Hasso-Plattner-Institut
Prof. Dr. Felix Naumann
  
 

Dr. Thorsten Papenbrock

Senior Researcher
Head of the Distributed Computing group

Hasso-Plattner-Institut
für Softwaresystemtechnik
Prof.-Dr.-Helmert-Straße 2-3
D-14482 Potsdam
Office: F-2.04, Campus II

 

Phone: +49 331 5509 294
Email:  thorsten.papenbrock(a)hpi.de
Profiles: Xing, LinkedIn
Research: ORCID, GoogleScholar, DBLP, ResearchGate

Dissertation: Data Profiling - Efficient Discovery of Dependencies


Projects

Metanome

Research Interests

  • Complex data engineering problems

  • Parallel and distributed computing challenges

    • e.g. robustness, efficiency, and elasticity

Technology Interests

  • Data flow engines

  • Message passing systems

  • Parallel hardware toolkits

Teaching

Lectures:

  • Distributed Data Management (2018, 2019)
  • Distributed Data Analytics (2017)
  • Data Profiling (2017)
  • Information Integration (2015)
  • Data Profiling and Data Cleansing (2014)
  • Database Systems I (2013, 2014, 2015, 2016, 2017)
  • Database Systems II (2013)

Seminars:

  • Reliable Distributed Systems Engineering (2019)
  • Mining Streaming Data (2019)
  • Actor Database Systems (2018)
  • Proseminar Information Systems (2014)
  • Advanced Data Profiling (2013, 2017)

Bachelor Projects:

  • Data Refinery - Scalable Offer Processing with Apache Spark (2015/2016)

Master Projects:

  • Profiling Dynamic Data - Maintaining Matadata under Inserts, Updates, and Deletes (2016)
  • Approximate Data Profiling - Efficient Discovery of approximate INDs and FDs (2015)
  • Metadata Trawling - Interpreting Data Profiling Results (2014)
  • Joint Data Profiling - Holistic Discovery of INDs, FDs, and UCCs (2013)

Master Thesis:

  • Distributed Unique Column Combination Discovery (Benjamin Feldmann, 2019)
  • Reactive Inclusion Dependency Discovery (Frederic Schneider, 2019)
  • Inclusion Dependency Discovery on Streaming Data (Alexander Preuss, 2019)
  • Generating Data for Functional Dependency Profiling (Jennifer Stamm, 2018)
  • Efficient Detection of Genuine Approximate Functional Dependencies (Moritz Finke, 2018)
  • Efficient Discovery of Matching Dependencies (Philipp Schirmer, 2017)
  • Discovering Interesting Conditional Functional Dependencies (Maximilian Grundke, 2017)
  • Multivalued Dependency Detection (Tim Draeger, 2016)
  • Spinning a Web of Tables through Inclusion Dependencies (Fabian Tschirschnitz, 2014)
  • Discovery of Conditional Unique Column Combination (Jens Ehrlich, 2014)
  • Discovering Matching Dependencies (Andrina Mascher, 2013)

Online Courses:

  • Datenmanagement mit SQL (openHPI, 2013)

Publications

A Hybrid Approach to Functional Dependency Discovery

Papenbrock, Thorsten; Naumann, Felix in Proceedings of the International Conference on Management of Data (SIGMOD) page 821-833 . New York, NY, USA , ACM , 2016 .

Functional dependencies are structural metadata that can be used for schema normalization, data integration, data cleansing, and many other data management tasks. Despite their importance, the functional dependencies of a specific dataset are usually unknown and almost impossible to discover manually. For this reason, database research has proposed various algorithms for functional dependency discovery. None, however, are able to process datasets of typical real-world size, e.g., datasets with more than 50 attributes and a million records. We present a hybrid discovery algorithm called HyFD, which combines fast approximation techniques with efficient validation techniques in order to find all minimal functional dependencies in a given dataset. While operating on compact data structures, HyFD not only outperforms all existing approaches, it also scales to much larger datasets.
[ URL ] [ DOI ]
A Hybrid Approach to Func... - Download
Further Information
Tags discovery  functional_dependencies  hpi  hybrid  hyfd  isg  metadata  parallel  profiling