
Integrating Professional Tools in
Programming Education with MOOCs

Sebastian Serth
Hasso Plattner Institute
University of Potsdam

Potsdam, Brandenburg, Germany
sebastian.serth@student.hpi.de

Abstract—An increasing number of high school teachers use
existing Massive Open Online Courses (MOOCs) concerning
programming education. Most MOOCs focus on teaching the
basics of a programming language and common concepts or pat-
terns. MOOC platforms usually provide their own code execu-
tion environments and thus have full control over the features
and appearance available to learners. However, only a subset of
tools available to professional software engineers is used in in-
troductory programming MOOCs. While the reduction of fea-
tures is helpful to ease navigation for novices, we assume that
learners benefit from more advanced features at a later stage in
the learning process. To help students minimize bugs and con-
ceptual mistakes, we intend to evaluate how pair programming
could be enabled for remote peers in MOOCs with a synchro-
nized editor and an additional communication channel. Further,
we plan to use static program analysis to get more insights about
the code written by learners and to provide early feedback about
the coding style. One of our contributions will be to identify pos-
sibilities to integrate professional tools and methods in MOOCs
supported by an evaluation from learners.

Keywords—Programming, Computer Science Education, Pair
Programming, Static Program Analysis, Online Learning, MOOC

I. CONTEXT
Modern computer science education in high schools and

universities usually contain several lessons on programming
education with practical exercises. Existing research, e.g., as
done by Merchant et al. highlights the importance of individ-
ual experiences in learning [1]. Besides the individual engage-
ment with the learning content, Blayney and Freeman point
out that “a crucial part of any learning or assessment activity
is the degree to which students receive timely and effective
feedback” [2]. While high school teachers might give individ-
ual feedback to their students on demand, Staubitz et al. con-
cluded that manual feedback and grading is impossible for
Massive Open Online Courses (MOOCs) with huge enroll-
ment numbers [3]. Therefore, in a MOOC, it is required to use
automated feedback to support learners. While multiple-
choice quizzes are an integral part of MOOCs and technically
easy to verify, they do not cover the whole range of content
learned in a programming course and are inadequate to prac-
tice coding [4]. As an alternative to automated feedback, peer
reviews can be used. While learners perceive timely feedback
for their own work as helpful, giving feedback for peers results
in additional workload for them and thus cannot be used
throughout the full course [5].

To offer specific support for learners, some online plat-
forms dedicated to programming education include interactive
workspaces. These allow students to write and execute their
own source code without setting up a local development envi-
ronment, such as Codeboard 1 . MOOC providers, such as
openHPI2, also incorporate their own code execution platform,
e.g., CodeOcean [3]. The educational platforms usually offer

1 https://codeboard.io

only a subset of features commonly found in an integrated de-
velopment environment (IDE) used by professional software
engineers. Many high school teachers we interviewed prefer
the increased simplicity of educational IDEs over feature-rich
IDEs to introduce novices to programming, as our previous
work suggests [4]. Further, teachers valued the automated
feedback given to learners, which freed some of their time to
support students struggling with the topic individually [4].
While automated feedback in programming MOOCs is often
based on unit tests and thus provides an indicator whether the
code written by students fulfills the given requirements, it does
not provide insights about the complexity, the runtime or other
software metrics used by professional software engineers.

Due to the limited features available in some educational
IDEs, not all principals used by professionals can be taught:
CodeOcean, for example, misses debug functionality to sup-
port learners in finding bugs in source code [4]. While a de-
bugger is useful to squeeze bugs in a given code (i.e., after
making a mistake), pair programming as part of extreme pro-
gramming (XP) leads to less error-prone programs compared
to individual work [6]. However, according to a preliminary
survey we conducted, many high school teachers do not ex-
plicitly introduce pair programming to their students. Never-
theless, students are forced to work in pairs of two in most
school lessons due to missing computers. For school home-
work and learners in MOOCs, pair programming is not avail-
able without further adaption due to the distance of learners.

II. OBJECTIVE
This thesis aims to investigate how to enhance program-

ming education with professional tools and methods used by
software engineers, such as pair programming or static pro-
gram analysis:

RQ1. How might we use the concept of pair programming
in an online environment with learners being remote?

