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Optimized Theta-Join Processing through Candidate
Pruning and Workload Distribution

Julian Weise! Sebastian Schmidl? Thorsten Papenbrock3

Abstract: The Theta-Join is a powerful operation to connect tuples of different relational tables
based on arbitrary conditions. The operation is a fundamental requirement for many data-driven
use cases, such as data cleaning, consistency checking, and hypothesis testing. However, processing
theta-joins without equality predicates is an expensive operation, because basically all database
management systems (DBMSs) translate theta-joins into a Cartesian product with a post-filter for
non-matching tuple pairs. This seems to be necessary, because most join optimization techniques,
such as indexing, hashing, bloom-filters, or sorting, do not work for theta-joins with combinations of
inequality predicates based on <, <, #, >, >.

In this paper, we therefore study and evaluate optimization approaches for the efficient execution of
theta-joins. More specifically, we propose a theta-join algorithm that exploits the high selectivity of
theta-joins to prune most join candidates early; the algorithm also parallelizes and distributes the
processing (over CPU cores and compute nodes, respectively) for scalable query processing. The
algorithm is baked into our distributed in-memory database system prototype A2DB. Our evaluation
on various real-world and synthetic datasets shows that A2DB significantly outperforms existing
single-machine DBMSs including PostgreSQL and distributed data processing systems, such as
Apache SparkSQL, in processing highly selective theta-join queries.

Keywords: theta-join; query optimization; distributed computing; actor programming

1 Theta-Join Processing

A join is a powerful operation in relational database theory that allows us to combine tuples
of the same or different relational instances. The most popular join operator is the equi-join
>« that combines tuples based on the equality of certain attribute values. The equi-join
serves most basic tuple combination scenarios, such as tuple reconstruction in normalized
schemata, knowledge enrichment via data integration, and the resolution of foreign-key
relationships. The theta-join =g is a generalized join variant that combines tuples based on
arbitrary join conditions ® including but not limited to value equality. A join condition is a
boolean statement on the attribute values of two tuples. Following related work, we express
any such statement as a conjunction of predicates based on <, <, #, >, >.
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Geo-spacial querying. Theta-joins are used whenever tuples need to be paired up in a
specific way. In temporal or geo-spacial querying, for example, tuples often need to match
in certain value ranges. The query "Combine all City-tuples with those State-tuples in
which they are geographically located"(see Figure 1), for instance, matches tuples based on
longitude (Long) and latitude (Lat) range information.

pc(City) P<S.Longmin <C.LongAS.Longmax >C.LongAS.Latyin <C.LatAS.Latyax>C.Lat PS (State)
Fig. 1: A geo-spatial query that builds tuples of cities and their corresponding states.

Data cleaning. Another important area of application for theta-joins is rule-based data
cleaning. Given a data quality rule or an integrity constraint, such as "TaxPayers with higher
income need to pay more taxes than TaxPayers with lower income", we can formulate the
negated constraint as a theta-join query (see Figure 2) to retrieve all data inconsistencies
w. r. t. this constraint from the data and clean them afterwards.

pr1(TaxPayer) ><71 [ncome<T2.IncomenT 1.T axRate>T2.T axRate PT2(TaxPayer)

Fig. 2: A data cleaning query retrieving all inconsistent tuple pairs w.r. t. a given integrity constraint.

Hypothetis testing. The use of theta-joins in the area of hypothetis testing works very
similar to the data cleaning use case: Given a hypothethis statement, such as "Countries
that invest more in education have less child poverty and a higher educational level than
Countries that invest less in education", we can query all pairs of countries that contradict
this statement via a theta-join (see Figure 3).

pA(Country) »as ESpend>B.ESpendn(A.CPov>B.CPovVA.ELevel<B.ELevel) PB(Country)

Fig. 3: A hypothesis testing query that collects contradicting tuple pairs.

Hypothesis and integrity statements are often formulated manually by domain experts.
They can, however, also be discovered automatically with modern data mining and data
profiling algorithms. Functional dependencies, order dependencies and denial constraints
are only a few types of statements that can meanwhile be retrieved automatically [AGN15].
While it has been shown that the mined statements are useful for tasks, such as consistency
checking and data cleaning [Bo07; Col7], the amount and complexity of the statements
puts significant pressure onto the theta-join operations used for their evaluation.

Although the theta-join is an essential part of relational algebra, its common physical
implementation in data query engines is a nested-loop join, i. e., the Cartesian product, in
combination with a filter operation. Consider for example the theta-join shown in SQL
Query 1, which targets the San Francisco Employee Compensation dataset?.

4 https://data.sfgov.org/City-Management-and-Ethics/Employee-Compensation/88g8-5mnd (08-August-2020)
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SELECT a.eID, b.eID

FROM EmployeeCompensation a, EmployeeCompensation b
WHERE a.jobCode = b.jobCode

AND a.salaries < b.salaries

AND a.eID != b.eID

SQL Query 1: Identify pairs of employees performing the same job but being paid differently.

We executed the query on different query engines including PostgreSQL?>, SparkSQL® and
Amazon Redshift”, which all produced a query plan similar to the one shown in Listing 2:
an equi-join on the equality predicates followed by a post-filter on the inequality predicates.

Merge Join
Merge Cond: (a.jobcode = b.jobcode)
Join Filter: ((a.salaries < b.salaries) AND (a.ID <> b.ID))
-> Sort: Sort Key: a.jobcode

-> Seq Scan on EmployeeCompensation a
-> Materialize

-> Sort: Sort Key: b.jobcode
-> Seq Scan on EmployeeCompensation b

Listing 2: The PostgreSQL query plan for SQL Query 1.

With the high selectivity of the equi-join, the query offers a relatively good performance.
However, considering the queries of the use cases discussed above, most of them do not
employ equality operators. So replacing the equality operator in Query 1 with an inequality
operator causes the query engines to produce queries plans similar to the one shown in
Listing 3: a nested-loop join with a large post-filter.

