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Matching dependencies (MDs) are data profiling results that are often used for data integration, data cleaning,
and entity matching. They are a generalization of functional dependencies (FDs) matching similar rather than
same elements. As their discovery is very difficult, existing profiling algorithms find either only small subsets
of all MDs or their scope is limited to only small datasets.

We focus on the efficient discovery of all interesting MDs in real-world datasets. For this purpose, we
proposeHyMD, a novel MD discovery algorithm that finds all minimal, non-trivial MDs within given similarity
boundaries. The algorithm extracts the exact similarity thresholds for the individual MDs from the data instead
of using predefined similarity thresholds. For this reason, it is the first approach to solve the MD discovery
problem in an exact and truly complete way. If needed, the algorithm can, however, enforce certain properties
on the reported MDs, such as disjointness and minimum support, to focus the discovery on such results that
are actually required by downstream use cases. HyMD is technically a hybrid approach that combines the two
most popular dependency discovery strategies in related work: lattice traversal and inference from record
pairs. Despite the additional effort of finding exact similarity thresholds for all MD candidates, the algorithm
is still able to efficiently process large datasets, e.g., datasets larger than 3GB.
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1 MATCHING DEPENDENCIES
Functional dependencies (FDs) describe how columns in relational datasets depend on sets of other
columns. Formally, an FD X → Y on a schema R with instance r states that whenever two records
in r share the same values for the set of attributes X ⊆ R, they also agree in their Y ⊆ R values.
FDs are popular for supporting various data management tasks, such as query optimization [29],
data integration [24], or schema normalization [7], but their reliance on value equality makes them
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sensitive to data quality issues. For this reason, various derivations of FDs exist that relax different
properties, such as similarity or extent [5].

Matching dependencies (MDs) [10] relax the equality constraint for the attributes. In other words,
MDs generalize FDs by requiring pairs of records to be similar w.r.t. some similarity metric in the
left- and right-hand side column values instead of being strictly equal. This relaxation allows MDs
to tolerate data errors and express certain kinds of fuzzy dependencies. Consider, as an example,
the dataset in Table 1, which violates the functional dependency animal→ diet, due to a typo in
the diet value “mead”. This error prevents the FD to be discovered. Another error – the misspelling
of “bear” as “beer” – is ignored by the FD animal → diet, i.e., the FD would hold despite this
error. This data quality issue silently prevents the FD from matching the bears Baloo and Pooh.
The MD animal0.75 → diet0.75, however, holds in the example dataset and can be automatically
discovered. It specifies that whenever two records are at least 75% similar in their animal attribute
(according to some similarity measure), they are also at least 75% similar in their diet attribute.
In this way, the MD captures both errors: The animal relaxation matches “bear” ≈ “beer” and the
diet relaxation matches “meat” ≈ “mead”. Because the MD is not an FD, we can conclude that the
data might be erroneous and the 75% thresholds would point us to the erroneous values.

name zoo animal diet

Simba berlin lion meat
Clarence london lion mead
Baloo berlin bear fish
Pooh london beer fish

Table 1. Animals and their diet in different zoos.

The error tolerance and expressiveness of matching dependencies make these rules important
for a variety of use cases. Most are centered around potentially dirty and erroneous data, such
as the dataset shown in Table 1. The MDs of such a dataset are used to reveal both data errors
and functional dependencies that hide behind these errors. MDs are, however, also considered
on clean datasets to express more complex relationships, such as distance0.9 → gas0.8, which
says that travel distances of about the same length consume about the same amount of gas. The
relationship between distance and gas is not exact, i.e., it is not a functional dependency, because
it depends, inter alia, on the type of car, the weather, the route and the driving behavior. A matching
dependency, however, can capture it accurately.

The expressiveness of MDs also marks an important difference between matching dependencies
and other popular relaxations of functional dependencies, such as conditional and approximate
FDs: For conditional FDs, the FD violating tuples need to obey some (more or less informative)
condition and, for approximate FDs, they can be arbitrary different; for MDs, though, the FD
violating tuples need to be similar w.r.t. some specific similarity metric. This similarity is a strong
assertion that increases the probability that the found dependencies are actually true FDs. The
error of approximate FDs and the conditions of conditional FDs provide the same support but for
different kinds of errors. Hence, the approaches complement one another in, for example, data
cleaning use cases.
Because MDs subsume FDs, they can serve every use case that actually requires functional

dependencies. If the data in Table 1 were clean, we would find animal1.0 → diet1.0, which is an
FD, and could use it for, e.g., schema normalization [28] or query optimization [29]. As illustrated
before with the MD distance0.9 → gas0.8, matching dependencies can also be utilized for data
exploration. Most use cases for MDs, however, target data cleaning [13] scenarios. With our
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example MD animal0.75 → diet0.75, for instance, we can identify and then resolve the matching
values “bear” ≈ “beer” and “meat” ≈ “mead”. Another popular data cleaning task that can utilize
matching dependencies is the detection of duplicate entries in a dataset (see Section 6.5). Record
matching [2, 12] and entity resolution [1, 35] are similar tasks that can utilize MD rules to match
records within and across datasets. Assume, for example, that Table 1 is given in two versions
and that name0.95, animal0.9 → zoo1.0, diet1.0 holds across these two versions. We could then
merge the records in these two versions by similar name and animal attributes. More complex data
integration scenarios exploit the fact that MDs can – as we show in Section 3 – match records
with different schemata [10]. Matching dependencies have also been used in the area of fraud
detection [10, 12] and integrity checking [15, 16], where the MDs represent data verification rules.

All these use cases assume the MDs of a certain dataset to be given. Because this is, in practice,
not the case, data engineers and scientists need to be able to discover them. To avoid the difficult
and usually imprecise manual search for MDs, automatic discovery algorithms have been proposed.
Finding an efficient MD discovery algorithm is challenging, though, because MDs subsume FDs
and FD discovery has already been proven to be NP-hard. If we assume that every attribute can
take on n different similarity thresholds, then there are nk many similarity threshold combinations
for an MD with k attributes. So MD discovery is nk times harder than FD discovery (if k is the
average attribute length of all MD candidates). For this reason, existing MD profiling algorithms
test only a few similarity thresholds, i.e., small n, and still cannot solve the discovery problem for
large datasets.

Choosing the n thresholds is challenging not only for performance but also for precision. Assume
we had chosen the thresholds 0.25, 0.5, 0.75, and 1.0. Then, instead of distance0.9 → gas0.8,
which is the precise MD, we might have found distance1.0 → gas0.75 or distance0.75 → gas0.75,
because the tightest threshold is never tested. Such inaccuracies impact all use cases that we
discussed before, i.e., data exploration, cleaning, matching, and verification – most of them lose
recall. In general, the n thresholds cannot be defined globally for all attributes, because every
attribute needs its own thresholds. Still, this is what all state-of-the-art MD discovery algorithms
do. Instead, the exact thresholds of one attribute should be found in the set of similarities that is to
be calculated by pair-wise comparing all values of one attribute.
These observations lead to the following research questions for exact MD discovery: (1) How

can we capture truly all MD candidates in a systematically enumerable way? (2) Which pruning
strategies can we use to effectively reduce the potentially huge candidate spaces and result sets?
(3) How can we efficiently validate MD candidates that incorporate complex similarity calculations?
(4) How can we, in order to deal with the complexity of the discovery problem, apply hybrid search,
being the currently most effective dependency discovery strategy?
In this paper, we answer these research questions with a novel MD discovery algorithm called

HyMD, which automatically discovers all minimal, non-trivial MDs in large datasets. The algorithm
infers the precise similarity thresholds from the data to find exact MDs – something that no other
MD discovery algorithm achieves. This exact and much more difficult search is possible, because
HyMD implements a highly efficient, hybrid discovery strategy that uses two complementary
discovery algorithms. Because the result sets might become extremely large due to the exact search,
the algorithm can be configured to search only within given similarity boundaries. We believe that,
in the context of most use cases, specifying a range of similarities, such as 0.7 to 1.0, is not only
more appropriate than specifying concrete similarity thresholds, it is also easier for the user. We
also propose additional interestingness criteria to further focus the discovery on relevant MDs.
In detail, we first give an overview of related work in Section 2 and then make the following
contributions:
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(1) Search space model. We use the triviality and minimality properties of MDs to define a partial
order. With this order, we can structure the search space as a novel, complete MD candidate lattice
that serves as a candidate traversal, storage, and pruning vehicle when used for MD discovery
(Section 3.3).
(2) Interestingness criteria. We define five basic interestingness criteria for MDs and pruning rules
based on these criteria. These rules serve to focus the discovery on relevant MDs and to control the
number of discovered MDs. They also improve the performance of our profiling algorithm and can
be turned off if, for some reason, all technically valid MDs should be reported (Section 3.4).
(3) Discovery strategies. We adapt the two most popular dependency discovery strategies, i.e., lattice
traversal and inference from record pairs to the discovery of MDs. This is a challenge, because MDs
are more complex than, for example, functional dependencies or unique column combination: They
require similarity calculations, alternative index structures for validation, and different candidate
generation and pruning approaches (Section 4).
(4) Hybrid discovery. We propose HyMD, an efficient and scalable algorithm that automatically
discovers MDs within one or two relations.HyMD uses our novel search space model, pruning rules,
and the two discovery strategies in a hybrid combination. While hybrid dependency discovery is a
known technique, applying it to MDs discovery requires additional considerations when integrating
record comparison results into the lattice data structure. Our hybrid algorithm also introduces a
novel candidate validation technique for MDs and optimizes the search space traversal to maximize
the impact of parallelization for candidate validations (Section 5).
(5) Evaluation. We provide detailed experiments and an in-depth analysis of HyMD’s performance
including a comparative evaluation and an evaluation of different discovery strategies. The mea-
surements show that HyMD scales with the size of the input data and the size of the search space;
it can, in particular, compute datasets of more than 3 GB size. We also exemplify the usefulness of
the discovered MDs for duplicate detection applications (Section 6).

2 RELATEDWORK
Matching dependencies were introduced by Fan [10]. The proposal to extract the decision boundary
assignments from a given relational dataset was then made by Song and Chen [33]. In this work,
we use a similar notation for our MDs and the same theoretical foundations. Song and Chen also
proposed an approach for the automatic discovery of MDs in [33] and an improved version later
in [34]. These approaches are technically restricted to only small MDs with few Lhs columnmatches,
because their naive search approach supports no minimality pruning and, hence, generates a huge
number of candidates. They therefore discover only a subset of the MDs that we discover. Our
discovery algorithm does adopt the support pruning strategy proposed in [34], but it also adds a
more effective candidate validation approach, a more systematic candidate generation technique,
and minimality pruning rules. In addition to normal MDs, Song and Chen also seek to discover
partial MDs, which let their algorithm discover very different MDs than our approach.

The works [12] and [11] use MDs for reasoning about key candidates and also propose rules that
enable the inference of MDs from a small set of given MDs. With our lattice search space model,
we follow an alternative, more systematic and complete candidate inference strategy.

