveness of CodeOcean and
OpenJupyter as educational platforms, a comparative analysis
of key features is presented in this section. The comparison
will consider the target groups, interactive user experience,
auto-grading, system architecture, and scalability of both
tools. These factors are essential to evaluate the suitability of
these platforms for programming education and to identify the
current strengths and limitations of each tool. While we focus
on identifying the differences between both tools in this paper,
other publications highlight the learner-facing impact [2, 7,
14, 16, 17, 18, 21, 22].

A. Target Groups

First, the target group of each tool will be explored,
highlighting the intended audience and user base for which

they are designed. This analysis will consider the specific
needs and requirements of different user groups, such as
novice learners or experienced advanced learners.

1) CodeOcean is primarily designed to target beginners,

offering a simple and intuitive user interface that enables

them to get started with a programming assignment

easily [14]. It provides an easy-to-use platform for novices to

learn programming and software engineering concepts. Next

to being an educational development environment,

CodeOcean also features integrated assistance features (as

introduced in the next section), to specifically support the

target group of beginners. CodeOcean is also suitable for

instructors who want to embed their existing programming

assignments and projects in a MOOC context since no

specific changes need to be implemented.

2) OpenJupyter: In contrast, OpenJupyter is aimed at

more advanced learners in the field of data science who are

already familiar with programming languages and concepts.

It is designed to offer a more flexible and powerful platform

that enables them to customize their learning environment

and explore more complex concepts. By providing a range of

tools and resources, OpenJupyter enables learners to go

deeper into the field of data science, exploring advanced

topics in more detail. OpenJupyter is also suitable for

instructors who want to design challenging programming

exercises and projects that require a high level of skill and

expertise.

B. Interactive User Experience

In this section, we will examine the user experience of
CodeOcean and OpenJupyter as perceived by learners and
describe their potential usage scenarios. This includes
evaluating the ease of use, intuitiveness of the user interface,
and the availability of interactive features that enable learners
to actively engage with the programming environment.

1) CodeOcean: Regarding the target group of beginners,

CodeOcean focuses on providing a clean and streamlined

programming experience without overwhelming learners.

For each programming exercise embedded in a MOOC,

CodeOcean offers a dedicated, preconfigured workspace

with an exercise description, an optional file tree, a main

editor window, and an output area. Each exercise may consist

of multiple files, for which changes performed by learners are

automatically persisted and restored on subsequent page

loads. At any time, learners can execute their code, receive

feedback through an automated evaluation, or request help

through one of the various assistance features included [18].

Among them are step-by-step feedback messages (based on

unit tests and a linter), contextual tips, or an embedded peer

support mechanism, allowing learners to request comments

in case they got stuck.

Regardless of the assistance features, which can be

configured by the teacher to meet different requirements (i.e.,

some might be disabled in an examination), CodeOcean

supports many diverse use cases and teaching scenarios.

Besides small programs just featuring in- and output through

the command line, learners can interact with Turtle graphics

(and, for example, create small 2D games) [14] or generate

graphs, which are directly shown and downloadable.

2) OpenJupyter is a powerful and flexible tool for data

analysis and programming education. One of its key features

is its built-in debugging extension, which allows learners to

identify and resolve errors in their code. This feature is

particularly useful for learners who are new to programming

and may not yet have a strong grasp of debugging techniques.

By providing a user-friendly and accessible way to debug

code, OpenJupyter helps learners to build confidence in their

programming skills and develop a more intuitive

understanding of the underlying logic of their code.

In addition to its debugging extension, OpenJupyter also
offers powerful visualization tools for the generation of graphs
and figures. These tools make it easy for learners to explore
and analyze complex data sets, and to present their findings in
a clear and visually compelling way. Whether working with
numerical data, text data, or multimedia content, OpenJupyter
provides a wide range of visualization options to suit a variety
of use cases.