RQ2. Which adaption is required to integrate static program
analysis in MOOCs and how might results be used?

RQ3. How can MOOC participants apply their knowledge
gained through pair programming and static program
analysis in a larger software project?

III. METHOD
To address the research questions outlined above, we plan

to develop a coherent concept in consultation with MOOC in-
structors and high school teachers. Furthermore, we aim to in-
tegrate the required features into the existing web-based code
execution platform CodeOcean and evaluate these by offering
a dedicated MOOC for the interested public. We intend to
open the course for learners of all age groups starting with sen-
ior high school students (K10-K12) but not limited to those.

2 https://open.hpi.de

For integrating pair programming in an online scenario, we
aim to match learners anonymously with a peer (if desired)
and provide a synchronized code editor enabling live collabo-
ration. As support for learners new to pair programming, we
plan to evaluate different forms of assistance in applying the
method. The assistance might range from providing a synchro-
nized code editor fully accessible by both users simultaneously
to limiting the editor to one learner at a time. The latter might
support novices in applying pair programming, where one per-
son actively types code as the driver and the other, called the
navigator, watches out for mistakes and acts as a brainstorm-
ing partner [7]. Additionally, the strict separation of both roles
in conjunction with the anonymity of peers might help to re-
duce gender-based discrimination as otherwise common in
Computer Science [8].

To provide students with opportunities to improve their
coding style, we aim to provide learners with other possible
solutions after submitting their code for final grading. We ex-
pect to raise awareness of the readability and maintainability
of source code by asking students to compare two solutions
which passed the same unit tests. Throughout our study, we
want to compare the solution preferred by learners and the
static program analysis. By using anonymized code of other
learners, we suppose to also provide a benefit for the two cre-
ators of the involved source code examples by processing the
gained feedback. The additional feedback could also be used
in conjunction with the Request for Comment feature available
in CodeOcean to get further help from peers [9].

During the course runtime, we intend to split the partici-
pants into groups and offer them different levels of tooling
support in an A/B test. In that scenario, the control group will
learn with the unaltered experience while the other(s) will be
used to increase the learning process. To prevent negative im-
pact on participating high school students within one class and
to minimize the mutual influence, we aim to group students of
the same class together. By comparing the groups of learners
(e.g., concerning their time invested, the points achieved and
results of the static program analysis), we expect to identify
whether our proposed changes improve the learning outcome
gains. In addition, we will kindly ask all learners to participate
in a survey to get direct user feedback.

IV. RESULTS
Based on a preliminary survey with high school teachers

and students as well as our previous work, we are aware of
further requirements currently not fulfilled to enhance teach-
ing effectiveness in programming education. These require-
ments have been used to formulate the research questions
listed above in Section II.

As I have just started to work in my first year as a Ph.D.
candidate, I aim to continue exploring the research area first
and further clarify the design of the experiments described
above. I will then work on RQ1 and focus on pair program-
ming incorporating the insights Teusner et al. previously de-
scribed regarding video-conferencing as a form of direct com-
munication within a MOOC [10].

Continuing with RQ2, I want to focus on tooling support
to help learners improve their style of code before providing
students with an opportunity to apply their knowledge in a
software project larger than the usual exercises used in
MOOCs so far (RQ3). Depending on the results gathered so
far, the software project will incorporate the methods de-
scribed above (such as pair programming and static program
analysis) as well as peer feedback.

V. CONCLUSION
Our previous work focused on satisfying the basic needs

high school teachers have when introducing blended learning
with MOOCs to their classes. While teachers aim to use pro-
gramming environments designed for beginners, they also
profit from further customizations to control the features avail-
able to students. However, existing web-based programming
environments used in MOOCs, such as CodeOcean, lack sup-
port for extending programming education with professional
tools and methods, such as pair programming or static pro-
gram analysis. As a result, interested MOOC participants in-
cluding high school students are unable to experience these
techniques themselves in the familiar programming environ-
ment. We expect that programming learners familiar with
basic concepts would profit from an early introduction to the
tools and methods used in the software industry. Nevertheless,
the designated usage in MOOCs requires special adaption of
these techniques.