Nested Loop
Join Filter: ((a.jobcode <> b.jobcode)
AND (a.salaries < b.salaries) AND (a.ID <> b.ID))
-> Seq Scan on EmployeeCompensation a
-> Materialize

-> Seq Scan on EmployeeCompensation b

Listing 3: PostgreSQL Query Plan for SQL Query 1 without equality operator

Because the established hashing-, indexing- and sorting-based optimizations are not
applicable for complex join conditions with inequality predicates, the systems fall back to
the quadratic comparison of all tuples without employing any optimization. The performance
of the nested-loop join in all systems is, therefore, dramatically worse than the performance

S https://www.postgresql.org/ (08-August-2020)
¢ https://spark.apache.org/sql/ (08-August-2020)
7 https://aws.amazon.com/redshift/ (08-August-2020)
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of an equi-join. This is problematic when executing theta-joins on real-world datasets as the
costs scale quadratically with the datasets’ size.

Although there is probably no solution for the quadratic complexity of theta-joins, we
can still optimize the join performance by pruning join candidates (and, hence, their join
condition tests) and by distributing the join workload to multiple machines (and, hence,
scale out the processing). In this paper, we develop a theta-join algorithm that implements
these two optimizations for our distributed in-memory database system prototype A’DB.
A’DB is an actor-based and, therefore, inherently parallel and distributable database, which
is designed for analytical query workloads. It builds upon the actor model, which is a
reactive programming paradigm that uses actors as its universal computational primitives.
An actor is essentially an object with strictly private state that communicates with other
actors using asynchronous messaging. The architecture of this system follows the idea of an
actor database system [Bel8; SSP19], in which all database state is encapsulated in actors.
Our database prototype and, hence, also our theta-join algorithm are implemented using the
akka toolkit®, which is the most popular actor model implementation for the Java Virtual
Machine.

Join candidates pruning. Our first optimization is based on the observation that theta-join
results in real-world use cases are small (often even empty) and grow rather linearly with the
size of the data: Geo-spacial queries result in manageable overlaps, data cleaning queries
should return relatively few data quality issues, and hypothesis checking queries are expected
to return empty results (or very small results if the hypothesis is not quite correct). For
this reason, most real-world theta-joins have a high selectivity. In this paper, we propose
a theta-join algorithm that calculates and evaluates the selectivity of the individual join
predicates; selective predicates are, then, used to prune the candidate space.

Join workload distribution. Because theta-join results have a quadratic worst-case size in
the length of the input dataset, the candidate pruning effects are not always sufficient to
process larger join queries. For this reason, our theta-join algorithm facilitates parallelization
and can be scaled out to multiple compute nodes. The ability to scale also naturally exploits
the distributed storage of data in the A>DB system.

In the following, we first discuss related work in the area of (theta-)join processing and the
limitations of existing approaches (Section 2). We then explain how data is maintained and
distributed (Section 3). With these basic details explained, we first describe our distributed
theta-join algorithm (Section 4) and then its selectivity-based join strategies (Section 5).
In an extensive evaluation, we then compare the performance of our theta-join algorithm
with the performance of the data processing systems PostgreSQL (single node), SparkSQL
(12 node cluster) and Amazon Redshift (12 node cloud) to demonstrate that A’DB can
process selective theta-joins significantly faster than the state-of-the-art Carthesian product
plus post-filter approach (Section 6).

8 https://akka.io (08-August-2020)
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2 Related Work

In this section, we give an overview of existing work in the area of theta-join processing.
We take a brief look at the origin of join operations in the relational model but focus our
investigation on efficient and distributed answering of theta-joins.

Relational Joins were first discussed by Codd in 1970 as a concept of combining tuples
based on attribute equality in his proposal for the relational data model. He later extended his
proposal by combining tuples also with non-equality operators, which was the introduction
of the theta-join operator [Co79]. Early subsequent work then mainly focused on the
equality-based join operation and suggested various implementations and optimizations to
calculate these equi-joins efficiently [Go75]. Prominent examples are hash, sort-merge, and
nested-loop joins, as well as techniques utilizing indexes [ME92].

Parallel and Distributed Equi-Join Processing techniques have been examined extensively
in response to the development of multi-core machines. Specifically, researchers identified
challenges and proposed solutions for typical problems in multi-threaded and distributed
systems, such as shared state and workload partitioning [ESW78; VG84]. A prominent
optimization for calculating joins in distributed systems, which was proposed by Bernstein,
utilizes semi-joins to extract join candidates [BC81]. In this way, the communication
overhead and, hence, query processing time could be decreased significantly. Most of the
techniques proposed in this area can, however, not be applied to theta-joins, because they do
not support complex theta predicates.

Efficient Theta-Join Processing is the goal of the IE-Join algorithm by Khayyat et
al. [Kh15]. The algorithm applies a sophisticated sort-merge approach by first sorting the
values of up to two join attributes and implicitly identifying candidate sets. Via permutation
arrays and clever bitset operations, the algorithm tests all predicates of the join condition
successively while effectively pruning candidates on the way. In this way, IE-Join is orders
of magnitude faster than both PostgreSQL and SparkSQL. Despite its superior performance,
the proposed approach is inherently limited to only two join predicates. Adapting IE-Join to
more than two predicates requires exactly the strategies proposed in this paper: a strategy to
choose the two IE-Join predicates and a post-processing step for all non-chosen predicates.