Wang et al. recently introduced conditional matching dependencies (cMDs) as a combination of
MDs and conditional FDs [38]. A cMD leverages the advantages of both relaxation dimensions,
value similarity and extent. The authors provide a discovery algorithm that finds all such cMDs
that have an identifying attribute on the Rhs, because the discovery is particularly tailored to the
use case of entity matching. This special focus and the fact that decision boundaries are fixed rather
than retrieved from the data reduces the search space significantly. On the other hand, introducing
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an extent relaxation and conditions increases the complexity of the discovery task, so that their
results and performance properties are not comparable to ours. For more details about relaxation
dimensions, we refer to [5]. The algorithm of Wang et al. is also from a technical perspective hardly
comparable to our approach: It uses a search strategy, pruning rules, and inference techniques
that are specialized on cMD discovery and it is not clear how these approaches would work for
non-conditional MDs with arbitrary Rhs attributes.
Because MDs are often used for entity matching, all rule-based entity matching systems that

automatically mine their matching rules can be considered as related work. The work of Wang
et al. [37], for example, addresses the problem of finding good similarity functions and similarity
thresholds for simple conjunctive matching rules. Singh et al. go one step further and propose
a new formalism, i.e., the General Boolean Formula (GBF) to describe entity matching rules [32].
Both of these approaches and all other automatic entity matching systems learn their matching
rules from pre-labeled training data, which are sets of positive and negative matches. Our MD
discovery algorithm also “learns” similarities from the data, but it uses the concept of attribute
dependence to identify attribute matches and thresholds – it does not require pre-labeled training
data. Matching dependency discovery is, therefore, a more general approach, whose discovered
rules can also be used for purposes other than entity matching (e.g., error correction or integrity
checking). The cost for being independent of training data is that with MDs we can find only such
matching rules that have a dependent target column. General conjunctive matching rules and, in
particular, extended rule formalisms, such as GBF and cMDs, can solve entity matching tasks more
accurately, if training data are available. Overall, the mining of matching rules with a gold standard
of matches is very different from general matching dependency discovery.

FDs are arguably the most popular data dependencies. Their discovery has, for this reason, gained
a lot of attention in data profiling research. Because FDs are a specialization of MDs, many FD
discovery strategies are – with the appropriate adaptations – also applicable to MD discovery.
The algorithm Tane [18], for instance, proposes a lattice traversal technique that scales well with
the number of records in a dataset, and the algorithm Fdep [14] infers dependencies from pair-
wise record comparisons, which scales well with the number of attributes in the data. These two
dependency discovery techniques in combination yield a powerful and robust profiling approach,
as shown by the HyFD algorithm in [27]. In HyMD, we propose the same combination of lattice
traversal and inference from record pairs strategies for the more complex task of MD discovery.

3 FOUNDATIONS
In this section, we formally define matching dependencies and introduce the foundations necessary
for MD discovery. We discuss triviality and minimality properties of MDs, define a partial order on
MDs to structure the search space, and introduce different notions of interestingness that reduce
the solution size to MDs with special properties.

We use the abstract relational instance shown in Table 2 as a running example. The relation has
three columns and four rows (id is considered as an implicit column). To discover all MDs in this
relational instance, we use three column matches, i.e., each column is mapped to itself, with some
column-specific, but for this example irrelevant similarity measures. All pair-wise similarities are
listed in Table 3. In this work, we distinguish three main concepts: record identifiers (1, 2, 3, 4),
column values (ai , bi , ci ) and similarities (0.0, 0.5, 0.7, 0.8, 1.0). The color coding should help to
follow the concepts visually through the different figures.

3.1 Matching Dependencies
The core feature of matching dependencies, separating them from functional dependencies, is
their ability to classify values as similar or dissimilar. Two values are classified as similar using a
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id A B C

1 a1 b1 c1
2 a2 b2 c2
3 a3 b2 c3
4 a4 b3 c2

Table 2. Example relation

records A B C

(1,2) 0.0 0.8 0.0
(1,3) 1.0 0.8 0.5
(1,4) 1.0 0.0 0.0
(2,3) 0.7 1.0 1.0
(2,4) 0.7 0.0 1.0
(3,4) 0.7 0.0 1.0
Table 3. Similarity table

similarity measure and a decision boundary. A similarity measure ≈ is a function that determines
the similarity of two values on a scale from 0.0 to 1.0, where 1.0 indicates maximum similarity
(equality) and 0.0 maximal dissimilarity. Well-known similarity measures include Levenshtein [22],
Jaccard [21], and Monge-Elkan [25]. Since many further similarity measures exist, we refer to the
survey in [9]. A decision boundary λ (or ρ) decides for two values if they are similar or dissimilar:
Similarities greater than or equal to λ are considered similar and lower similarities are considered
dissimilar; hence, λ = 0.0 classifies any two values as similar. The decision boundaries of an MD
are often referred to as the MD’s thresholds. A similarity measure with a decision boundary forms a
so-called similarity classifier.
Besides introducing a notion of similarity for the record comparisons, MDs also extend the

definition of FDs to two relations: Given two (potentially same) relations R and S and a set of
similarity measures ≈, an MD states a dependency on a set of column matches C = {C1,C2, . . . ,Cm}

over R and S , where Ci = (Ai ,Bi ,≈i ) ∈ R × S × ≈. The set of column matches C usually defines
a one-to-one mapping of attributes in R to attributes in S , based on a given schema mapping
(or identity if R = S). MDs can, however, by definition match same column pairs multiple times
with different similarity measures or not match certain columns at all. The MD discovery could,
therefore, be started with all possible column matches, i.e., C = R × S × ≈, and by letting the
discovery algorithm find the appropriate ones automatically. While this might be useful for data
integration and schema matching use cases, the large number of possible combinations affects the
discovery performance significantly. Therefore, we define C as a domain-dependent subset of all
possible column matches, i.e., C ⊂ R × S × ≈, and expose it as an input parameter of the discovery
process. If r = s , C usually maps all columns to themselves; if r , s , schema matching techniques
can create the column matches inC [30]. Usually, the domain of a column match naturally suggests
a similarity function, such as edit distance for strings, token distance for text, numeric distance
for numbers, temporal distance for times, calendrical distance for dates, or Euclidean distance for
coordinates. If the similarity function for some column match is not obvious, we define multiple
column matches, one for each possible similarity function.

The two concepts, similarity classifier and columnmatches, lead to the following formal definition
of MDs:

Definition 1. Given a set of column matches C ⊆ R × S × ≈ over relations R and S and similarity

measures ≈, where Ci = (Ai ,Bi ,≈i ). Then, an MD φ is defined as(
m∧
i=1

R[Ai ] ≈i ,λi S[Bi ]

)
→ R[Aj ] ≈j ,ρ j S[Bj ]

The left-hand side (Lhs) is a conjunction ofm column similarity classifiers. Each column similarity

classifier is represented as a column match Ci with a specific decision boundary λi ∈ [0.0, 1.0]. The
set of Lhs decision boundaries is denoted as λ = {λ1, λ2, . . . , λm}. The right-hand side (Rhs) is a
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single column similarity classifier for some j ∈ [1,m]. It consists of a column match Cj with similarity

measure ≈j and a decision boundary ρ j ∈ [0.0, 1.0].

Given two relational instances r ⊨ R and s ⊨ S , a pair of records (rk , sl ) ∈ r × s matches the Lhs
X of an MD iff these records are classified as similar for each column match given an assignment λ.
More formally, this is expressed as

(rk , sl ) ⊨ X ≡
m∧
i=1
(rk [Ai ] ≈i sl [Bi ]) ≥ λi

Similarly, a pair of records (rk , sl ) ∈ r × s matches the Rhs Y of an MD iff these records are
classified as similar for each column match given an assignment ρ, or formally

(rk , sl ) ⊨ Y ≡
(
rk [Aj ] ≈j sl [Bj ]

)
≥ ρ j

So an MD φ holds for two instances r ⊨ R and s ⊨ S iff
∀(rk , sl ) ∈ (r × s) : (rk , sl ) ⊨ X → (rk , sl ) ⊨ Y

According to this definition, every MD holds all possible column matches C on its Lhs, i.e., the
Lhs always has a size of |C | =m. Only those Ci ∈ C with λi > 0.0 are, however, relevant for the
MD, because they can classify two records as dissimilar and, therefore, actually narrow the scope
of the MD; a column match Ci ∈ C with λi = 0.0 matches any two values and is, consequently,
irrelevant for the MD’s validity. For this reason, we omit each λi = 0.0 in our MD specifications
and list only those Lhs column matches with λi > 0.0.

Because an MD φ is fully characterized by λ and ρ j given the column matches C , we sometimes
denote an MD as φ(λ, ρ j ). In Section 1, we also used the illustrative short notation that omits the
similarity function and, if attributes are matches to themselves, shows only one attribute. For
instance, we wrote animal0.75 → diet0.75, which means that if the similarity of two records in the
column match represented by animal is greater than or equal to 0.75, the similarity in the columns
of diet is at least 0.75. Note that MDs have – just like FDs – multiple Lhs column matches but
only one Rhs column match. We can, nevertheless, group MDs with identical Lhs column matches
as φ(λ, ρ), because they match the same record pairs. In illustrative short notation, this grouping
looks like name0.93 → zoo1.0, animal0.61 (Table 1) or C0.5 → A0.7,B0.0 (Table 2).

The goal of MD discovery is to find all φ(λ, ρ j ) or, in other words, to find all valid assignments for
λ and the related ρ j . The possible decision boundaries for the Lhs column matches are to be derived
from the data, which means that any existing similarity between two attribute values defines one
λi ∈ λ. Because the decision boundaries are derived from the data, we call them natural decision

boundaries. For each set of λ assignments, the corresponding maximum Rhs decision boundary ρ j ,
with which the MD still holds, then corresponds to the minimal similarity of matching records in
their Rhs attributes. In other words, all records that match on their Lhs due to λ must also match on
their Rhs so that we need to set ρ j as low as the lowest similarity of matching records on that side
to form a correct MD. To illustrate this with an example, consider the MD A0.7B0.8 → C0.5, which
is true for our example Table 2. The Lhs matches the record pairs (1,3) and (2,3), whose minimum
similarity in attribute C is 0.5. Hence, ρ j = 0.5 is the decision boundary for the Rhs attribute C . A
higher value for ρ j would make the MD invalid. Also, a lower λ value for either A or B would make
the MD match additional record pairs that also invalidate the MD. For this reason, A0.7B0.8 → C0.5
is exactly the most specific MD supported by the data and, therefore, to be discovered.
The number of candidate MDs that a discovery algorithm needs to consider is extremely large:

Let there bem column matches and ti possible decision boundaries for each column matchCi . Then
there are

∏m
i=1 ti possible Lhss (= λ assignments) that can be generated. This number is exponential

in both the number of column matches and possible decision boundaries. In addition, the Rhs can

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.



1:8 Philipp Schirmer, Thorsten Papenbrock, Ioannis Koumarelas, and Felix Naumann

have tj different assignments for each ρ j Rhs column match Cj . Therefore, the number of possible
MDs is

∑m
j=1

(
tj ·

∏m
i=1 ti

)
. Since the number of decision boundaries ti depends on the number of

rows in both r and s (natural decision boundaries), there are up to |r | · |s | possible ti to be tested.
With minimality pruning rules, we can control the search complexity a bit, but it remains NP-hard
– much harder, in particular, than FD discovery, where ti ∈ {0, 1} and |C | = |R |.