Therefore, this thesis aims to provide further insights into
the usage scenarios, the benefits and the limitations of these
techniques in MOOCs. Our vision is to incorporate teaching
about coding styles as a matter of course and offer students the
possibility to practice them while learning more profound pro-
gramming concepts.

ACKNOWLEDGMENT
I would like to thank my advisor Ralf Teusner for his ex-

cellent support and the time he invested while working on his
own thesis. Many thanks also to my supervisor Prof. Meinel
and the members of the openHPI and HPI Schul-Cloud teams.

REFERENCES
[1] Z. Merchant, E. T. Goetz, L. Cifuentes, W. Keeney-Kennicutt, and T.

J. Davis, “Effectiveness of virtual reality-based instruction on students’
learning outcomes in K-12 and higher education: A meta-analysis,”
Comput. Educ., vol. 70, pp. 29–40, Jan. 2014.

[2] P. Blayney and M. Freeman, “Automated formative feedback and
summative assessment using individualised spreadsheet assignments,”
Australas. J. Educ. Technol., vol. 20, no. 2, pp. 209–231, Aug. 2004.

[3] T. Staubitz, H. Klement, R. Teusner, J. Renz, and C. Meinel,
“CodeOcean - A versatile platform for practical programming
excercises in online environments,” in 2016 IEEE Global Engineering
Education Conference (EDUCON), Abu Dhabi, 2016, pp. 314–323.

[4] S. Serth, R. Teusner, J. Renz, and M. Uflacker, “Evaluating Digital
Worksheets with Interactive Programming Exercises for K-12
Education,” in 2019 IEEE Frontiers in Education Conference (FIE),
Cincinnati, OH, USA, 2019, pp. 1–9.

[5] C. E. Kulkarni, M. S. Bernstein, and S. R. Klemmer, “PeerStudio:
Rapid Peer Feedback Emphasizes Revision and Improves
Performance,” in Proceedings of the Second (2015) ACM Conference
on Learning @ Scale - L@S ’15, Vancouver, BC, Canada, 2015, pp.
75–84.

[6] C. McDowell, L. Werner, H. Bullock, and J. Fernald, “The Effects of
Pair-Programming on Performance in an Introductory Programming
Course,” p. 5.

[7] N. Nagappan et al., “Improving the CS1 experience with pair
programming,” ACM SIGCSE Bull., vol. 35, no. 1, p. 359, Jan. 2003.

[8] M. Marklund and S. Gustavsson, “‘Why Am I Even Doing This?’: The
Experiences of Female Students in CS from an Insider Perspective,” in
2018 International Conference on Learning and Teaching in
Computing and Engineering (LaTICE), Auckland, New Zealand, 2018,
pp. 77–81.

[9] R. Teusner, T. Hille, and T. Staubitz, “Effects of automated
interventions in programming assignments: evidence from a field
experiment,” in Proceedings of the Fifth Annual ACM Conference on
Learning at Scale - L@S ’18, London, United Kingdom, 2018, pp. 1–
10.

[10] R. Teusner, N. Wittstruck, and T. Staubitz, “Video conferencing as a
peephole to MOOC participants: Understanding struggling students
and uncovering content defects,” in 2017 IEEE 6th International
Conference on Teaching, Assessment, and Learning for Engineering
(TALE), Hong Kong, 2017, pp. 100–107.

Abstract
An increasing number of high school teachers use existing Massive Open Online Courses
(MOOCs) in programming education. Most programming MOOCs focus on teaching the basics
of a language and common concepts or patterns. MOOC platforms usually provide their own
code execution environments and thus have full control over the features and appearance
available to learners. However, only a subset of tools available to professional software
engineers is used in introductory programming MOOCs. While the reduction of features is
helpful to ease navigation for novices, we assume that learners benefi t from more advanced
features at a later stage in the learning process. To minimize bugs and conceptual mistakes,
we intend to evaluate how pair programming could be enabled for remote peers in MOOCs
with a synchronized editor and an additional communication channel. In addition, we plan to
use static program analysis to get more insights about the code written by learners and to
provide early feedback about the coding style. One of our contributions will be to identify
possibilities to integrate professional tools and methods in MOOCs supported by an evalua-
tion from learners.