Distributed Theta-Join Processing optimizations mostly target batch processing and data
flow engines, such as Apache MapReduce or Apache Spark. These engines are effective
in processing equi-joins, because distributed grouping and aggregation of tuples is baked
into their core feature set, but ineffective for theta-joins, because the grouping does not
innately support inequality operators. The I-Bucket-Theta algorithm by Okcan et al. [Ok11]
is a theta-join processing approach on MapReduce that splits the quadratic comparison
space into buckets, which are then processed distributedly by different machines to share
the comparison load. M-Bucket-Theta enhances the 1-Bucket-Theta algorithm in that the
algorithm can detect empty regions in the matrix and prune non-contributing join candidates.
Because the algorithm depends on a single comparison matrix, theta-joins with more than
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one predicate are handled by concatenating the predicates’ attributes into one key. For this
reason, M-Bucket-Theta can handle theta-joins with only one predicate effectively. The work
of Koumarelas et al. [KNG18] proposes several strategies to optimize M-Bucket-Theta’s
efficiency for low-selectivity queries. By manipulating the matrix of the mapping phase such
that larger regions of it can be pruned, the strategies reduce the algorithm’s communication
and computation costs by up to 45% and 50% respectively. Despite these performance
improvements, the theta-join algorithm still cannot handle multiple predicates. Because
multiple-predicate theta-joins are a given for most use cases, such as hypothesis testing and
data cleansing, we do not evaluate these approaches in this work.

To join more than two relations at once, Zhang et al. studied the problem of decomposing a
multi-way theta-join into multiple binary joins and proposed different strategies and a cost
model for optimizing the overall processing time [ZCW12]. For the execution of chained
joins, the authors rely on variations of M-Bucket-Theta. In this paper, we consider multi-way
theta joins as orthogonal work and focus on efficiently joining two relations.

Besides the MapReduce-based theta-join approaches, Apache Spark supports join processing
with arbitrary join conditions innately with its relational module SparkSQL [Ar15]. The data
flow engine offers DataFrames as an abstraction for distributed datasets and an SQL engine
to query these datasets. Although the engine also falls back on Broadcast-Nested-Loop-Joins
when processing theta-joins, the framework is significantly faster than MapReduce.

The capability of distributed theta-join processing can also be found in many commercial
DBMSs, such as Amazon Redshift. Redshift is a distributed data warehouse solution hosted
exclusively in the Amazon Web Services (AWS) cloud. It distributes data across a cluster of
configurable size and involves all nodes in query answering. Redshift in particular claims
itself to be an efficient and scalable solution for experimenting with (possibly huge) amounts
of data [Gul5], which makes it a perfect baseline for our experimental evaluations.

3 Data storage in A’DB

Before we introduce our theta-join algorithm, we need to explain how our database system
prototype A?DB stores and handles data. A’DB is an actor-based, distributed in-memory
relational DBMS for analytical query workloads that facilitates a leader-follower architecture:

Leader Node: One dedicated node in the A’DB cluster takes the role of a leader. It is
responsible for bookkeeping the follower node’s membership state, accepting queries and
loading data into the database.

Follower node: An A’DB follower is a node in the cluster that is responsible for maintaining
and querying portions of the data. Which portions, i. e., partitions of the data a follower is
responsible for is defined by the leader node.

Follower nodes play an active role in query processing: The leader node breaks every
submitted query, such as a theta-join, into multiple work packages and assigns them to
individual follower nodes. Once a follower node receives a work package, it requests
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necessary data from other nodes, decides the best local query execution strategy, processes
the local results, and sends the results of the query back to the master.

The partitioning of the data in A?’DB follows the PAX concept: The entire relational dataset
is sliced horizontally into equally sized partitions and every partition is stored columnar-wise
on one follower node. For every column in a partition, A’DB maintains column-specific
metadata, such as the column’s min and max values in this partition and a pre-calculated
sorting of the partition tuples w.r.t. this column. During query processing, the extreme
values can be used to prune this partition and the pre-sortings support sort-based query
operators, such as sort-merge joins.

Strictly following the actor programming model, all partitions in A’DB are represented
as autonomous actors, which is, in private, non-parallelizable actor state. To access data
owned by another actor (e. g., in a join scenario), partition holder actors need to ask other
partition holder actors via asynchronous messaging for certain tuples, columns, or values.

4 Theta-Join Workload Distribution

When theta-joining two relations R and S, the query engine needs to validate each possible
combination of tuples from both relations against the join condition ®. Hence, up to
|R| X |S| comparisons need to be performed. Our first approach to efficiently process these
comparisons is to distribute the workload to any given number of nodes. When a query
is issued, the data is already horizontally partitioned on these nodes. In this section, we
propose a reactive join strategy that decomposes and distributes the © evaluations. Figure 4
visualizes the general idea of our approach with an example: A?DB splits the join space of
two relations R and S and their partitions Ri and Si into node-joins, such as R4 »<g Sp, and
each node-join then into partition-joins, such as Pgry >g Ss;. A partition-join comprises
two partitions Pg; and Pg; and constitutes the smallest work-package in the system. In
the example, the theta-join consists of four node-joins and each node-join consists of four
partition-joins — usually, though, an A>DB cluster consists of more nodes and partitions.

Figure 5 depicts the process of executing a theta-join: When the leader node receives a
theta-join query, it creates the node-join matrix that partitions the join into node-joins. It
then opens a query session, which causes all follower nodes to calculate their local node-join,
i.e., all Ry »ag Sa, Rp »<g Sp etc. To perform a partition-join, a processor evaluates all
tuple combinations ((7r,ts) [ r € Pr,,?s € Ps;) against the join condition © and sends the
matching tuples to the result set of the theta-join on the leader. Whenever a follower node
finishes a node-join, the leader serves the follower with another node-join. This reactive
work pulling mechanism keeps all cluster nodes busy until the join is completed. The leader
coordinates this process so that, in the end, all partition-joins are executed. Later in this
section, we discuss the leader’s node-join selection strategy in more detail.

Every node-join is calculated on one follower node. On that node, the calculation is strongly
parallelized and consists of three overlapping steps, which are also shown in Figure 5: The
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Fig. 4: Distribution of the theta-join calculations over two nodes.

work generation step splits the node-join into partition-join tasks. The data loading step
then fetches all necessary remote partition data on demand from the other node of the
current node-join; the step makes sure that every partition is retrieved only once and it is
skipped by the self node-joins, e. g., R4 g S4. Once a remote partition is available, the
execution step can start to join this partition with every local partition; every partition-join
is executed reactively on one actor and, hence, in parallel to other partition joins. Once
all partition-joins are calculated and their results are send to the leader, the node-join is
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completed and the follower is ready for the next node-join.