All existing approaches for the discovery of matching dependencies including [34] and [38]
use pre-defined decision boundaries, which fixes the number t to a constant. Although this lim-
itation reduces the complexity of the MD discovery significantly, it also makes it impossible for
the algorithms to discover all MDs. For example, animal0.75 → diet0.75 is an exact MD in our
introductory example (see Table 1). With fixed decision boundaries, let’s say 0.0, 0.2, 0.4, 0.6, 0.8, and
1.0, we would not find this MD but animal0.6 → diet0.6 instead. This MD is less accurate, because
both thresholds could be set 15% higher without violating the dependency. Depending on how
fine-grained the thresholds are chosen, the discovered MDs are more or less accurate. By deriving
the thresholds from the data, the discovery always finds the exact dependencies and, therefore, all
dependencies. In the following section, Section 3.2, we discuss how any true MD can be derived
from a complete set of MDs discovered with automatically derived thresholds.

3.2 Trivial and minimal MDs
Given an assignment λ for the Lhs decision boundaries, then all record pairs matching this Lhs
have a similarity of at least λi in the respective column match Ci . Any MD with Rhs decision
boundary ρ j ≤ λj must, hence, be true regardless of the given data, i.e., we can simply generate all
such trivial MDs without even inspecting the data:

Definition 2. An MD φ(λ, ρ j ) is trivial iff λj ≥ ρ j .

This definition generalizes the definition of trivial FDs, which states that an FD is trivial if
Rhs ⊆ Lhs: If an attribute with index j is present on both sides of an FD, both ρ j and λj are 1.0,
which also makes the FD trivial according to Definition 2. If an attribute j is part of only the Rhs,
then the respective λj is 0.0 and the FD is non-trivial.
All MDs with a Rhs decision boundary of 0.0 are by definition trivial. MDs with a non-zero

Lhs decision boundary for the Rhs column match are, however, not necessarily trivial. The MD
A0.5B0.6 → A0.6, for instance, is non-trivial, because its Rhs decision boundary for attribute A is
stricter than the Lhs decision boundary for A: A-values may match on the Lhs but not on the Rhs.
Further examples for trivial and non-trivial MDs are shown in Table 4. An MD φ(λ, ρ j ) is disjoint iff
λj = 0.0. Hence, all MDs in Table 4 are non-disjoint. Any disjoint MD with ρ j , 0.0 is non-trivial.

trivial non-trivial
A0.5 → A0.5 A0.5 → A0.6
A0.5 → A0.4

A0.5B0.6 → A0.5 A0.5B0.6 → A0.6
A0.5B0.6 → A0.4

Table 4. Examples for trivial and non-trivial MDs

The number of possible MDs in a relational dataset grows exponentially with the number of
rows and columns. The MDs are, however, not independent of one another, i.e., we can infer valid
MDs from already discovered MDs (minimality pruning). Hence, we now define a partial order for
MDs in such a way that valid MDs also determine all their successor MDs as valid. We start by
ordering all possible Lhss. Each set of Lhs decision boundaries is matched by a set of record pairs.
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Increasing any of these decision boundaries also increases the selectivity of the respective classifier
so that it matches only a subset of the previously matched record pairs. We say that λ subsumes λ′

iff
λ ⪯ λ′ ≡ ∀i ∈ [1,m] : λi ≤ λ′i

In other words, λ is a generalization of λ′, and λ′ is a specialization of λ. Given that φ(λ, ρ j ) is a
valid MD, we know that any other MD φ ′(λ′, ρ ′j ) with λ ⪯ λ′ matches a subset of the record pairs
matched by φ. If for φ(λ, ρ j ) and φ ′(λ′, ρ ′j ) also ρ ′j ≤ ρ j is true, the MD φ ′ needs to be valid as well,
because ρ ′j matches at least the same values as ρ j and can, therefore, not introduce new violating
value pairs on the Rhs. We say that an MD φ subsumes another MD φ ′ iff

φ(λ, ρ j ) ⪯ φ[′(λ′, ρ ′j )] ≡ λ ⪯ λ′ ∧ ρ j ≥ ρ ′j

Again,φ is a generalization ofφ ′, andφ ′ is a specialization ofφ. If anMDholds, all of its specializations
hold as well and we can easily infer them. The subsumption relationship defines a partial order on
the set of all MDs Φ.

Below are three examples for valid subsumption relationships. Intuitively, raising an Lhs decision
bounary λi (1)(2) or reducing an Rhs decision boundary ρ j (3) generates valid MDs from existing
MDs; any other decision boundary manipulation generates incomparable MD candidates.

A0.5 → C0.6 ⪯ A0.6 → C0.6 (1)
A0.5 → C0.6 ⪯ A0.5B0.1 → C0.6 (2)
A0.5 → C0.6 ⪯ A0.5 → C0.5 (3)

Because many MDs can be inferred from others, we can restrict the discovery to only those MDs
that cannot be inferred. We call such MDs minimal.

Definition 3. A matching dependency φ ∈ Φ is minimal iff ∄φ ′ ∈ Φ : φ ′ , φ ∧ φ ′ ⪯ φ.

This definition is a generalization of the definition of minimal FDs. Like in FD discovery, the
set of minimal dependencies is much smaller than the set of all dependencies and still defines the
complete set of dependencies. Our discovery approach, therefore, discovers only minimal MDs.

3.3 Lattice
The partial order of MDs defined above describes a power set lattice of column classifiers, i.e.,
column matches and their decision boundaries. More precisely, it describes one power set lattice
for every possible Rhs column match, because MDs with different Rhs column matches are inde-
pendent. Similar to the discovery of other types of dependencies, the lattice serves as a structure to
systematically traverse the search space of all possible MD candidates.

The lattice for any Rhs column match Cj starts with the root MD ∅ → Cj ,1.0. Here, ∅ represents
the decision boundary assignment λ with λi = 0.0 for all i , i.e., all decision boundaries are set
to 0.0, and Cj ,1.0 is the lattice specific Rhs column match Cj with maximum decision boundary
ρ j = 1.0. To generate a direct successor of this (or any other) lattice node, we either increase one λi
or decrease ρ j .
To increase or decrease a decision boundary, we use the natural decision boundaries of the

respective column match, i.e., the sorted list of value similarities that are actually present in
the respective column match. This guarantees that only potentially minimal MD candidates are
generated. The similarity table in Table 3 lists these natural decision boundaries for every attribute
of our example relation.

For our running example, Figure 1 depicts the full power set lattice of MD candidates for the Rhs
column matchC (note that there is another such lattice forA and B). Every column match generates
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one dimension and the length of each dimension is determined by the number of possible decision
boundaries. The arrows denote direct specialization relationships, i.e., they change only one decision
boundary by one natural step. We omitted all trivial and non-disjoint MDs for simplicity; these
MDs are, nevertheless, usually part of the lattice. Figure 1 also presents a consistent classification
of all MD candidates: The valid MDs are at the top, whereas the invalid MDs are below. The only
two minimal MDs for the Rhs column match C , B1.0 → C1.0 and A0.7B0.8 → C0.5, are highlighted
in the middle. Since minimal MDs are never preceded by a valid MD, we can traverse the lattice
from root to top, prune all specializations of valid MDs, and, in this way, discover all minimal MDs.

∅ → C0.5 A0.7 → C0.5 A1.0 → C0.5

∅ → C1.0 A0.7 → C1.0 A1.0 → C1.0

B0.8 → C0.5 A0.7B0.8 → C0.5 A1.0B0.8 → C0.5

B0.8 → C1.0 A0.7B0.8 → C1.0 A1.0B0.8 → C1.0

B1.0 → C0.5 A0.7B1.0 → C0.5 A1.0B1.0 → C0.5

B1.0 → C1.0 A0.7B1.0 → C1.0 A1.0B1.0 → C1.0

Fig. 1. The search space lattice for Rhs column match C w.r.t. the example relation shown in Table 2 and its

three column matchesA, B, andC . Solid and dashed arrows indicate Lhs and Rhs specializations, respectively.

Although two MDs from different lattices, i.e., with different Rhss, are order-wise unrelated,
they might have identical Lhss and match the same record pairs. Our algorithm leverages this fact
by calculating each Lhs only once.
We define the depth of an MD candidate as the length of the shortest path from the root to the

MD. Steps in the Rhs dimension do not add to the length of a path so that all MDs with identical
Lhs have the same depth. The MD A0.7B0.8 → C0.5, for instance, has a depth of two. All nodes
with different Lhs but same depth are independent of each other, i.e., they neither generalize nor
specialize one another. We later use this observation to parallelize discovery.

3.4 Interestingness
Although we aim to discover only minimal, non-trivial matching dependencies, the result sets are
often unreasonably large, because every combination of Lhs and Rhs attributes forms valid MDs
for some decision boundary assignments. Not all of these MDs are, however, actually interesting. We
propose different criteria for interestingness that can be used to prune (or prioritize) certain MDs.
All proposed pruning strategies are optional so that our algorithm can, technically, still discover
all MDs. Section 6 shows the effects, i.e., result size and runtime reduction, of using the pruning
strategies.
Cardinality. The cardinality |φ | of an MD φ(λ, ρ j ) is the number of non-zero Lhs decision bound-
aries: |φ | := |{λi |λi ∈ λ∧λi , 0.0}|. MDs with low cardinality are statistically more likely to be true
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and also easier to understand. Consider, for example, the two MDs φ1 : animal0.75 → diet0.75 and
φ2 : name0.6 zoo0.5 habitat0.4 weight0.95 → diet0.6. The MD φ2 is clearly harder to understand
than the MD φ1, because it correlates five instead of only two attributes. The long MD φ2 is also
semantically weaker, because it takes four diet-unrelated attributes to draw a dependency with
diet. Works like [27], therefore, successively prune large, i.e., high-level dependencies during
dependency discovery if memory is exhausted. For MD discovery, we propose the same dynamic
pruning behavior: If the entire result is not computable, which is when it does not fit into memory,
then cardinality pruning starts successively discarding candidates on the highest lattice-levels
until the available memory allows the discovery to continue. Cardinality pruning is therefore
a last resort strategy. However, if a certain use case requires only MDs of a certain size, e.g. if
a data cleaning framework can parse only rules with at most 10 predicates, then we can also
give an initial maximum cardinality as a parameter. In our experiments, we do not specify any
maximum cardinality and, since the algorithm did not exhaust the available memory, this pruning
was effectively never used.
Support. We define the support σ of an MD φ(λ, ρ j ) as the number of record pairs that match the
MD’s Lhs: σ (φ) := |{(rk , sl )|(rk , sl ) ∈ r × s ∧ (rk , sl ) ⊨ φ}|. If r = s , the support of each MD is at
least |r |, because every record matches itself; if r , s , the support of a valid MD may be 0. Such
MDs have basically no support in the data and cannot be considered interesting. Even MDs with
only a few record pairs support are doubtfully interesting. The MD φ1 : animal0.75 → diet0.75, for
instance, has a support of six record pairs (four self-matches, and (r1, r2) and (r3, r4)) in our example
dataset of Table 1, while the MD φ3 : name0.2 → animal0.75 has a support of only five record pairs
(four self-matches and (r3, r4)). So (r1, r2) provides evidence that φ1 is true but no evidence whether
or not φ3 is true. This makes φ1 more interesting and statistically significant than φ3. To consider
the statistical relevance of the MDs in the discovery, works like [33] propose a minimal support