Integrating Professional Tools in
Programming Education with MOOCs

References
[1] Z. Merchant, E. T. Goetz, L. Cifuentes, W. Keeney-Kennicutt, and T. J. Davis, “Effectiveness of virtual reality-based instruction on students’ learning outcomes in K-12 and higher education: A meta-analysis,” Comput. Educ., vol. 70, pp. 29–40, Jan. 2014.
[2] P. Blayney and M. Freeman, “Automated formative feedback and summative assessment using individualised spreadsheet assignments,” Australas. J. Educ. Technol., vol. 20, no. 2, pp. 209–231, Aug. 2004.
[3] T. Staubitz, H. Klement, R. Teusner, J. Renz, and C. Meinel, “CodeOcean - A versatile platform for practical programming excercises in online environments,” in 2016 IEEE Global Engineering Education Conference (EDUCON), Abu Dhabi, 2016, pp. 314–323.
[4] S. Serth, R. Teusner, J. Renz, and M. Ufl acker, “Evaluating Digital Worksheets with Interactive Programming Exercises for K-12 Education,” in 2019 IEEE Frontiers in Education Conference (FIE), Cincinnati, OH, USA, 2019, pp. 1–9.
[5] C. E. Kulkarni, M. S. Bernstein, and S. R. Klemmer, “PeerStudio: Rapid Peer Feedback Emphasizes Revision and Improves Performance,” in Proceedings of the Second (2015) ACM Conference on Learning @ Scale - L@S ’15, Vancouver, BC, Canada, 2015, pp. 75–84.
[6] C. McDowell, L. Werner, H. Bullock, and J. Fernald, “The Effects of Pair-Programming on Performance in an Introductory Programming Course,” p. 5.
[7] N. Nagappan et al., “Improving the CS1 experience with pair programming,” ACM SIGCSE Bull., vol. 35, no. 1, p. 359, Jan. 2003.
[8] M. Marklund and S. Gustavsson, “‘Why Am I Even Doing This?’: The Experiences of Female Students in CS from an Insider Perspective,” in 2018 International Conference on Learning and Teaching in Computing and Engineering (LaTICE), Auckland, New Zealand, 2018, pp. 77–81.
[9] R. Teusner, T. Hille, and T. Staubitz, “Effects of automated interventions in programming assignments: evidence from a fi eld experiment,” in Proceedings of the Fifth Annual ACM Conference on Learning at Scale - L@S ’18, London, United Kingdom, 2018, pp. 1– 10.
[10] R. Teusner, N. Wittstruck, and T. Staubitz, “Video conferencing as a peephole to MOOC participants: Understanding struggling students and uncovering content defects,” in 2017 IEEE 6th International Conference on Teaching, Assessment, and Learning for Engineering (TALE), Hong Kong, 2017, pp. 100–107.

How might we use
the concept of pair
programming in an
online environment
with learners
being remote?

Which adaption
is required to
integrate static
program analysis
in MOOCs and
how might results
be used?

How can MOOC
participants apply
their knowledge
gained through
pair programming
and static program
analysis in a larger
software project?

Context
Computer Science Education with MOOCs profi ts from:

 ■ Individual experiences [1]
 ■ Frequent [2] and automated [3] feedback
 ■ Coding tasks [4]
 ■ Balanced use of peer reviews [5]

Educational Development Environments are:
 ■ Preferred by teachers due to the limited set of features [6]
 ■ Limiting the introduction of professional methods [initial survey]

> >

Proposed Approach
 ■ Match learners anonymously
 ■ Provide a synchronized code edi-

tor modifi able

... by both users simultaneously

... by only one user to enforce

 driver / navigator pattern [7]

Proposed Approach
 ■ Compare user feedback on sub-

missions and analysis results to

identify metrics
 ■ Display hints based on the identi-

fi ed metrics during development

Proposed Approach
 ■ Use permutations with

A/B tests to identify most

supportive aspects

Research Questions

Conference Author
Sebastian Serth
Hasso Plattner Institute, University of Potsdam, Germany

Prof.-Dr.-Helmert-Str. 2–3 I D-14482 Potsdam
sebastian.serth@student.hpi.de
www.hpi.de

poster_ds_fie_2019.indd 7 11.10.19 14:25