In the following, we discuss the orchestration of the node-joins (Section 4.1), the provisioning

of partitions (Section 4.2), and the actual join processing (Section 5).
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4.1 Execution Plan

The execution plan is essentially a dynamically created actor on the leader that represents
the distributed execution of a theta-join query. It opens a cluster-wide session (involving
session actors on all follower nodes), orchestrates the intermediate query processing steps
and collects the query result. Through the session actors, all follower nodes know each other
and can communicate on a peer-to-peer basis.

With the execution plan, A’DB aims to orchestrate the node-joins in an optimal way. It
does so by sending out node-joins as work packages to the followers’ query executors.
The initial task for each follower’s executor is to calculate the local node-join. Afterwards,
the executors start pulling further node-joins from the execution plan and the task of the
execution plan is to serve these requests in a best possible way. This means primarily that
every node-join should be handled by a node that owns at least one of the node-join’s sides,
i.e., R4 »<g Sp should be handled by node A or B. Furthermore, we assign both node-join
directions to the same node, i.e., R4 g Sp and Sp »<@ R4 are one work package that goes
to either node A or node B. In this way, partitions are not send in both directions. However,
by assigning the node-joins naively in, for instance, node order, the execution plan quickly
encounters requests by a node, whose partitions have all already been joined elsewhere,
and therefore cannot serve this node with optimal work. Because followers usually finish
their node-joins unevenly fast, the execution plan cannot plan the node-join distribution in
advance and, instead, chooses the node-joins reactively based on three heuristics:

1. Data Locality: Assign a node-join that involves the partitions of the requesting node,
if possible. This rule has the highest priority and overrules all other heuristics.

2. Selection Flexibility: Assign a node-join with the least often joined node. By joining
the least often joined node next, the execution plan maintains the highest possible
flexibility for future join selections — it effectively tries to avoid situations where all
node-joins of a particular requesting node are already done. For this, the execution
plan counts the number of already assigned node-joins per node.

3. Query Politeness: Assign a node-join with the least often requested node. If all
potential join partner have the same join counts, selecting the least often requested
partner should avoid uneven loads for sending out local partitions. For this heuristic,
the execution plan also counts the number of partition requests per node.

Work assisting: Despite these heuristics, the execution plan cannot always meet the first
rule, especially at the end of the execution. So if a node cannot be served with a node-join
involving itself, the execution plan assigns a node-join according to rule two and three. We
refer to the process of taking over foreign node-joins as work assisting. The processing of
such node-joins requires the execution node to fetch partitions from two nodes instead of
one, which is more expensive. Hence, to decide whether work assisting is actually beneficial,
the execution plan tracks three additional runtime metrics per node: the average execution
time of node-joins #4y¢rqge, the execution time for the current node-join f¢jqpsed» and the
average partition transfer delay #4¢;4y. Then, work stealing is done only if the expected
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remaining execution time (Z4yerage —telapsea) is larger than the expected additional network
delay of executing the next node-join as a foreign-node-join (?gerqay)-

Work stealing: If work assisting is no longer possible, follower nodes may support other
follower nodes in finalizing their current node-joins by “stealing” some partition-joins. In
contrast to work assisting, work stealing does not take over an entire node-join but some
portion of the remaining partition-joins. For this, the execution plan actor instructs the work
requesting follower to steal half of the partition-joins from the follower with the shortest
current node-join time #,74psed, Which should be the follower with the heuristically most
unfinished partition-joins. The stealing follower than retrieves these partition-join tasks
from the target follower in a peer-to-peer fashion. Both followers report their join results
directly to the leader; the leader takes care that no follower is “robbed” more than once.

4.2 Context-specific Partition Provisioning

Before a follower node requests partitions from another follower node, it first exchanges
both the join condition ® and the headers of the involved partitions (see Section 3) with the
other follower. The join condition and header metadata help the follower nodes to exchange
only required, i. e., context specific partition data. Given the node-join R4 > Sp, then only
a portion of S’s partitions on node B are relevant for the node-join on node A:

1. A requires only those attribute values from B’s partitions that are used in ®. Thanks
to the column-oriented format of the partitions, these attributes can easily be selected.

2. A requires only those records from B’s partitions that intersect with A’s partitions
w.r.t. all of ®’s attribute-specific join operators, which are <, <, =, #,>,>. The
overlap can be checked quickly with the partition’s min and max values of each
attribute.

As an example for condition 2, if two partitions Pg; and Pg; have no overlap in attribute x,
i.e., PRiXmin > Psj.Xmax and the join condition is R.x < §.x or R.x < S.x, then AZDB
does not transmit Pg, because the join of these partitions is empty. If Pr; and Pgs; overlap
partially, the records are filtered so that the range (min and max) of the transmitted values
matches all ® conditions. In other words, given R.x < S.x, node B sends only those local
Pgj records where Pgj.x > Pg;.Xyi,. With this minimal checking overhead, A2DB can
prune many partition values from the sending process.

5 Theta-Join Candidate Pruning

As already shown in Figure 5, the node-join processing consist of three steps: work generation,
data loading, and execution. The work generation splits the node-join into partition-joins
and puts the resulting tasks into a task queue. To not overload the memory or network
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and to allow other followers to steal work from the task queue, data loading and execution
operate on a pull-based execution model: Free worker actors consume partition-join tasks,
which first causes missing partition data to be loaded and, once the data arrives, be joined.
Via slight over-provisioning and data pre-fetching, the A>’DB follower nodes maximize
both CPU and network utilization. The final partition-join execution step takes as input the
partitions Pg; and Pg;, the partition header metadata, and the join condition ©.