Finally, OpenJupyter's interactive Notebook style is
another key feature that sets it apart from other programming
environments. This style allows learners to work through
programming exercises and assignments in a highly
interactive and engaging way, with immediate feedback on
their progress and the ability to explore and experiment with
different code snippets and data sets. This makes OpenJupyter
an ideal tool for both individual learners and collaborative
learning environments, where learners can work together to
explore and analyze complex problems and datasets in real
time.

C. Auto-Grading

Both programming environments feature auto-grading
capabilities and can transmit the scoring result to the MOOC
platform. This section covers the tools’ ability to
automatically evaluate and grade programming assignments,
providing timely feedback to learners, and facilitating the
assessment process for instructors.

1) CodeOcean: For each exercise, instructors can specify

multiple, weighted test cases, which are reflected in the final

score. Besides structural and functional tests, CodeOcean has

dedicated support for style tests, supported by a linter in the

respective language. Feedback from all tests is directly shown

to learners through the web interface, and the most relevant

output of the test is further extracted to pinpoint learners to

the actual error [14]. This processing is designed to remove

or rephrase aspects of the raw output confusing to novices,

such as unrelated stack traces.

While the final score a learner achieves in each exercise

is sent back to the MOOC platform complementing the

learner dashboard, instructors also have access to more fine

granular learning analytics. For example, teachers may use

exercise-specific statistics to identify rather difficult

assignments or uncover misunderstandings. They can also

read optional feedback provided by the learners so that

unclear parts of the exercise can be improved. Additionally,

for a full course with dozens of exercises CodeOcean

automatically performs an anomaly detection, identifying

those exercises where learners spent the most time or have

the most problems.

2) OpenJupyter: We have streamlined the grading

process in our MOOC platform, openHPI, by integrating a

JupyterLab-managed service in OpenJupyter that updates

learners' grades efficiently through the Learning Tools

Interoperability (LTI) protocol. To enable this feature, we

have included a unit test file inside the learners' Docker

container, hidden from view. When a learner runs the grading

cell in the notebook, the hidden unit test file runs and

calculates a grade based on the learners' answers. Currently,

the grading process provides a binary outcome indicating

whether the task was correct or not.

The Jupyter Notebook includes code that interacts with the
JupyterLab-managed service to send the grade back to the
Learning Management System (LMS). This is done by calling
an Application Programming Interface (API) provided by the
service and passing in the necessary information, such as the
learner's grade and assignment details. When a learner submits
an assignment, the JupyterLab-managed service collects the
necessary information and sends it to the LMS through the
LTI protocol. The LMS then uses this information to update
the learner's grade in the course. The service also ensures
secure communication by handling the authentication of the
learner and the JupyterLab instance with the LMS. In
summary, this approach provides a simple, efficient, and
secure process for updating learners' grades in the MOOC
platform and allows instructors to use OpenJupyter with a
variety of different LMS.

D. System Architecture

From a technical perspective, CodeOcean and
OpenJupyter use similar technologies to provide learners with
an execution environment. The specific details including the
underlying infrastructure, and deployment options are
introduced in this section.

1) CodeOcean is realized as a micro-service

architecture [7], allowing easier scalability for high-demand

periods. Overall, the system consists of a web application

written with Ruby on Rails, a dedicated PostgreSQL

database, and a Nomad cluster 2 orchestrating the actual

executions. Within the Nomad cluster, several so-called

agents act as a host for Docker containers in conjunction with

the gVisor runtime 3. This setup allows the agents to execute

learners’ code in a sandboxed environment, isolating

potentially malicious code from the host and other learners.

For the communication between the Nomad cluster and

the Ruby on Rails web application, we use a custom executor

middleware called Poseidon. It simplifies the management of

code executions, for example by maintaining a pool of

already running but idling containers to be ready for a learner

or by configuring network access of the containers. Further,

the executor middleware enforces resource limitations, such

as limiting the allowed execution time to reduce the impact

2 https://www.nomadproject.io
3 https://gvisor.dev

of infinite loops. Finally, a monitoring instance visualizes

technical metrics, allowing system administrators to inspect

the overall system's health. With all those components, we

currently allocated 240 GB RAM and 104 vCPU cores to

CodeOcean and all its components.