threshold for pruning: All candidates with less support are ignored. Because specializations of
unsupported MDs have the same or even less support, they can be pruned as well. Choosing a good
support threshold depends on the given data and use case. A data cleaning use case, for example,
might already find a data quality issue with an MD of one record pair support, i.e., that particular
record pair could be faulty; an entity linkage use case, on the other hand, might want to link records
from r to s and, hence, should require a support of close to |r |. Due to the use case dependence of
this parameter, we use a conservative minimal support of |r | + 1 if r = s and 1 otherwise, so that at
least one non-reflexive record pair needs to match, i.e., support the MD.
Disjointness. As stated in Section 3.2, MDs with non-disjoint Lhs and Rhs attribute sets are
not necessarily trivial. They are, however, less interesting than disjoint MDs, because they make
statements about Rhs attributes that are also used as a premise: Record pairs that match the Lhs of
an MD already have a certain similarity in the corresponding Rhs. Consider, for example, the non-
disjoint MD φ4 : animal0.75 → animal0.75. Clearly, φ4 is not an interesting dependency, because
it holds on any instance. The MD φ5 : animal0.9 → animal0.75 and any other non-disjoint MD
with a higher Lhs than Rhs threshold does provide some insight, i.e., all records in the classes of
90% similar values are actually 75% similar, but any such MD is not minimal so that we would not
discover them anyway. For this reason, we propose disjointness pruning that allows to restrict the
discovery on MDs with disjoint Lhs and Rhs attribute sets. Because non-disjoint MDs seem to have
no special relevance for any use case, we experimentally show the additional costs of discovering
non-disjoint MDs in Section 6 and use this pruning rule by default.
Decision boundaries (value). Low decision boundaries λi match quite dissimilar values. This
is quite converse to what MDs are usually used for, namely to indicate similarities. Because the
profiling process infers the MDs from the data, it needs to assume that everything that is not
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violated by the data could be true. Low decision boundaries are, therefore, mostly the result of a
lack of counter examples, i.e., data. Our example MD φ3 : name0.2 → animal0.75, for instance, has
a very low Lhs decision boundary, because the example instance is extremely short. In reality, it
is quite likely that two different animals have the same name, so that the φ3 is rather spurious.
To focus on more reliable MDs, we introduce a minimal decision boundary threshold and prune
candidates with smaller decision boundaries from the search space. Note that we still fetch the λi
values as natural decision boundaries from the data, but retain only those that are larger than the
global minimal threshold; the decision boundary 0.0 needs to be retained, though, to represent
that a column match is irrelevant. Depending on the given use case, a lower or higher minimal
decision boundary threshold is advisable. The simple question that a user has to answer is “How
dissimilar can two values in my use case be to be still considered as the same value?” Because the
discovery algorithm automatically checks all higher similarities, this question can be answered
with a conservatively low decision boundary threshold. For this reason, we define the minimal
decision boundary to be 0.7 in our experiments so that two values need to be at least 70% similar
w.r.t. their column match specific similarity measure. Considering values with only 70% similarity
as matches, i.e., as equal, is a conservative setting that should well represent most use cases of
MDs. While some use cases, such as data exploration, might actually require such a low decision
boundary threshold to find certain interesting but weak relationships, other use cases, such as data
integration, require much stricter, e.g., 90% and higher, similarity constrains.

Decision boundaries (number). The number of natural decision boundaries can be high, i.e.,
min(|r |, |s |) per attribute in the worst case, which has a significant impact on the size of the
search space. Moreover, excessively fine grained intervals (e.g., in fractions of thousands) might
not even matter with regard to interestingness. The exact distinction between animal0.75 →
description0.989245 and animal0.75 → description0.990926 might, for instance, not be relevant
for data exploration use cases, because both MDs basically state the same insight, which is that the
description values match almost perfectly. We therefore propose to limit the number of possible
decision boundaries for each attribute, if the result does not need to be perfectly precise: Given
the natural decision boundaries, we select k decision boundaries by choosing every ti

k th decision
boundary or, if the distribution of decision boundaries is skewed, we select k uniformly distributed
decision boundaries from the range of natural decision boundaries. For our evaluation, we decided
not to apply this pruning strategy and use all natural decision boundaries by default, because their
number and their selection is highly use-case dependent: While a data exploration process might
cope with larger similarity intervals, fine-grained integrity checking requires more precise decision
boundaries. Reducing the number of decision boundaries is also a necessary tool to forcefully
reduce the discovery time, if the discovery time is restricted. For this reason, we support it in our
discovery approach.

4 TWO DISCOVERY APPROACHES
For the discovery of data dependencies, we find two search strategies in related work: Lattice
traversal and inference from record pairs. The former models the search space as a power set
lattice of attribute combinations to classify the candidates within the lattice as either true or false
dependencies; different traversal strategies and pruning rules aim to reduce the number of candidate
checks. The latter strategy compares all (necessary) pairs of records in search of non-dependencies
from which it derives all true dependencies; refraining individual candidate checks, this strategy
controls the search space size more easily, but the costs for record comparisons are quadratic in the
number of records.
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Algorithm 1: Lattice traversal
Data: Relational instances r , s . Column matches C . Minimal Rhs decision boundaries ρmin.

Minimal support minSup.
Result: Set of all minimal MDs Φ.

1 m ← |C |;
2 Φ← {φ(∅, (1.0, j))|j ∈ [1,m]};
3 l ← 0;
4 while l ≤ getMaxLevel(Φ) do

5 foreach φ(λ, ρ) ∈ getLevel(l, Φ) do

6 Φ← Φ \ φ;
7 λlower ← getLowerBoundaries(λ, Φ);
8 ρ ′,σ ← validate(λ, ρ, r , s , C , λlower, ρmin);
9 if σ < minSup then

10 markUnsupported(λ);
11 else

12 foreach ρ ′j ∈ ρ
′
do

13 if ρ ′j > λj∧

14 ρ ′j ≥ ρmin[j]∧

15 ρ ′j > λlower[j] then

16 add(φ(λ, ρ ′j ), Φ)

17 foreach i ∈ [1,m] do
18 if canSpecializeLhs(λ, i) then

19 λ′← specializeLhs(λ, i);
20 if isSupported(λ′) then

21 foreach ρ j ∈ ρ do

22 if ρ j > λ′j then

23 addIfMin(φ(λ′, ρ j ), Φ);

24 l ← l + 1;
25 return Φ;

In this section, we propose one MD discovery algorithm for each strategy. Although both
algorithms are already fully self-contained MD discovery solutions, we later combine them into
the even more efficient hybrid solution HyMD.

4.1 Lattice traversal
Our lattice traversal algorithm is a bottom-up, breadth-first approach, which is based on the FD
discovery algorithm Tane [18]: Starting with the most general MDs at the lattice root (see Figure 1 in
Section 3.3), the algorithm walks its way up level-by-level validating all candidates it passes; during
traversal, the algorithm prunes all non-minimal MD candidates. Note that there is conceptually
one lattice for each Rhs column match, but we traverse them simultaneously handling all MDs
with the same Lhs at once for efficiency reasons. Algorithm 1 explains the traversal in more detail.
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The algorithm starts by initializing the lattice with the most general MDs (line 2). For now,
an MD’s depth is regarded as its level; we later re-define the level of an MD with a different
function to improve parallelization. After retrieving the current level from the lattice, the algorithm
handles each MD candidate in that level (line 5). The goal is to determine all maximal Rhs decision
boundaries for which the current Lhs forms valid MDs. Due to minimality pruning (see later), all
such MDs are minimal. First, we remove the candidate from the lattice (line 6). Before validating
the MD, we retrieve the maximum Rhs decision boundary that exists in the lattice for an MD with
a more general Lhs than the current (line 7). To find a new minimal MD with the current Lhs, its
Rhs decision boundary must be higher than the respective lower bound. To retrieve these lower
boundaries, the algorithm needs to check all MDs in the lattice with a more general Lhs. Section 5
presents an implementation of the lattice and this checking operation.

Given the lower boundaries, the algorithm now determines the maximal Rhs decision boundaries
for the current candidate, i.e., we validate it (line 8): We identify all matching record pairs, determine
their minimal similarities in the Rhs column matches, and calculate their support. Again, we
postpone the detailed discussion of an efficient validation algorithm to Section 5.3.2. Having
determined the support and the maximal Rhs decision boundaries, the algorithm distinguishes two
cases using the minimal support threshold: (a) the Lhs is supported or (b) it is not supported. If it is
not supported, we mark the Lhs as unsupported and stop the traversal for this candidate (line 10);
if it is supported, we continue inferring new MD candidates. First, we check for every Rhs decision
boundary if it results in an interesting, non-trivial, and minimal MD. If that is the case, we add the
MD to the lattice (line 16). The algorithm can also immediately emit this MD as a result. Next, we
infer specializations that are not yet covered by any minimal MD. It creates these specializations by
increasing each Lhs decision boundary λi to the next possible value (line 19). The old Rhs decision
boundary is retained and the specialization is added to the lattice if it is minimal (line 23).

In the discovery process, Algorithm 1 has marked some MD candidates as unsupported (line 10)
and it has checked whether certain new candidates are supported (line 20). To do this efficiently, the
algorithm stores unsupported Lhss λ in an additional lattice and checks the support of a new Lhs λ′
via generalization look-up in that lattice. Like the main candidate lattice, this additional lattice is
implemented as a prefix tree, but instead of annotating Rhs decision boundaries, we annotate if the
Lhs is supported or not.

After processing each MD of a current level, the algorithm proceeds to the next level. When all
levels are processed, i.e., when the lattice holds no more candidates in higher levels, all minimal
MDs have been found.

4.2 Inference from record pairs
A second discovery approach is the inference from record pairs: We systematically infer non-
dependencies from record pair comparisons and use them to derive all valid dependencies. This
technique was first proposed by the FD discovery algorithm Fdep [14]. The inference is very
efficient w.r.t. the size of the candidate space, because finding one invalidating record pair suffices
to mark a dependency as invalid.
To understand which MD candidates a specific pair of records invalidates, we consider two

records r and s and their concrete similarity value simi ∈ sim in each column matchCi ∈ C . An MD
candidate φ with Lhs decision boundaries λ matches the record pair, iff for all λi ∈ λ it holds that λi
≤ simi , i.e., if all Lhs decision boundaries are smaller than or equal to the observed similarities in
the record pair. We can now infer the (in-)validity of φ as follows: If the MD candidate φ matches
some record pair (r , s) and its Rhs decision boundary ρ j is larger than the observed similarity, i.e.,
ρ j > simj , then this record violates φ.
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Algorithm 2: Inference from record pairs
Data: Relational instances r , s . Column matches C . Minimal Rhs decision boundaries ρmin.
Result: Set of all minimal MDs Φ.