5.1 Predicate-specific Selectivity Calculation

Before A?DB starts the actual join calculation, it first determines the selectivity of each join
predicate Pg;.x »<9 Pgj.x in ©® with ¢ € {<, £,=, #, >, >}. Based on the selectivities, each
follower can later choose the best join strategy for its current partition-join. To calculate
the selectivity for each join predicate, A>DB exploits the pre-calculated sortings of every
attribute in a way that requires at most 2 - (|Pg;| + |Ps|) tuple comparisons. For this, we
interpret each predicate as a | Pg;| X | Ps ;| matrix of record pairs. We then draw two lines into
this matrix that separate matching tuples from non-matching tuples w.r. t. the predicate’s
join operator 3. Figure 6 shows example results for all operators. To calculate the selectivity,
we simply sum up all ranges of matching tuples and divide the result by |Pg;| - | Ps;].

< © v @ @ s oA

(a) < () < ©# @)= (&) > ® >
Fig. 6: Exemplified join matrices for all join operators supported by AZDB

To calculate the border lines efficiently, a partition-join worker starts with two pointers [ and
r in the left-upper corner of the matrix. It then compares the records at the pointer locations
and advances the / pointer in a way that it follows the left index of matching tuples and
r follows the right index of matching tuples. So for example, if Pg;(/) ¢ Ps;(!) is true,
i.e., the records’ values at pointer location / match, [ advances downwards; otherwise, it
advances to the right. For the same comparison, r advances to the right for matches and
downwards, otherwise. The calculation ends when both pointers arrive at the bottom of
the matrix. Note that this procedure does not work for #, because # defines two areas
of matching tuples; hence, A’DB calculates # as = and inverts the resulting counts. The
matching tuple pairs are technically stored in an |Pg;| long array of ranges (see Figure 7).
We call this the join candidate set for predicate ©. The range indexes are given by the / and
r pointers whenever these pointers move downwards. The selectivity calculation is executed
for all join predicates of © in parallel and finishes when all branches are done.
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Fig. 7: Representation of matching tuples pairs in ranges

5.2 Partition-Join Strategies

The intersection of all candidate sets, i. e., all tuple pair sets of all predicates, is the theta-join
result for Pgr; ><g Ps;. However, because the join matrices (mostly) use different sortings,
the calculated ranges cannot be intersected directly. There are basically two join strategies
that we can follow at this point: row-oriented joining and column-oriented joining.

Row-oriented Join Strategy: The row-oriented joining strategy takes a set of join candidates,
which is, for example, the candidate set of one join predicate, and checks each candidate
against the entire join condition ®. This immediately validates the entire join tuple, i. e.,
one result row. Because © is formulated in conjunctive normal form, the predicate testing
for one tuple pair stops immediately and discards the pair if a predicate is invalid.

Column-oriented Join Strategy: The column-oriented joining strategy successively
intersects the sets of matching tuple pairs of all join predicates. Thereby, the strategy
basically tests one predicate after the other vertically for all result tuples, i. e., column-wise
for each join attribute. To intersect two candidate sets, which are represented as lists of
tuple ranges based on attribute-specific sortings, A”DB first translates both candidate sets
into matrices with same tuple sortings in both dimensions. Both resulting matrices are
represented as |Pg;|-long array of sparse bitsets (1-bits for matches; 0-bits for no-matches).
After this transformation, A2DB can efficiently intersect these candidate sets. The costs for
the transformation and intersection depend on the selectivities of the two join predicates.

Both the row- and the column-oriented join strategy profit from considering the most selective
predicates, which is the one with the lowest selectivity factor, first: The candidate set of the
most selective predicate is the smallest and, hence, prunes the most candidate evaluations
when chosen as initial candidate set for row-oriented joining; similarly, intersecting the
sparsest candidate sets first in column-oriented joining maximizes the pruning effect of
every intersection step and, hence, the overall compute efficiency. For this reason, A2DB
sorts the predicates by their selectivity factors and uses the most selective predicates first —
regardless of the join strategy, which it needs to choose right after sorting the predicates.

Choosing the row-oriented strategy effectively uses one candidate set for pruning. However,
if there is no single predicate with a high selectivity (low selectivity factor) and further
predicates are needed to sufficiently prune the candidate space, this strategy alone looses a lot
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of pruning potential. On the other hand, choosing the column-oriented strategy exploits all
pruning aspects, but because the transformation of range-based into bitset-based candidate
sets is expensive, translating all candidate sets outweighs the pruning effect. Considering the
examples in Figure 6 shows that, for instance, neither (b) nor (f) are particular effective, but
their intersection, which is (d), is highly selective; the candidate set (c) is neither alone nor
in any combination effective enough to compensate its translation costs. For these reasons,
we propose a strategy selection heuristic that combines both approaches.

Strategy Selection Heuristic: All workers decide the join strategy for their current partition-
join task based on the local selectivities and independently of one another. After all predicates
are sorted in ascending order according to their selectivity factors, a worker follows the
following decision heuristic:

1. Only one predicate: If the join condition ® consists of only one predicate, A’DB
simply returns the candidate set of that one predicate, which is the result of the current
partition-join.

2. 100% selective: If the most selective predicate matches no tuple pair, the partition-join
result is empty, because the predicate with the highest selectivity defines an upper
bound for the number of join results; hence, an empty set is returned.

3. 95 -100% selective: If the most selective predicate matches only at most 5%, it alone
is so selective that column-oriented joining is not promising. For this reason, the
worker uses only the first predicate’s candidate set as input for row-oriented joining.

4. < 95% selective: If no highly selective predicate exists, the worker intersects the
two most selective predicates via column-oriented joining and feats the resulting
candidates into row-oriented joining.

The last case uses only the first two predicates for column-oriented joining, because we
observed that the first two predicates usually have such a strong combined pruning effect that
adding a third predicate does not pay off. Different settings of the proposed 95% decision
threshold can cause faster execution times depending on various factors, such as dataset size,
cluster size and cluster speed, but thresholds around 95% showed the best and also very
similar (hence robust) performance results in our experiments. This is due to the generally
high selectivity of most real-world theta-join queries and the fact that all workers choose
their strategies independently.