2) OpenJupyter’s system architecture is designed to

provide learners with a comprehensive and practical learning

environment. One of its key features is the ability for learners

to access multiple files, such as coding scripts, within a single

notebook. This feature allows learners to organize their work

and build on previously written code, enabling them to take a

more structured and iterative approach to their learning. By

having access to multiple files, learners can work on larger

projects, as well as experiment with different programming

approaches and techniques.

To ensure functional isolation and reproducibility,
OpenJupyter employs Docker as part of its system
architecture [22]. Each learner’s environment is isolated in a
separate Docker container, which provides a consistent and
secure environment for learners to work in. This allows
learners to experiment with different software configurations
and programming languages without worrying about affecting
other learners or the system’s stability. Additionally, the use
of Docker enables OpenJupyter to scale easily and support a
large number of learners simultaneously.

To fetch practical exercise notebooks, OpenJupyter uses
Nbgitpuller4, a JupyterLab extension that simplifies pulling
Jupyter Notebooks from a Git repository into a JupyterLab
environment. Nbgitpuller offers version control, enabling easy
tracking of changes and rollbacks. The extension also ensures
automatic updates of Jupyter Notebooks, providing learners
with the most recent version of the material. This approach
guarantees learners are working with up-to-date materials,
making the learning experience more efficient and effective.

E. Scalability

Lastly, we evaluate the scalability of both tools. For this
aspect, we consider their ability to handle large-scale courses
and accommodate a growing number of users without
compromising performance.

1) CodeOcean: Thanks to the micro-service architecture,

CodeOcean can scale easily across multiple instances.

Especially for the code executions, which already require the

most resources, adding additional Nomad agents to the

existing cluster can be performed at any time. With the

current setup, we successfully served a MOOC with more

than 40,000 enrollments and about 17,000 active learners.

During the respective course lasting six weeks, the platform

executed learners’ code more than 4.7 million times. While

CodeOcean copes with an increasing number of learners, we

noticed up to 17% slower execution times for those high-

demand periods. Still, with these real-world performance

metrics obtained from public courses, we consider

CodeOcean to be stable and scalable for most scenarios.

4 https://jupyterhub.github.io/nbgitpuller/

2) OpenJupyter: The ability of OpenJupyter to handle a

growing number of learners is a crucial consideration when

implementing it as a supportive tool for programming

education. Currently, OpenJupyter's scalability is determined

by the server's size that hosts it, which is estimated based on

the average RAM usage per learner. Our analysis reveals that

each learner typically requires around 160 MB of RAM, and

our current virtual machine has a capacity of 32 GB of RAM.

Consequently, the system is presently capable of supporting

approximately 250 learners concurrently working on a

specific exercise. However, it is important to note that this

estimation may vary depending on factors such as exercise

complexity and the resource demands of each learner's

programming environment. Therefore, it is imperative to

regularly monitor and assess OpenJupyter's performance to

ensure its capacity aligns with the needs of an expanding

learner base.
The scalability of OpenJupyter has been effectively

demonstrated in a real-world scenario, as it has been tested in
a MOOC with over 2,000 enrolled learners. During this testing
phase, OpenJupyter seamlessly accommodated all learners,
allowing them to work on their exercises without any issues.
This successful implementation further affirms OpenJupyter's
capability to handle a large learner base and indicates its
robustness in scaling up to meet the demands of a substantial
number of concurrent users.

TABLE I. FEATURE COMPARISON: CODEOCEAN VS OPENJUPYTER

CodeOcean OpenJupyter

Target Group Beginners Intermediate and
advanced learners

Interactive User

Experience

- Exercise-focus

- Integrated assistance

features (Request for
comments, tips, step-

by-step feedback)

