Hasso-Plattner-Institut
Prof. Dr. Felix Naumann
  
 

Arvid Heise

Former PhD student

Email: Arvid Heise

Research Activities

  • Cloud Computing
  • Parallel and Declarative Data Cleansing
  • MapReduce with Hadoop

Publications

The Stratosphere Platform for Big Data Analytics

Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Freytag, Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl, Felix Naumann, Mathias Peters, Astrid Rheinländer, Matthias J. Sax, Sebastian Schelter, Mareike Höger, Kostas Tzoumas, Daniel Warneke
The VLDB Journal, vol. 23(6):939-964 2014

Abstract:

We present Stratosphere, an open-source software stack for parallel data analysis. Stratosphere brings together a unique set of features that allow the expressive, easy, and efficient programming of analytical applications at very large scale. Stratosphere’s features include “in situ” data processing, a declarative query language, treatment of user-defined functions as first-class citizens, automatic program parallelization and optimization, support for iterative programs, and a scalable and efficient execution engine. Stratosphere covers a variety of “Big Data” use cases, such as data warehousing, information extraction and integration, data cleansing, graph analysis, and statistical analysis applications. In this paper, we present the overall system architecture design decisions, introduce Stratosphere through example queries, and then dive into the internal workings of the system’s components that relate to extensibility, programming model, optimization, and query execution. We experimentally compare Stratosphere against popular open-source alternatives, and we conclude with a research outlook for the next years.

BibTeX file

@article{Alexander2014a,
author = { Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Freytag, Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl, Felix Naumann, Mathias Peters, Astrid Rheinländer, Matthias J. Sax, Sebastian Schelter, Mareike Höger, Kostas Tzoumas, Daniel Warneke },
title = { The Stratosphere Platform for Big Data Analytics },
journal = { The VLDB Journal },
year = { 2014 },
volume = { 23 },
number = { 6 },
pages = { 939-964 },
month = { 0 },
abstract = { We present Stratosphere, an open-source software stack for parallel data analysis. Stratosphere brings together a unique set of features that allow the expressive, easy, and efficient programming of analytical applications at very large scale. Stratosphere’s features include “in situ” data processing, a declarative query language, treatment of user-defined functions as first-class citizens, automatic program parallelization and optimization, support for iterative programs, and a scalable and efficient execution engine. Stratosphere covers a variety of “Big Data” use cases, such as data warehousing, information extraction and integration, data cleansing, graph analysis, and statistical analysis applications. In this paper, we present the overall system architecture design decisions, introduce Stratosphere through example queries, and then dive into the internal workings of the system’s components that relate to extensibility, programming model, optimization, and query execution. We experimentally compare Stratosphere against popular open-source alternatives, and we conclude with a research outlook for the next years. },
priority = { 0 }
}

Copyright Notice

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

last change: Mon, 18 May 2015 09:01:45 +0200