Whenever a worker finishes a partition-join, it sends the results to the leader node and
fetches the next partition-join from the work queue. After completing all partition-joins, the
current node-join is completed and the follower pulls the next node-join from the leader’s
execution plan. Once all node-joins are done, the execution plan actor reports the final result
to the query issuing client and closes the join session.
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6 Evaluation

We now evaluate A>DB’s theta-join performance against the theta-join performance of three
state-of-the-art data query engines: PostgreSQOL as a modern representative for a single
machine (non-distributed) DBMS, Amazon Redshift as a distributed and highly scalable
relational DBMS, and Apache SparkSQL as a distributed batch-processing system with
theta-join capabilities. For the experiments, we configured these systems as follows:

AZDB runs on a 12 node cluster, where each node has an Intel Xeon E5-2630 v4 CPU (20
threads), 32 GiB RAM and 1 GiBit/s Ethernet. The nodes run Ubuntu 18.04.4 and Java 1.8
with G1 garbage collector. A>’DB uses a maximum partition size of 5,000 tuples for datatses
smaller than 500,000 tuples and a maximum partition size of 10,000 tuples, otherwise. In
this way, each node hosts at least one maxed out partition in all evaluations.

PostgreSQL version 10.12 uses one of the nodes described above, but with 64 GiB RAM.
We optimized the default configuration of PostgreSQL to achieve a better performance for an-
alytical workloads as suggested in the official documentation®: We set the shared_buffers
to 25% of the system’s main memory, which is 16 GiB. The work_mem is increased to
512 MB, to not exhaust the memory but still provide enough memory for executing queries
mainly in memory. We also increased the temp_buffers to 512 MB.

Apache SparkSQL version 2.4.4. uses the same cluster than A’DB. The driver program
is written in scala version 2.12 and uses the Hadoop distributed file system as storage
technology for the datasets and the query results.

Amazon Redshift needs to be hosted on different hardware in the AWS cloud. Its cluster
consists of 12 dc2.large nodes and runs Redshift version 1.0.17498. Each node is an EC2
cloud computing resource with an Intel E5-2686 v4 CPU (two threads), 15 GiB RAM,
and 160 GiB NVMe SSDs. To run only one query at a time, we changed the query queue
configuration to prohibit concurrent query execution and use all available memory.

Because the hardware for Redshift differs, we define the following rules for comparing the
query times of the four systems: A’DB is truly better than PostgreSQL only if it is at least
11 times faster than PostgreSQL (because it has 11 times more nodes); A>DB is better than
Redshift only if it is at least 10 times faster (because it has 10 times more threads) and
A’DB is clearly slower if Redshift is faster despite its disadvantage — otherwise, we cannot
specify which query processing time is better as we do not know Redshift’s scalabilty with
the number of local threads (note that Redshift is also highly optimized and specifically
tuned for being executed on AWS hardware); A>DB and SparkSQL are directly comparable.

For our experiments, we use synthetic and real-world datasets, which are differently sized
subsets of four base recordsets (see Table 1): The synthetic TPC-H benchmark dataset, the
employee compensation dataset DataSF of San Francisco, the US Bureau of Transportation

9 https://www.postgresql.org/docs/10/runtime-config-resource.html (08-August-2020)
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dataset Flight, and the extended edited synoptic Cloud reports dataset. For the purpose of
identifying single rows, we extended all datasets with an additional surrogate key, which is
a dedicated, monotonic increasing integer id column. We cut down the Cloud dataset to five
million records, because all systems struggled with its entire size.

Dataset # Rows # Columns Size on disk ~ Domain Real-World
TPC-H 6,001,215 25 1,639 MB  Order Management X
DataSF 968,373 22 197 MB Public Administration v
Flight 7,268,232 15 701 MB  Flight Control v
Cloud 384,584,555 28 521 MB Weather v

Tab. 1: Recordsets used for dataset creation

Our theta-join workload consists of 12 manually crafted theta-join queries. None of the
queries contains equality predicates (=). Hence, common join algorithms and optimizations
do not apply for any of them. Instead, all predicates are based on <, <, #, >, >. The number
of predicates in the queries varies between 2 and 13: TPC-H (5,2), DataSF (2,4,3), Flight
(3,4,5,4), and Cloud (5,13,4). We always execute each query with two warm-up executions
and report the arithmetic mean of the last five executions. A’DB’s theta-join algorithm, the
base recordsets and our theta-join SQL queries are available online©.

6.1 Equi-Join vs. Theta-Join

To demonstrate the remarkable performance gap between equi-join and theta-join executions,
our first experiment compares the performance of an equi-join with the performance of a
theta-join. To create the equi-joins for this comparison, we take the two TPC-H queries
from our theta-join workload and exchange all their non-equality operators with equality
operators. Table 2 shows the measured execution times on the TPC-H datatset.

Recordset Dataset Query Results ‘ PSQL<> SparkSQL Redshift* A2DB
Q1 0 ‘ 29345373 18,630,581 9,371,830
TPC-H orig. QI-Eq 6,366,031 25,616 8,998 332,475 158,315
Q2 30,980,486 T 24,839,845 31,970,932 440,435
Q2-Eq 833,567 12,942 5,774 4,483,270 64,198
F: Timeout after 24 hours *: 2 instead of 20 hyper-threads ¢: 1 instead of 11 nodes

Tab. 2: Query Execution time (in ms) comparison of Equi- vs. Theta-Join

The results show that the equi-joins perform orders of magnitude better than the theta-joins
on all systems. This is because the systems can use sophisticated equi-join algorithms, such
as (distributed) sort-merge joins, and, therefore, do not need to compare all tuple pairs. Note
that the performance gain for equi-joins is not necessarily tied to smaller results: Q1’s result
gets larger when being turned into an equi-join, while Q2’s result gets smaller, and in both
cases the equi-join is faster. Even though A’DB’s theta-join algorithm is not optimized for

10 https://hpi.de/naumann/s/a2db-theta-joins (30-November-2020)
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equality predicates, it also achieves considerably faster execution times for equi-joins. For
theta-join query Q2, A’DB is clearly more efficient than all state-of-the-art competitors.