- Interactive turtle
graphics

- Figure visualizations

- In-depth exercise
structure

- Code debugging
- Interactive notebook

style
- Resource usage

information
- Figure visualization

Auto-Grading - Unit Tests

- Linter integrated

- Unit tests

System

Architecture

- Micro-services

- Nomad Cluster
- Docker Containers

- Git integration
- Docker container

Scalability - Used in a MOOC with

more than 40,000
learners, about 17,000

were actively using

CodeOcean
- “Scale Out” among

multiple hosts

- Used in a MOOC
with around 2,000
learners

- Currently
implements a “Scale
Up” strategy to host
more users

VI. DISCUSSION

Both CodeOcean and OpenJupyter are web-based
platforms that offer access to programming exercises and
execution environments for students and educators alike. The
comparative analysis of CodeOcean and OpenJupyter
revealed several distinguishing features and characteristics of
each tool, as highlighted in TABLE I. These aspects play a
crucial role in determining their suitability for different target
groups, the user experience they offer, their auto-grading
capabilities, system architecture, and scalability.

In terms of the target group, CodeOcean primarily caters
to beginners, providing a user-friendly environment for

introductory programming courses. On the other hand,
OpenJupyter is designed to accommodate intermediate and
advanced learners, offering an in-depth exercise structure and
interactive notebook style that aligns with the needs of more
experienced users.

The interactive user experience sets both tools apart.
CodeOcean emphasizes an exercise-focused approach,
offering integrated assistance features such as requests for
comments, tips, and step-by-step feedback. Additionally,
CodeOcean provides interactive turtle graphics and figure
visualizations, enabling learners to engage with the
programming concepts visually. In contrast, OpenJupyter
offers an interactive notebook style potentially listing multiple
(sub-)exercises, facilitating a more flexible and exploratory
coding experience. It also provides code debugging
capabilities and resource usage information, allowing learners
to analyze and optimize their code effectively.

Both CodeOcean and OpenJupyter employ unit tests for
auto-grading programming assignments, and CodeOcean
enhances this with a linter for coding best practices.
CodeOcean's architecture is based on a Nomad cluster and
Docker containers, offering scalability by scaling out among
multiple hosts. In contrast, OpenJupyter integrates Git and
utilizes Docker containers, scaling up to host more users and
expanding the capacity of a single host.

Scalability has been demonstrated through the successful
adoption of both tools in MOOC environments. CodeOcean
has been utilized in a MOOC with over 40,000 learners, with
approximately 17,000 actively using the platform.
OpenJupyter, on the other hand, has been employed in a
MOOC with around 2,000 learners, highlighting its ability to
handle a substantial user base effectively.

VII. FUTURE WORK

While CodeOcean and OpenJupyter offer a range of
features to enhance the learning experience, there is still room
for improvement. In particular, both platforms can be
expanded to introduce collaborative work features. This
would enable learners to work together on group projects,
share code and insights, and collaborate in real time. We
believe that this feature would further enhance the learning
experience for our users.

Specifically, with CodeOcean, we further want to improve
our learner support by leveraging artificial intelligence for the
request for comments, currently handled by peers. By
reducing the response time and providing individualized
responses, we aim to reduce the course drop-out of learners
struggling with the exercises. Also, we want to improve the
scalability and therefore suggest evaluating serverless
functions, as an alternative to Docker containers.

For OpenJupyter, another area of future work is the
development of a better feedback mechanism. The current
system provides binary feedback indicating whether a task
was completed correctly or not. However, a more detailed
feedback mechanism can be developed to provide learners
with feedback on their coding style, efficiency, and design
choices. This will encourage learners to write cleaner and
more efficient code, which will help them develop better
coding practices and improve their overall coding skills. A
better feedback mechanism can also improve learner
engagement and motivation, as learners will receive more
personalized and constructive feedback.

Finally, since both programming environments require
dedicated unit tests written by course instructors for their
feedback mechanism, we also propose to establish an
exchange platform for auto-gradable programming exercises.

VIII. CONCLUSION

In summary, we contributed to programming education
through Massive Open Online Courses (MOOCs) and open
education with the development of CodeOcean and
OpenJupyter. These auto-grading tools offer web-based
programming environments, eliminating the need for local
setup. CodeOcean excels in introductory programming
courses, providing a user-friendly interface and emphasizing
simplicity, fostering effective application of programming
concepts, and promoting learner engagement. OpenJupyter
addresses challenges related to big datasets, integrating with
JupyterLab and utilizing Docker containers to create an
interactive, streamlined, and hands-on learning experience for
advanced learners. Learners can explore and analyze large
datasets without the hassle of setup complexity.