1 m ← |C |;
2 Φ← {φ(∅, (1.0, j))|j ∈ [1,m]};
3 foreach (rk , sl ) ∈ r × s do
4 sim← calculateSimilarity(rk , sl , C);
5 violated← findViolated(sim, Φ);
6 foreach φ(λ, ρ j ) ∈ violated do

7 Φ← Φ \ φ;
8 if sim[j] ≥ ρmin[j] ∧ sim[j] > λj then
9 ρ ′j ← sim[j];

10 addIfMin(φ(λ, ρ ′j ), Φ);
11 foreach i ∈ [1,m] do
12 if canSpecializeLhs(λ, i , sim[i]) then
13 λ′← specializeLhs(λ, i , sim[i]);
14 if ρ j > λ′j then

15 addIfMin(φ(λ′, ρ j ), Φ);

16 return Φ;

Suppose Φ is the set of all MD candidates that we assume to be true and that we are given a
record pair (r , s) that was not yet considered. We can reduce Φ by invalidating all φ ∈ Φ that have
an Lhs decision boundary subset (∀λi ∈ λ : λi ≤ simi ) but a larger Rhs decision boundary (ρ j >
simj ). For example, record pair (1, 3) in Table 3 matches and invalidates the six MD candidates
∅ → C1.0, A0.7 → C1.0, A1.0 → C1.0, B0.8 → C1.0, A0.7B0.8 → C1.0, and A1.0B0.8 → C1.0, which are
shown blue in Figure 1. Once an MD candidate has been invalidated by some record pair, we can
infer that this MD and all generalizations are invalid; the MD’s specializations, however, can still
be valid and are potentially also minimal. These are those MDs that are closest to the prior MD but
not yet violated. To reduce Φ, we therefore remove every invalidated φ and add its nearest, still
valid and minimal specializations w.r.t. the search space lattice of MD candidates.

Algorithm 2 describes the entire MD inference process: Analogously to the lattice traversal
approach, we first initialize the lattice with the most general MDs (line 2). Then, the algorithm
iterates all pairs of records in the input relation (line 3). We later introduce a sampling strategy that
avoids comparing all record pairs. For each selected pair of records (rk , sl ), the algorithm calculates
the similarities sim for all column matchesC (line 4). With these similarities, the algorithm searches
the lattice for all violatedMDs as explained above (line 5); in Section 5, we present an implementation
of this operation. Any violated MD is first removed from the lattice (line 7) and then used to infer
new MD candidates, which are specializations of the current MD, by either lowering the Rhs
decision boundary (lines 8 – 10) or increasing some Lhs decision boundary (lines 11 – 15).
Since an MD with the same Lhs as the current can hold for a weaker Rhs, we lower the Rhs

decision boundary to the similarity of the records in the respective columns. If this specialization
is minimal, it is added to the lattice (line 10). To generate the other specializations, we specialize
the Lhs so that the current violating record pair does not match it anymore. For this purpose, we
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increase the decision boundary for each Lhs column match to the next possible value above the
similarity of the records in the respective columns (line 13). If a new MD candidate, consisting
of the specialized Lhs and the old Rhs, is minimal and non-trivial, the algorithm adds it to the
lattice (line 15). We retain the Rhs decision boundary, because it was inferred from another record
pair that an MD on this path must use to be minimal; if a higher Rhs decision boundary is in
fact possible, it is inferred by a different MD on another path through the lattice. The algorithm
terminates after processing all pairs of records; Φ then contains all valid, minimal MDs.

To exemplify this approach, we use the data shown in Tables 2 and 3 and infer the minimal MDs
according to Figure 1. The initial MD candidate is ∅ → C1.0. Pair (1, 2) matches this MD and we,
therefore, infer its specializations: Because (1, 2) has a similarity of 0.0 in the columns of C , no
non-trivial MD with ∅ as the Lhs is inferred. However, we infer A0.7 → C1.0 and B1.0 → C1.0. (1, 3)
violates the former and we infer A0.7 → C0.5. A0.7B1.0 → C1.0 is also inferred but not minimal.
(1, 4) violates A0.7 → C0.5 and, hence, A0.7B0.8 → C0.5 is inferred. From thereon, no candidates are
invalidated anymore by any record pair and the minimal MDs B1.0 → C1.0 and A0.7B0.8 → C0.5 are
discovered.

5 A HYBRID APPROACH: HyMD
The two MD discovery approaches, inference from record pairs and lattice traversal, both have
their strengths and weaknesses: While the former scales better with the number of attributes, the
latter scales better with the number of rows in the input relation. Both approaches are, still, quite
similar w.r.t. their general search model: They both start with the most general assumption, which
is that every possible MD holds, and then gradually specialize this assumption. Lattice traversal
does this by validating the candidates step by step making only small but continuous progress
in the lattice. Inference from record pairs, on the other hand, checks records pair-wise for MD
violations that may invalidate many candidates in the lattice at once.

We now combine the two approaches in a hybrid algorithm called HyMD, which leverages the
advantages of both search techniques and mitigates their weaknesses. For this to work, we need
efficient data structures that can be used by both approaches and a strategy to switch between the
two approaches that guarantees mutual support. In the end, HyMD shall output all minimal MDs.
Figure 2 gives an overview of the data structures and components of HyMD. The Plis and

dictionary compressed records represent a compressed version of the data and the similarity matrix

and similarity index data structures capture similarities between different data values. The lattice
data structure is a special prefix tree for MDs and holds the current MD candidates. The components
traversal and validation implement the level-wise lattice traversal and the components sampling

and inference implement an adaption of the inference from record pairs technique. The arrows
indicate the interplay between the five components and access to certain data structures by certain
components.

In the following, Section 5.1 first introduces the four upper data structures and the preprocessing
step of HyMD that creates them. Section 5.2 then proposes the lattice data structure for handling
intermediate MD candidates. Finally, Section 5.3 discusses the hybrid discovery and the use of the
different data structures in detail.

5.1 Preprocessing
Before HyMD starts the hybrid discovery, it transforms the two input relations r and s into four
compact, static data structures that are kept in memory during MD discovery. This transformation
is done in a preprocessing step:
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Fig. 2. Overview of the components of HyMD

Position list indexes (Plis). The input data is, first, transformed into inverted indexes that point
for each column and every distinct value of that column to the list of positions at which this value
occurs. These indexes, denoted with π , are called position list indexes (Plis) or stripped partitions in
the literature [8, 18, 27]. For their construction, the preprocessing reads the input data record-wise
adding each value-to-position mapping to the Pli of the corresponding attribute. Because the
dependency discovery requires only the lists of positions that refer to the same values and not the
actual values themselves, we retain only these lists in the Plis. With respect to our example data in
Table 2, the Plis are πA = {{1}, {2}, {3}, {4}}, πB = {{1}, {2, 3}, {4}}, and πC = {{1}, {2, 4}, {3}};
the index of each cluster serves as an implicit value identifier and is, therefore, used synonymously
for its value in the algorithm.

Dictionary compressed records. While constructing the Plis record by record, HyMD also com-
presses these records via dictionary encoding into compact representations [31]. The compression
process uses the Plis as dictionaries, i.e., to substitute each value with its cluster number in the
corresponding Pli. The resulting dictionary compressed records are needed later on for record
comparisons and MD candidate validations. The data structure is implemented as an array of record
arrays that looks like the relation depicted in Table 2 but with value identifiers a′i , b ′i , and c ′i instead
of actual values ai , bi , and ci .

Similarity matrices. The discovery of MDs requires the calculation of similarities between the
various values of a column matchCi . Because these similarities need to be calculated repeatedly for
different MD candidates, and because their calculation is expensive, we propose to pre-calculate
and store all necessary similarities in similarity matrices: one matrix of similarities for every given
column match Ci . The two columns of a column match define the two dimensions of that matrix:
The x-dimension of the matrix are the value identifiers of one column and the y-dimension are
value identifiers of the other column of the column match (note that both columns can be the
same). The value identifiers represent unique values in each column and are derived from the Plis
calculated earlier. Each cell in the matrix stores the similarity of two values w.r.t. the similarity
measure ≈i of Ci . Figure 3 shows two such similarity matrices for our running example of Table 2.
Considering the column match C2, the similarity of the values with identifier b ′1 and b ′2 can, in this
way, easily be looked-up as 0.8.
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C1 a′1 a′2 a′3 a′4
a′1 1.0 0.0 1.0 1.0
a′2 0.0 1.0 0.7 0.7
a′3 1.0 0.7 1.0 0.7
a′4 1.0 0.7 0.7 1.0

C2 b ′1 b ′2 b ′3
b ′1 1.0 0.8 0.0
b ′2 0.8 1.0 0.0
b ′3 0.0 0.0 1.0

Fig. 3. Two similarity matrices for the column matches C1 = (A,A,≈levenshtein ) and C2 = (B,B,≈jaro ).

To calculate the similarity matrices, HyMD requires the actual data values for the similarity
calculation and the value identifiers for the matrix construction. For this reason, it calculates the
similarity matrices after the Pli construction but before throwing away the keys of the Plis.
Because the similarity calculations are both expensive and independent of one another, the

preprocessing algorithm parallelizes them. Furthermore, we check all values on equality before
executing a complex similarity function, because many values are not only similar but in fact equal.
In the worst case, though, O(|r | × |s |) similarities need to be computed for every column match Ci .
If the input relations are too large to compute all similarities, we propose the use of partitioning
techniques, which compute the similarities for only those value pairs that are actually similar.
The similarity matrix then stores a similarity of 0.0 for all value pairs that were not compared.
A well-known partitioning technique in record linkage and duplicate detection research [6, 9]
is the sorted neighborhood method [17], which compares each value to its most similar neighbor
values w.r.t. prefix similarity. With our minimal decision boundary threshold, though, the discovery
algorithm knows exactly which similarities are relevant for each column match, i.e., all similarities
above this threshold. For this reason, we propose the use of a more sophisticated string similarity
search approach that is able to calculate all similarities larger than the given minimal decision
boundary threshold, such as Ed-Join [39], Pass-Join [23], or FixPrefixScheme [36]. Note, however,
that the applicability of a partitioning approach depends on the similarity measure. The partitioning
is also an approximation technique that might prevent the discovery of all MDs, which is why we
do not use it in our experiments and always calculate all similarities.
To keep the size of the similarity matrices small, we consider the interestingness criterions for

MDs as presented in Section 3.4: Similarities that are both below the minimal Lhs and Rhs decision
boundary are not relevant to the discovery, so that the algorithm does not need to store them. Any
non-existent similarity is implicitly 0.0. Not storing these similarities makes the matrices sparse so
that we can save much space representing the matrix as an array of hash maps, i.e., a continuous
sequence of x-value identifiers (array-indexes) holding y-value identifiers (map-keys) that point to
similarities (map-values).