6.2 Query Performance

For a broader performance comparison of A’DB and its competitors, we now measure the
query times for all 12 theta-join queries on different subsets of our evaluation datasets. The
results of this experiment are listed in Table 3.

The query times show that A>’DB significantly outperforms existing single-node DBMSs,
such as PostgreSQL, and distributed batch-processing systems, such as Apache Spark, in
processing highly selective theta-join queries. PostgreSQL in particular struggles to answer
many theta-join queries within 24 hours that A>DB can process in minutes. Considering
the setup differences for Redshift and AZDB, which is that Redshift has 10 times fewer
threads but also over-optimizes on its hardware, both systems compete quite well. As we
know that Redshift does not use join techniques, join operators or join plans optimized
for theta-joins, we can conclude that its technical optimizations can actually compete with
A’DB’s algorithmic optimizations. However, A’DB clearly outperforms Redshift on some
queries, such as TPC-H-Q2, Flight-Q1, and Flight-Q4, which are particularly selective.
A’DB’s selectivity calculations for the individual predicates comes at the expense of extra
processing time (e. g., Cloud-Q2), but the overhead is usually negligible w.r. t. the high and
quadratic tuple matching costs (e. g., TPC-H-Q2).

A’DB performs particularly well on TPC-H-Q2, Flight-Q1 and Flight-Q4, because it success-
fully identifies the most selective predicate, e. g., p_retailprice >=1_extendedprice
for TPC-H-Q2 with a selectivity factor of about 1%, and prunes the candidates accordingly.
On most other queries, such as SF-Q2, no single, super selective predicate exists and A2DB
needs to combine predicates for candidate pruning. With 13 predicates, query Cloud-Q?2 is
the largest query in the workload. Interestingly, neither PostgreSQL nor Redshift show a
significant performance difference on Cloud-Q2 compared to the other queries; A*DB is
more affected by this high number of predicates, because the join matrix calculations take
a larger share of the entire query processing time. In summary, A2DB performs best on
highly selective theta-join queries with possibly few predicates, which is exactly the kind of
theta-join query that we observe in most use cases.

6.3 Scaling Follower Nodes

To utilize all available resources for query answering, A2DB parallelizes and distributes
the theta-join processing across a cluster of compute nodes. We now evaluate A’DB’s
horizontal scalability by measuring the query execution time for both TPC-H queries on an
increasing number of follower nodes to evaluate the effectiveness of the distribution. The
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Dataset  Subset Query PostgreSQL<> SparkSQL Redshift* A’DB
100k TPC-H-Q1 2,392,800 +1.2% 87,587 +02.7% 4,770 +00.9% 4,497 +04.7%
TPC-H-Q2 2,107,905 +1.6% 79,581 +£32.5% 9,038 +07.8% 248 +15.7%

500k TPC-H-Q1 56,685,284 +0.0% 231,617 +03.8% 120,770 +01.4% 88,944 +00.7%

TPC-H TPC-H-Q2 54,921,837 +0.0% 402,951 +05.7% 221,565 +01.6% 3,461 +04.2%
M TPC-H-Q1 T 863,338 +02.4% 490,846 +00.8% 335,696 +00.9%
TPC-H-Q2 T 752,133 £04.0% 886,364 +00.1% 12,572 +00.6%

oricinal TPC-H-Q1 T 29,345,373 +00.0% 18,630,581 +00.0% 9,371,830 +00.6%

€ TPC-H-Q2 T 24,839,845 +00.0% 31,970,932 +00.0% 440,435 +00.8%

SF-Q1 19,745 +0.1% 10,814 +05.6% 381 +03.7% 374 +04.5%

100k SF-Q2 1,395,888 +4.3% 107,340 +01.5% 6,044 +00.3% 9,228 +07.2%

SF-Q3 1,374,122 +4.3% 101,629 +03.5% 4,710 +03.7% 6,861 +03.3%

SFData SF-Ql 509,051 +0.1% 24,232 +11.9% 8,343 +02.3% 4,962 +03.7%
500k SF-Q2 34,557,816 +0.7% 263,941 +03.5% 149,412 +00.0% 124,786 +05.4%

SF-Q3 32,563,594 +0.0% 257,551 £01.5% 110,397 +03.1% 99,494 +04.0%

SF-Q1 1,855,169 +0.1% 67,183 +10.7% 65,422 +21.6% 16,849 +01.5%

original SF-Q2 T 878,780 +02.8% 554,790 +01.1% 230,320 +65.6%

SF-Q3 T 836,345 +00.8% 413,278 +00.4% 316,181 +06.1%

Flight-Q1 1,191,327 +1.0% 120,986 +57.6% 73,647 +00.49% 280 +48.9%

100k Flight-Q2 1,304,863 +2.49% 132,064 +59.9% 73,395 +00.2% 4,844 +03.3%

Flight-Q3 1,088,810 +2.0% 152,851 +31.4% 36,106 +00.7% 675 +03.1%

Flight-Q4 1,327,722 +2.5% 155,010 +35.7% 74,711 +00.2% 226 +21.7%

Flight-Q1 29,650,984 +0.4% 1,043,191 +04.2% 126,333 +02.8% 1,329 +07.0%

500K Flight-Q2 16,834,932 +0.6% 1,231,222 +04.1% 129,090 +03.0% 91,106 +02.0%
Flight-Q3 17,578,355 +0.7% 301,850 +04.7% 72,648 +03.3% 11,569 +01.8%

Flight Flight-Q4 16,777,141 +0.6% 1,041,470 +15.6% 128,522 +02.9% 2,000 +05.0%
Flight-Q1 T 800,759 +03.5% 503,496 +00.6% 2,318 +05.6%