Our contributions to MOOCs and open education have
paved the way for instructors to customize their courses,
simplify assignment submissions and grading, and provide
timely feedback to students. With the detailed analysis of
CodeOcean and OpenJupyter in this paper, we allow
instructors to choose the auto-grading tool that is the most
appropriate for their teaching needs by introducing several
different showcases.

Moving forward, it is crucial to continue refining and
expanding the capabilities of CodeOcean and OpenJupyter,
addressing emerging challenges in the realm of online
education. This includes keeping pace with technological
advancements, incorporating cutting-edge tools and
techniques, and embracing the evolving needs of educators
and learners. By doing so, we can continue to make
remarkable contributions to MOOCs and open education,
fostering a dynamic and enriching learning experience for
individuals across the globe.

REFERENCES

[1] J. Daniel, “Making Sense of MOOCs: Musings in a Maze of Myth,
Paradox and Possibility,” in Journal of Interactive Media in Education,
no. 18, 2012, DOI: 10.5334/2012-18.

[2] T. Staubitz, H. Klement, J. Renz, R. Teusner, and C. Meinel, “Towards
practical programming exercises and automated assessment in massive
open online courses,” in 2015 IEEE International Conference on
Teaching, Assessment, and Learning for Engineering (TALE), Zhuhai,
China, 2015, DOI: 10.1109/TALE.2015.7386010.

[3] P. Blayney and M. Freeman, “Automated formative feedback and
summative assessment using individualised spreadsheet assignments,”
in Australasian Journal of Educational Technology, no. 2, 2004, DOI:
10.14742/ajet.1360.

[4] V. Karavirta and P. Ihantola, “Serverless automatic assessment of
javascript exercises,” in Proceedings of the fifteenth annual conference
on Innovation and technology in computer science education, Bilkent
Ankara Turkey, 2010, DOI: 10.1145/1822090.1822179.

[5] M. Pabst, “[online-IDE] LernJ vs. Java: Unterschiede.” (2023):
https://www.learnj.de/doku.php?id=unterschiede_zu_java:start.

[6] R. Sharrock, L. Angrave, and E. Hamonic, “WebLinux: A scalable in-
browser and client-side Linux and IDE,” in Proceedings of the Fifth
Annual ACM Conference on Learning at Scale, London United
Kingdom, 2018, DOI: 10.1145/3231644.3231703.

[7] S. Serth, D. Köhler, L. Marschke, F. Auringer, K. Hanff, J.-E.
Hellenberg, T. Kantusch, M. Paß & C. Meinel, “Improving the
Scalability and Security of Execution Environments for Auto-Graders
in the Context of MOOCs,” in Proceedings of the Fifth Workshop

“Automatische Bewertung von Programmieraufgaben” (ABP 2021),
virtual event, October 28–29, 2021. DOI: 10.18420/abp2021-1.

[8] J. Breitner, M. Hecker, and G. Snelting, “Der Grader Praktomat,” in
Automatisierte Bewertung in der Programmierausbildung, Münster,
Germany, 2016, https://elan-ev.de/dateien/band6-openaccess.pdf.

[9] H. T. Tran, H. H. Dang, K. N. Do, T. D. Tran, and Vu Nguyen, “An
interactive web-based IDE towards teaching and learning in
programming courses,” in Proceedings of 2013 IEEE International
Conference on Teaching, Assessment and Learning for Engineering
(TALE), Bali, Indonesia, 2013, DOI: 10.1109/TALE.2013.6654478.

[10] S. Strickroth, “Security considerations for java graders,” presented at
the Workshop “Automatische Bewertung von Programmieraufgaben”
(ABP 2019), Essen, Germany, 2019, DOI: 10.18420/ABP2019-5.