Similarity index. The similarity matrix helps to determine the similarity for a given pair of values
w.r.t. their column match. During MD discovery, however, another operation frequently retrieves
for a given value identifier all record IDs with at least some specific similarity. To support this
operation, we propose an inverted index. This index is called similarity index. It points any value
identifier (of r ) to all similarities of that identifier, and then each similarity to the list of record IDs
(of s) with at least that similarity to the initial value identifier – in this way, the similarity index
basically inverts the value-to-similarity mapping of the similarity matrix. It is, hence, calculated
from the similarity matrices. Figure 4 shows the similarity index for the column match C2, whose
similarity matrix is depicted in Table 2. To retrieve all records with at least 0.8 similarity to the
value identified by b1, we first lookup b1, then 0.8 in the resulting map, and finally retrieve the
record IDs 1, 2, and 3.
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Fig. 4. Flat similarity indexes

5.2 Lattice
The lattice stores all current MD candidates in a compact format and offers certain operations that
help to, for instance, efficiently retrieve generalizations of violated candidates. For this purpose, it
is implemented as a prefix tree: The root node represent the empty set, all further nodes represent
columnmatches, paths from the root to any node in the tree represent Lhss of MDs, and annotations
attached to the nodes represent valid Rhss column matches of MDs with that node specific Lhs
path. By uniquely ordering the Lhs nodes on each path (see Section 3.3 for ordering rules), any
path uniquely identifies its MDs. A similar data structure was proposed for storing FDs [14, 27].
The initial prefix tree in HyMD contains only the root node without any children and, as

annotation, all column matches with λi = 1.0. It then grows with every specialization of its
candidates. In the following, we discuss the supported operations:
add inserts an MD into the lattice by traversing a path in the prefix tree according to the new MD’s
Lhs. If a node on the path does not exist, it is created. At the end of the path, the operation adds
the MD’s Rhs as an annotation.
addIfMin inserts an MD into the lattice using the add operation if this MD is minimal, i.e., no
generalizations exist in the lattice. To check for generalizations, the operation applies a depth-first
tree search for subsets of the MD’s Lhs.
findViolated retrieves all MDs from the lattice that are violated by a given record pair, i.e., MDs
whose Lhs matches this record pair and whose Rhs is higher than the respective similarity of the
records. For this purpose, the operation applies a depth-first search for matching Lhss and checks
all Rhss on the way reporting those that are violated.
getLowerBoundaries determines the maximum Rhs decision boundaries for any generalization
of a given MD. Hence, it also traverses all generalizations of the MD’s Lhs via depth-first search
capturing the maximum decision boundary for each Rhs column match across all visited nodes.
If all lower boundaries are 1.0, we abort the operation, because these boundaries cannot become
higher anymore.
getLevel retrieves all MDs of a certain level. The level can be defined as either its depth (as we did
in Section 4.1) or its cardinality (as we do in Section 5.3). Regardless of this definition, the operator
uses a depth-first search to collect all nodes with exactly the specified depth or cardinality.

5.3 Hybrid Discovery
Having introduced the two search strategies as well as their data structures, we now present the
hybrid algorithm HyMD that combines them. The components of HyMD have already been shown
in Figure 2: After the preprocessing, HyMD proceeds to the inference strategy in the sampling
component. Rather than selecting all records right away, the sampling component selects the record
pairs successively. With each selected record pair, the inference component derives non-MDs that
are used to specialize the MD candidates in the lattice. When the sampling becomes inefficient, it
switches to the traversal component that selects candidates from the lattice (level-wise, bottom-up).
These candidates are validated by the validation component and updated in the lattice accordingly.
After each round of validations, HyMD continues with the inference strategy. To improve the
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efficiency of this phase, the traversal strategy collects record pairs as inference recommendations
for the inference strategy. By exchanging MD candidates and inference recommendations, both
phases support one another.

5.3.1 Inference from record pairs. In comparison to its archetype of Section 4.2, the inference from
record pairs algorithm changes only slightly when used in the hybrid setup. The first two changes
are simple: First, we do not initialize the set of minimal MDs Φ with every method call but reuse
and share the same set of MDs with the lattice traversal phase. Second, we add one more parameter
that transports the inference recommendations from the traversal phase to this inference phase;
these recommendations are checked before we enter the main loop in line 3 of Algorithm 2.
The third change counts the number of record pair comparisons (rk , sl ) (line 3) and the number

of refined MDs φ, which are those that could actually be taken from Φ (line 7). The quotient of
these two numbers, i.e., refined/comparisons decreases over time since ever fewer refinements are
to be discovered. It therefore reflects the efficiency of the inference-based search and triggers a
phase switch after processing some record pair, if it falls below a certain threshold. The authors of
HyFD have shown that for hybrid FD discovery any efficiency threshold between 0.1% and 10%
works well, because the efficiency drops quickly [27]; we observed the same for MD discovery and,
hence, start with a threshold of 1%. With every switch into the inference phase, HyMD halves this
threshold to become efficient again.

The fourth and final change is that the algorithm avoids processing redundant record pairs, which
are record pairs with the same set of similarities as previously processed record pairs. Because
redundant pairs produce the same invalidations, HyMD remembers the unique sets of similarities
that were processed to not process them again.

5.3.2 Lattice traversal. The lattice traversal strategy used inHyMD is an extension of the level-wise,
bottom-up traversal algorithm of Section 4.1. The extensions are primarily geared towards letting
this algorithm switch to and from the inference strategy in the hybrid setting, but we also contribute
some optimizations that are independent of the hybrid execution strategy.

The inference phase of HyMD is responsible for initializing the set of minimal MDs Φ, which is
the search space lattice. Since Φ is already calculated by the inference phase that always executes
first, we remove line 2 in Algorithm 1 and make Φ a parameter.
As mentioned earlier, HyMD switches from the traversal to the inference phase whenever one

level of candidates has been validated. In contrast to [27], we do not measure the efficiency of the
traversal phase and switch more pro-actively, because if the switch was not needed, the inference
phase returns quickly anyway. To implement the switch, we replace the while-loop in line 4 with
an if-statement and switch to the inference phase at the end of the algorithm.

To support the inference phase after a switch, the traversal phase collects possibly many inference
recommendations, which are pairs of records (rk , sl ) that invalidated some MD candidate. These
record pairs have not been compared before, because otherwise the candidate would not have
been checked. It is also likely that they affect other candidates in the same way, which makes their
inspection promising. Because the validation function in line 8 finds these pairs of records naturally,
HyMD can simply collect them. The collected record pairs are, then, handed over to the inference
phase as comparison suggestions with every phase switch.
The function getLevel() in line 5 of Algorithm 1 retrieves all MD candidates of a specific level

from the search space lattice. Since all retrieved candidates are independent of one another, we can
validate them in parallel, i.e., parallelize the for-loop in line 5 to multiple threads. The inference
strategy, however, reduces the number of candidates in each level significantly as it prunes large
portions of the lattice. Because this lowers the effectiveness of parallelization, we redefine the
notion of a lattice level for the hybrid approach: Instead of the depth, we use the cardinality (see
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Algorithm 3: Validation
Data: Decision boundaries λ, ρ. Plis of r π [r ]. Relational instances r , s . Column matches C .

Maximal Lhs and minimal Rhs boundaries λlower, ρmin. Similarity indexes simIndex.
Result:Maximal decision boundaries ρ ′. Support σ .

1 ρ ′,σ ← ρ, 0;
2 if |λ | = 0 then
3 return getMinSims(ρ, simIndex), |r | · |s |;
4 if |λ | = 1 then
5 foreach value, r ′ ∈ π [r ][i] do
6 s ′← getSimRecs(value, λi , simIndex[i]);
7 σ ← σ + |r ′ | · |s ′ |;
8 foreach rk , sl ∈ r

′ × s ′ do
9 ρ ′← computeMaxRhs(rk ,sl ,ρ

′
,λ,λlower,ρmin);

10 else

11 foreach rep, r ′ ∈ groupByValue(π [r ], λ, C) do

12 s ′← getSimRecs(rep[j], λj , simIndex[j]);
13 foreach λi ∈ λ \ λj do
14 s ′← s ′ ∩ getSimRecs(rep[i], λi , simIndex[i]);
15 σ ← σ + |r ′ | · |s ′ |;
16 foreach rk , sl ∈ r

′ × s ′ do
17 ρ ′← computeMaxRhs(rk ,sl ,ρ

′
,λ,λlower,ρmin);

18 return ρ ′, σ ;

Section 3.4) of the MDs as the function to determine their level, because the number of same
cardinality candidates is larger than the number of same depth MDs. The lattice in Figure 1, for
instance, has 2 MD candidates of distance one (see Lhss A0.7 and B0.8) and 4 MD candidates of
cardinality one (see Lhss A0.7, A1.0, B0.8, and B1.0) – note that only the Lhss count; all Rhss are
calculated dynamically. With cardinality as level function, one level might contain candidates that
specialize others, such as A0.7 → C1.0 and A1.0 → C1.0. To discover only minimal MDs, we need to
validate all generalizations before their specialization. Therefore, HyMD first analyses each level for
specializations by checking the candidates pair-wise to then defer the validation of specializations.
So in our example, the Lhs A0.7 is finished before A1.0 and B0.8 is finished before B1.0. Still any
other combination of Lhss, such as A1.0 and B0.8, can be evaluated in parallel. Despite the overhead
of specialization analysis within each level, the gain in parallelization outweighs these costs, as we
show in Section 6. Many candidates, such as A1.0 → C1.0 and B0.8 → C1.0 in Figure 1, for instance,
are independent of each other but have different depths.

Before validating the set of all (specialization-free) MD candidates in parallel, we group them by
their Lhs λ. This provides us with a set of Rhss ρ that HyMD can validate simultaneously: The
algorithm first retrieves all record pairs matching λ and then checks all ρ against these records. In
other words, it calculates the maximum Rhs decision boundaries ρ ′ for the Lhs decision boundaries
λ so that the traversal algorithm can check these ρ ′. Algorithm 3 shows this validation algorithm in
detail. It provides three different validation approaches depending on the MD’s cardinality, which
is either 0, 1, or larger.
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MDs with a cardinality of 0 have all Lhs decision boundaries set to 0.0 (line 2). They are matched
by all record pairs and, therefore, have a support σ of |r | · |s |. The decision boundaries ρ ′ of these
MDs are the minimal similarities in the respective Rhs column matches and can be retrieved with
one linear scan of the similarity index (line 3).

For MDs with cardinality 1 (line 4), there is only one Lhs column match Ci to be considered. So
HyMD starts by iterating all values and their positions r ′ in r using the Pli π [r ] of this column
match, i.e., with index i (line 5). For each r -value, Algorithm 3 collects all positions s ′ of s-values that
are similar to the r -value w.r.t. the Lhs decision boundary λi using the similarity index, i.e., it selects
the records that have a similarity greater than or equal to the sole Lhs decision boundary (line 6).
Since all records in r ′ and s ′ match pair-wise, |r ′ | · |s ′ | is added to the support σ (line 7). HyMD
then compares all records rk and sl in r ′ × s ′ w.r.t. their Rhs similarities and stores the minimal

similarities in ρ ′; these minimal similarities constitute the maximal Rhs decision boundaries for
the validated MD candidates (line 9).
If the input MDs have a cardinality > 1 (line 10), Algorithm 3 cannot directly read the values

of r from its Plis. It therefore groups the r -records by their Lhs value combinations on the fly by
intersecting the Plis of all Lhs column matches (line 11). Each cluster in the resulting Pli defines a
representative value combination rep that the algorithm requires to find similar value combinations
in s . To find all positions s ′ of s-records that are similar in all Lhs column matches, HyMD collects
for each individual Lhs column match the positions of similar records w.r.t. this column match using
the similarity index and intersects all these sets (line 12–14). The sets r ′ and s ′ of matching r - and
s-record positions are then used to update ρ ′ and σ just like in the cardinality-1-case (lines 15–17).