M Flight-Q2 67,258,984 +0.0% 925,637 +02.1% 516,183 +00.6% 347,167 +01.1%

Flight-Q3 74,540,859 +0.0% 870,808 +05.6% 295,086 +01.2% 50,471 +01.1%

Flight-Q4 66,986,894 +0.0% 855,871 +03.7% 514,542 +00.7% 8,802 +10.3%

Flight-Q1 T 38,000,013 +02.8% 27,037,084 +00.0% 224,395 +04.6%

original Flight-Q2 T 42,649,266 +00.0% 27,662,430 +00.0% 18,298,443 +00.6%

& Flight-Q3 T 40,199,029 +00.0% 15,917,689 +00.0% 2,556,697 +00.8%

Flight-Q4 T 39,766,269 +00.0% 28,007,283 +00.0% 433,267 +04.5%

Cloud-Q1 1,162,777 +0.0% 173,795 +32.0% 65,921 +02.3% 2,634 +10.9%

100k Cloud-Q2 1,142,804 +0.4% 223,127 +27.5% 67,101 +01.6% 3,987 +02.3%
Cloud-Q3 1,178,760 +0.0% 154,900 +39.3% 73,966 +24.5% 2,824 +03.4%

Cloud-Q1 17,881,648 +0.8% 365,068 +59.0% 115,802 +03.3% 48,062 +01.2%

500k  Cloud-Q2 20,666,685 +0.1% 356,302 +11.0% 125,579 +03.1% 57,959 +02.8%

Cloud Cloud-Q3 24,579,790 +0.3% 329,993 +06.0% 200,597 +31.5% 52,287 +01.3%
Cloud-Q1 73,539,017 +0.0% 940,311 +02.3% 460,299 +00.8% 177,332 +00.2%

M Cloud-Q2 84,057,122 +0.0% 1,115,216 +09.2% 497,687 +00.5% 224,698 +01.0%

Cloud-Q3 T 947,624 +03.7% 897,059 +35.2% 192,318 +00.2%

Cloud-Q1 T 19,298,715 +00.0% 12,129,946 +00.1% 3,985,490 +00.3%

M Cloud-Q2 T 23,178,835 +00.0% 11,521,068 +00.0% 5,519,018 +01.1%

Cloud-Q3 T 19,259,093 +00.0% 11,058,125 +04.7% 4,407,499 +00.1%

F: Timeout after 24 hours *: 2 instead of 20 hyper-threads : 1 instead of 11 nodes

Tab. 3: Average query execution times in ms (and maximum measurement deviations) over five
measurements for different subsets of all datasets; on average, the measurement deviations are 0.8% for
PostgreSQL, 11.4% for SparkSQL, 3.8% for Redshift and 4.0% for A2DB (if we exclude measurements
with sub-second duration). The best execution times are highlighted.
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minimal cluster configuration has one leader and one follower node; the largest tested cluster
has one leader and eleven follower nodes. We execute query TPC-H-QI (empty result)
on TPC-H 500k and query TPC-H-Q2 (relatively large result) on TPC-H IM. Figure 8
plots the query execution times in milliseconds and a reference line for ideal, i. e., linear
scalability. The measurements for both queries show that the proposed theta-join processing
scales linearly with the number of follower nodes; for this reason, we conclude that A2DB’s
workload distribution strategy works well. Furthermore, the higher communication costs for
larger cluster setups have no major impact on the overall performance, which underlines our
observation that A’DB’s theta-join processing is CPU bound.
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Fig. 8: TPC-H-Q1 on TPC-H 500k and TPC-H-Q2 on TPC-H IM with varying cluster sizes.

6.4 Work Stealing

As followers sometimes finish their work earlier than others, A2DB implements work
assisting (WA) and work stealing (WS) to keep all nodes well utilized. The next experiment
evaluates the effectiveness of the two strategies by comparing the query times with these
optimizations to the ones without them. The measurements in Table 4 show that the benefit
of balancing workload at the end of the join processing is 6—-10% query time reduction.
Hence, both strategies effectively accelerate the join processing; the lively redistribution of
work between the nodes at the end succeeded to keep all nodes busy.

Recordset ~ Dataset ~ Query  Without WA/WS ~ With WA/WS ‘ Difference

100Kk Ql 95,030 88,944 ‘ - 6,4%

TPC.H Q2 3,873 3,461 -10,6%
™ Q1 373,410 335,696 -10,1%

Q2 13,596 12,572 -7,5%

Tab. 4: Query runtimes on TPC-H with and without work assisting and work stealing.

6.5 Context-Specific Attribute Provisioning

To reduce the network overhead when fetching remote data, AZDB applies context-specific
attribute provisioning to send only required values. We now evaluate the effectiveness of
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this strategy by measuring the number of attribute values that are transferred and the number
of non-relevant attribute values that are filtered. Figure 9 visualizes these numbers for the
TPC-H and Flight queries. The measurements show that with context-specific attribute
provisioning, we save about 0% (TPC-H-Q1) to 27% (Fligh-Q1) values on network traffic.
Hence, the savings are dataset-specific, but can be quite substantial. Although not all queries
profit from the filtering, most queries in our workload filter at least 10% values in this way.
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Fig. 9: Amount of transferred (blue) and saved (red) attributes values for the TPC-H and Flight queries
with the context-specific attribute provisioning.

7 Summary

In this paper, we proposed a novel theta-join algorithm that accelerates the processing of
selective theta-join queries via predicate-based candidate pruning and reactive workload
distribution. Our experiments show that with these (and probably also further) optimizations,
theta-joins can be processed orders of magnitude faster than state-of-the-art join strategies
in modern data processing engines. In this way, we motivate a more careful optimization of
theta-joins beyond naive nested-loop joins in modern database management systems. The
selectivity-based predicate selection approach and the strategy-driven join technique can
also be used to extend existing theta-join algorithms, such as IE-Join [Kh15] or 1-Bucket-
Theta [Ok11], so that they can handle arbitrary many join predicates as well. Although such
combinations could lead to further improvements, their construction and evaluation is not
in the scope of this paper and we have to leave them to future work.
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