[11] R. Garmann, “Sicherheitsimplikationen beim Einsatz von Test Doubles
zur automatisierten Bewertung studentischer Java-Programme mit
Graja und mockito,” in Workshop “Automatische Bewertung von
Programmieraufgaben” (ABP 2013). volume 1067 of CEUR
workshop proceedings, CEUR-WS.org, Hannover, Germany, p. 6,
October 2013, http://ceur-ws.org/Vol-
1067/abp2013_submission_1.pdf.

[12] O. Flauzac, F. Mauhourat, and F. Nolot, “A review of native container
security for running applications,” in The 17th International
Conference on Mobile Systems and Pervasive Computing (MobiSPC
2020), Leuven, Belgium, 2020, DOI: 10.1016/j.procs.2020.07.025.

[13] T. Staubitz, H. Klement, R. Teusner, J. Renz and C. Meinel,
“CodeOcean – A versatile platform for practical programming
excercises in online environments,” in 2016 IEEE Global Engineering
Education Conference (EDUCON), pp. 314–323, Abu Dhabi, United
Arab Emirates, 2016, DOI: 10.1109/EDUCON.2016.7474573.

[14] S. Serth, T. Staubitz, R. Teusner, and C. Meinel, “CodeOcean and
CodeHarbor: Auto-Grader and Code Repository,” in Seventh SPLICE
Workshop at SIGCSE 2021 “CS Education Infrastructure for All III:
From Ideas to Practice (SPLICE’21), March, 2021, Virtual Event,
https://cssplice.github.io/SIGCSE21/proc/SPLICE2021_SIGCSE_pap
er_13.pdf.

[15] S. Serth, “Integrating Professional Tools in Programming Education
with MOOCs,” in 2019 IEEE Frontiers in Education Conference
(FIE), Covington, KY, USA, 2019, DOI:
10.1109/FIE43999.2019.9028643.

[16] S. Serth, R. Teusner, and C. Meinel, “Impact of Contextual Tips for
Auto-Gradable Programming Exercises in MOOCs,” in Proceedings of
the Eighth ACM Conference on Learning @ Scale (L@S '21),
Association for Computing Machinery, pp. 307–310, New York, NY,
USA, 2021, DOI: 10.1145/3430895.3460166.

[17] R. Teusner, T. Hille, and T. Staubitz, “Effects of automated
interventions in programming assignments: evidence from a field
experiment,” in Proceedings of the Fifth Annual ACM Conference on
Learning at Scale (L@S '18), Association for Computing Machinery,
pp. 1–10, New York, NY, USA, 2018, DOI:
10.1145/3231644.3231650.

[18] S. Serth, R. Teusner, C. Hagedorn, and C. Meinel, “Demographic
Influences on Help-Seeking Behavior in Programming Courses,”
Manuscript in preparation, 2023.

[19] T. Kluyver, B. Ragan-Kelley, F. Perez, B. E. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay, P. Ivanov, D.
Avila, S. Abdalla and C. Willing, “Jupyter Notebooks – a publishing
format for reproducible computational workflows”, in
Positioning and Power in Academic Publishing: Players, Agents and
Agendas, pp. 87–90, 2016, DOI: 10.3233/978-1-61499-649-1-87.

[20] E. V. Dusen, “Jupyter for Teaching Data Science,” in Proceedings of
the 51st ACM Technical Symposium on Computer Science Education
(SIGCSE '20), Association for Computing Machinery, p. 1399, New
York, NY, USA, 2020, DOI: 10.1145/3328778.3372538.

[21] M. Elhayany, R-R. Nair, T. Staubitz, and C. Meinel, “A Study about
Future Prospects of JupyterHub in MOOCs,” in Proceedings of the
Ninth ACM Conference on Learning @ Scale (L@S '22), Association
for Computing Machinery, pp. 275–279, New York, NY, USA, 2022,
DOI: 10.1145/3491140.3529537.

[22] M. Elhayany and C. Meinel, “Towards Automated Code Assessment
with OpenJupyter in MOOCs,” in Tenth ACM Conference on
Learning @ Scale, Copenhagen, Denmark, 2023, DOI:
10.1145/3573051.3596180.