Even with the changes explained above, all MDs discovered by Algorithm 1 are valid and
minimal. For this reason, HyMD ends in the lattice traversal phase when all MD candidates have
been processed yielding Φ as the final result.

6 EXPERIMENTAL EVALUATION
In this section, we evaluate various aspects of our algorithm HyMD: We first measure its runtime
on different datasets (Section 6.1); then we measure the impact of some major implementation
details and configurations on the algorithm’s runtime and the result size (Section 6.2); next, we
investigate HyMD’s scalability for increasing numbers of column matches and rows (Section 6.3);
we also compare our algorithm to the FD discovery algorithm HyFD [27] (Section 6.4); in the end,
we briefly evaluate and discuss the usefulness of the discovered MDs in the context of duplicate
detection (Section 6.5).

Experimental setup. HyMD is implemented in Java 1.8 and based on open-source data profiling
tool Metanome [26]. The code forHyMD is available online1. We ran all experiments on an OpenJDK
64-bit Server 1.8.0_151 JVM and CentOS 6.8 64-bit. The hosting machine features 128GB RAM and
two Intel Xeon E5-2650 2GHz CPUs; we use all 16 hyperthreaded cores for parallelization.

Default configuration. If not stated differently, we use the natural decision boundaries for each
column match and set the minimal Lhs and Rhs decision boundaries to 0.7; the minimal support
is set to |r | + 1 if r = s and 1 otherwise. For runs on a single relation, all columns are matched to
themselves; for two relations, we use fixed schema mappings. Our default similarity measure is the
Levenshtein similarity and HyMD is configured to calculate all similarities for each column match,
i.e., no approximation is used.

1https://github.com/HPI-Information-Systems/metanome-algorithms
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dataset cols rows size lhs MDs pre disc execution

[#] [#] [#] [#] [sec] [sec]
adult 15 32,561 3.5 MB 105 91 2.0 12.8 14.8 sec
restaurant 6 864 63.0 KB 106 7 1.1 0.7 1.8 sec
VTTS 14 10,042,044 588.0 MB 106 76 269.8 11,957.7 3.4 h
NCVoters* 12 466,388 45.7 MB 108 472 13.9 133.5 2.5 min
NCVoters 12 32,413,515 3.1 GB 109 435 1,627.7 32,338.2 9.5 h
hospital* 10 9,342/4,830 2.7 MB 109 188 9.5 3.0 12.5 sec
HGI 14 4,830 0.7 MB 1010 289 10.0 5.3 15.3 sec
PCM 14 9,342 2.0 MB 1010 557 9.3 6.4 15.7 sec
CORA 16 1,879 367.0 KB 1012 2,001 5.6 379.4 6.5 min
flight 38 1,000 187.0 KB 1012 14,170 0.9 65.4 1.1 min
hospital 134 9,342/4,830 2.7 MB 1022 3,544 30.3 83.5 1.9 min

Table 5. Performance of HyMD on various datasets

6.1 Datasets and Runtimes
Table 5 lists the seven datasets2 that we use for our experiments: adult with general information
about people, restaurant describing US restaurants, VTTS with ERP data from an SAP R3 system,
NCVoters about voting preferences in North Carolina, hospital consisting of the Hospital Gen-

eral Information (HGI) relation and the Preventive Care Measures (PCM) relation both providing
information about hospitals in the US, CORA with bibliographic information, and finally flight with
details on US flights.
For hospital, we use a hand-crafted schema mapping for creating the column matches, because

both tables of the hospital dataset contain records about hospitals and the attributes have clear
correspondences. For the CORA dataset, we use Monge-Elkan instead of Levenshtein similarity and
we also limit the number of decision boundaries for each column match to 5 instead of using all
natural decision boundaries, because CORA contains particularly many different and very similar
values; the number of CORA’s possible Lhss is still one of the largest.

The number of possible MD Lhss in Table 5 shows that the search spaces are huge and that the
discoveredMDs are only small fractions of them. Considering the fact that we find on average column

2
MDs for every possible Lhs (by simply selecting the largest Rhs threshold with which the MD is still
true), the numbers of actually discovered MDs are tiny. This shows that our interestingness criteria,
which are only minimum decision boundary, (number decision boundaries,) and disjointness in
this experiment, are effective. Using stricter interestingness criteria values than those we used
in our experiments is realistic for many MD use cases and reduces the number of discovered
MDs significantly further. For example, increasing the minimum decision boundary to 0.9 and the
minimum support to 1.05 times the relation sizes reduces the number of discovered MDs from 3,544
to 320 MDs on restaurant and from 14,170 to 2,295 on flight. After their discovery, the MDs can be
ranked also by the interestingness criteria to show only the most relevant ones to a user.

The two columns pre and disc list HyMD’s runtime, broken down to preprocessing time (pre) and
discovery time (disc). They show that the preprocessing time, which is in particular the calculation
of the similarities, actually dominates the discovery time for datasets with many different values
and MDs that are easy to find by either of the two discovery strategies. The last column reports the
overall execution time of HyMD.

2https://hpi.de/naumann/projects/repeatability/data-profiling/mds.html
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Despite their relatively small size, the listed datasets present real challenges for MD discovery
algorithms due to their large candidate search spaces. HyMD however could process all datasets
with ease in a few seconds to minutes; only the VTTS and NCVoter dataset took longer than a
few minutes, which is acceptable considering their much larger size of 588.0 MB and 3.1 GB,
respectively. The flight and hospital dataset have not only the most column matches, they also
contain the most MDs of all datasets; their processing times are still manageable, because the
inference-based discovery works very well on only a few thousand records. The adult, VTTS, and
NCVoter dataset, on the other hand, are particularly long, but due to their small number of column
matches and MDs, the traversal-based discovery processes them efficiently.

The measurements in Table 5 also show that the number of discovered MDs can be very large. In
the only 187 KB flight dataset, for instance, HyMD discovered more than 14 thousand MDs, which
are way more MDs than a data analyst could process manually. Fortunately, some algorithms that
consume MDs to solve certain use cases can process the MDs automatically. For use cases that
require a manual analysis of the discovered MDs, such as data exploration, we suggest to define
stricter interestingness pruning thresholds. In our experiments, we defined overly conservative
thresholds to show what the algorithm is capable of. By demanding, for instance, a maximum
cardinality of three attributes, a minimum support of 1.5 times the dataset size, a minimum decision
boundary of 90%, and a maximum number of decision boundaries of 100, all result-sets shrink to
less than 100 MDs.

Many of the discovered MDs are not only syntactically correct but also semantically interesting.
While syntactic correctness means that an MD is valid for some relational instance, semantic
interestingness is given if the described rule has a true meaning w.r.t. the relation’s domain. Because
MDs can be syntactically correct by chance and due to a lack of counter examples in the data,
not all discovered rules are semantically interesting. Many of them, however, are interesting. The
MDs listed in Table 6, for example, describe rules that we can intuitively agree to: Hospitals with
matching address and phone number should also match in their names (φ1), restaurants with
matching name and address should also match in their phone numbers (φ2), and publications with
matching title and booktitle should have been written by matching authors (φ4). Furthermore,
MD φ3 teaches us that we can add the type of a restaurant to rule φ2 to better distinguish similarly
named restaurants at similar addresses. The pruning rules introduced in Section 3.4 help HyMD to
focus the discovery process on exactly such interesting MDs, as they usually have low cardinality,
high support, disjoint Lhs and Rhs sides, and high decision boundaries. For our performance
measurements, however, we reduced the interestingness pruning to a minimum according to
Section 3.4 in order to see HyMD’s worst-case runtimes; this let to the result counts listed in Table 5.

dataset MD

φ1 hospital address_10.86 phone1.0 → name0.95
φ2 restaurant name1.0 address0.98 → phone0.85
φ3 restaurant name0.7 address0.7 type0.71 → phone0.85
φ4 CORA title0.81 booktitle0.96 → author0.33

Table 6. Some interesting MDs discovered by HyMD

6.2 In-depth Experiments
In this paper, we proposed to apply the hybrid dependency search strategy to the discovery of MDs.
Because the search space for MDs is significantly larger than the search space for FDs and the
lattice traversal is accordingly more expensive, it is not obvious that the hybrid search is actually
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effective in this setting. For this reason, we now evaluate the three search approaches, which are
traversal, inference, and hybrid, separately. We also evaluate the level function and the disjointness
pruning in detail as both are important for the performance of the lattice traversal. In a fourth and
final in-depth experiment, we evaluate the impact of choosing different similarity functions on
HyMD’s runtime and the number of discovered MDs.

Hybrid search. HyMD combines lattice traversal with inference from record pairs. Because both
strategies are able to discover all MDs on their own, we compared their performances with the
performance of their hybrid combination: On restaurant, we measured the three discovery times
37.0 sec (traversal), 1.2 sec (inference), and 0.7 sec (hybrid); on hospital, we measured 65.1 sec
(traversal), 11.7 sec (inference), and 2.8 sec (hybrid); and similar ratio for the other datasets. Because
lattice traversal scales poorly with the number of decision boundaries, we limited their number
for this experiment to 10 and 5, respectively. Since both datasets are relatively short, the inference
strategy clearly outperforms the traversal strategy. The hybrid strategy, however, outperforms
both individual approaches – even the optimal approach for the given dataset – due to its synergy
effects.

Level function. Section 5.3.2 raised the subject of using different level functions to retrieve MD
candidates for validation: depth and cardinality. With cardinality, more candidates can be validated
in parallel, but an additional step that orders the candidates becomes necessary. The level function
in HyMD is, therefore, configurable. In our experimental setup, we measured the discovery times
4.6 sec (depth) and 3.0 sec (cardinality) on hospital, 13.6 sec (depth) and 12.8 sec (cardinality) on
adult, and further similar runtimes in favor of cardinality on the other datasets. The increased
degree of parallelization, which we achieved on 16 cores, easily compensates the additional ordering
costs.

Disjointness pruning. In Section 3.2, we discussed non-disjoint MDs and proposed to prune them
from the search space although they are not necessarily trivial. When switching the disjointness
pruning in HyMD off, more MDs can be found, at the cost of discovery time: On hospital we find
188 MDs in 3.0 sec (on) or 974 MDs in 18.7 sec (off); and on adult, we find 91 MDs in 12.8 sec (on)
or 138 MDs in 52.7 sec (off). Hence, the discovery times increase faster than the result counts.

Similarity functions. HyMD can use any similarity function that can effectively compare the
values of the given column matches. The algorithm also allows to mix similarity functions and
use different functions for same column pairs. For this reason, we now evaluate the impact of
the chosen similarity functions on the discovery time and number of discovered MDs. For this
experiment, we compare the two similarity functions Levenshtein and Monge-Elkan on NCVoters

and CORA. The results are shown in Table 7.
Because calculating Monge-Elkan similarities is more expensive than Levenshtein similarities,

the pre-processing time takes longer with this similarity function. The discovery, however, uses
the pre-calculated similarities and is, therefore, not affected by the costs of the chosen similarity
functions. It is, though, affected by the number of MDs that can be discovered with these similarities.
Monge-Elkan is a hybrid similarity function that also uses token similarity. It is, hence, less sensitive
against character conversions than Levenshtein and calculates higher similarities for various values.
The number of true MDs w.r.t. Monge-Elkan is therefore much higher, which impacts the discovery
time clearly. This impact is, in particular, much larger than the impact caused by the calculation
costs of the similarity function. So in summary, the more values a similarity function can match,
the higher the MD discovery costs become.
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dataset function MDs pre disc execution

[#] [sec] [sec]
NCVoters* Levenshtein 472 13.9 133.5 2.5 min

Monge-Elkan 1,219 20.9 382.2 6.7 min
CORA Levenshtein 997 2.1 145.7 2.5 min

Monge-Elkan 2,001 5.6 379.4 6.5 min
Table 7. Performance of HyMD with different similarity functions

6.3 Scalability
Three properties of input datasets influence the runtime behavior of HyMD: their number of
records, column matches, and decision boundaries. With growing volumes of data, usually all three
numbers increase. For this reason, we investigate HyMD’s runtime when scaling up each of them
on the CORA and NCVoters* dataset.
Number of records. We start for both datasets with a 10% random sample of records and add
further 10% records with every measurement step. The number of column matches and decision
boundaries is fixed to the corresponding numbers in the last slice to scale only the number of
records. By adding further records to the dataset, the number of minimal MDs can both increase or
decrease: It increases if the added records introduce MD violations. It decreases if candidates are
pushed into lattice regions with fewer candidates.

Figure 5 shows the result of this experiment. We see that different forces either favor or impede
HyMD’s runtime although only the number of records is changed: In general, more records addmore
values to the preprocessing and validation efforts, i.e., the similarity calculation effort increases,
the index structures become larger, the inference needs to compare more record pairs, the traversal
needs to proceed to more candidates on higher lattice levels, and the validations need to check
more values. On the other hand, newly introduced MD violations might let the inference phase
identify non-MDs faster and decrease the number of minimal MDs that need to be discovered (and
checked).

For NCVoters*, we first see that the runtime grows about linearly. The preprocessing time indeed
grows quadratically, but the discovery time still dominates, i.e., we mainly see the candidate
validation costs increasing. Some easy-to-validate MDs exist in the beginning and their vanishing
does not effect the runtime; the vanishing of some larger MDs in the end, however, effects the
runtime clearly.
For CORA, the preprocessing costs are negligible with less than 2% runtime. We still see the

runtime increasing (10-40% and 70-100%) when MD candidates are pushed up higher in the lattice
and become harder to evaluate; the runtime, however, also drops significantly when larger MDs
vanish or when they become easier to infer.

It is, in summary, hard to predict HyMD’s runtime based on the number of records. The trend,
however, is that more records increase the runtime and reduce the number of MDs.
Number of column matches. We start for both datasets with two column matches and continu-
ously add more until all are used. In practice, the number of column matches increases if the MD
discovery is applied to datasets with more columns and it also increases if additional similarity
functions should be considered. Adding column matches might introduce additional MDs, but it
does not affect existing ones; the search space lattice grows exponentially and, on most datasets,
the number of minimal MDs also grows exponentially.

Figure 6 shows the results of this experiment. As expected, the number of MDs increases roughly
exponentially with the number of column matches for both datasets. Although the preprocessing
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Fig. 5. Scaling the number of records

effort increases only linearly with every columnmatch, the runtimes for both inference and traversal
increase exponentially. Adding the column matches in different orders yields the same runtime
curves. Hence, we can expect both runtime and number of MDs to increase exponentially w.r.t. the
number of column matches.
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Fig. 6. Scaling the number of column matches

Number of decision boundaries. We select for each column match a number of uniformly
distributed decision boundaries from its natural decision boundaries. This number is linearly scaled
from one to five decision boundaries. By adding additional decision boundaries, the search space
grows exponentially, because we basically add one step to the dimension of each attribute.

The results on CORA (Figure 7) confirm this theoretical consideration with an overall exponential
runtime increase. Although the number of minimal decision boundaries grows even less than linear,
the search space that HyMD needs to inspect grows exponentially. We do not see that exponential
runtime behavior for NCVoters*, because some of its column matches contain fewer than five
decision boundaries and thus do not increase the search space size. Overall, with increasing number
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Fig. 7. Scaling the number of decision boundaries

of decision boundaries the runtime first increases exponentially and then converges to the runtime
of using all natural decision boundaries of a dataset.
Minimum decision boundary. The minimum decision boundary threshold is another parame-
ter that controls the number of decision boundaries used during MD discovery. In all previous
experiments, we used a minimum decision boundary of 0.7 for all Lhs and Rhs column matches.
Considering only 70% similar values as matches is rather unrealistic in most use cases but it serves
to demonstrate the performance of our discovery approach. To show the algorithm’s performance
for higher minimal decision boundary thresholds, this experiment measures HyMD’s discovery
time for various values.

Figure 8 shows the results for NCVoters and CORA. We see that for both datasets increasing the
minimum decision boundary reduces not only the discovery time but also the number of discovered
MDs significantly. More specifically, increasing the threshold from 0.7 to 0.9 results in about 3 times
faster discovery times on NCVoters and 23 times faster discovery times on CORA; the number of
discovered MDs drops by 57.6% and 97.5%, respectively. Hence, the minimum decision boundary
can be used to effectively reduce the discovery time and narrowed the search to MDs with higher
similarity constraints.

6.4 Comparative Experiments
None of the MD discovery algorithms discussed in Section 2 discovers the same results as our
algorithm HyMD for two reasons: First, they use pre-defined similarity thresholds for the candidate
generation and not the similarity threshold that can actually be found in the data. For this reason,
they do not find all MDs. Depending on how many similarity threshold are pre-defined, the
candidate space can be smaller or larger than the actual candidate space that is given by the data;
in any case, not extracting the actual threshold from the data saves some time. The second reason
why algorithms from related work produce different results is that they also consider partial and
conditional MDs. Depending on the search strategy and the data that is being profiled, this can also
be an advantage or disadvantage for the performance: Validating partial/conditional dependencies is
in general more costly, because more than one violation to an MD needs to be found (and resolved),
but there may be fewer candidates to be validated, because valid, minimal partial/conditional MDs
are smaller and occur earlier in the search space (assuming systematic bottom-up lattice search).
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Because the results are so different and (in the case of related work) dependent on the algorithm
configuration, comparing our profiling times to those of other MD discovery algorithms is largely
inconclusive. The most obvious algorithm for a performance comparison with HyMD is the FD
profiling algorithm HyFD, which implements the same hybrid search strategy.
Functional dependencies are a special case of matching dependencies where all columns are

matched to themselves and only “=” is used as similarity function. Hence, HyMD can also discover
functional dependencies with these two restrictions. To evaluate its capability as FD discovery
algorithm, we test it on the row-heavy adult and the column-heavy flight dataset and compare the
measured runtimes with the runtimes of HyFD.

Table 8 shows the result of this experiment: The restriction on FDs, in fact, improves the runtime of
HyMD, because the similarity calculations are faster and fewerMDs are to be discovered. The overall
runtime is, however, still clearly slower than HyFD’s runtime, because HyMD’s preprocessing, data
structures, and validation strategies are optimized for checking MDs, which are more complex than
FDs. It still performs this task reasonably well.

MDs FDs HyMD HyMD FD HyFD

data [#] [#] [sec] [sec] [sec]
adult 91 78 14.8 13.5 1.5
flight 14,170 6,811 66.3 15.9 1.6

Table 8. Comparison between HyMD and HyFD

6.5 Duplicate detection
In this section, we aim to illustrate the usefulness of the discovered MDs with a concrete example.
From the multitude of use cases, we chose duplicate detection [10, 38] for this illustration, because
it is one of the most popular and well-researched use cases for MDs. The purpose of this experiment
is not to propose a novel, more effective duplicate detection approach, but to demonstrate in a real-
world setup that the discovered MDs are actually useful. In a follow-up project [20], we developed
a fully automatic duplicate detection system called MDedup that is based on the algorithm HyMD
and the insights presented in this last evaluation. Duplicate detection processes identify similar
representations of same real-world entities in relational datasets and are, therefore, common tasks
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in data cleaning and record linkage. For the experiment, we use the CORA and restaurant datasets,
because both provide a gold standard: CORA contains 64,578 duplicate record pairs and restaurant

contains 112 duplicates.
To identify duplicates in data, domain experts usually define rules (or features to learn such

rules) that should match two records if these records describe the same entity. The same is true
for matching dependencies: They are rules that match similar records, which can be labeled as
duplicates. The difference is, however, that MDs do not need to be defined manually as HyMD
can automatically discover them. To test the usefulness of the discovered MDs w.r.t. the duplicate
detection use case, we evaluate precision, recall, and f1-measure for a selection of discovered MDs
and compare the results with state-of-the-art machine learning approaches: a support vector machine

(SVM) approach [4] and a random forest (RF) approach [3].
Various related works, such as [10] and [38], have used MDs for duplicate detection before,

but they propose supervised learning approaches that rely on pre-labeled data to train the MDs.
More specifically, these approaches require a special attribute that is used as Rhs for all MDs and
that pre-labels duplicates on a training dataset. Our approach differs from their approach, because
we can discover the MDs with HyMD from unlabelled raw data. The use of a dedicated target
column that indicates whether two tuples are duplicates or not, would be a helpful hint for the MD
discovery. But because we want to show that the MDs are useful also without this hint, we decided
for a different duplicate detection approach: For the discovery, we use the default parameterization
from our experiments. We then rank the MDs by cardinality (primary sort) and average decision
boundaries (secondary sort), present the top 20 MDs to a user, and let her pick the rules for duplicate
detection. The picking process is clearly a subject for future improvement, but it is feasible (in
contrast to labelling thousands of training records) and – as we show later – sufficient to achieve
reasonable results. For restaurant, the user picked φ2 and φ3 listed in Table 6 and, for CORA, she
picked only φ4. All record pairs matching these MDs are classified as duplicates.
To train and evaluate the baseline RF and SVM model, we create all pairs of records within the

data, construct a similarity matrix as described in Section 5.1, and split the record pairs into training
and test data. We then perform a 10-fold cross validation [19], which means that the data is divided
into 10 equally-sized folds and each of these folds is used as testing once, while the remaining data
forms the training data. The RF implementation is provided by the R package randomForest3 and
the SVM implementation by the R package e10714.

To ensure that the results are comparable, all three approaches, RF, SVM, and MD, use the same
features: They consider all attributes apart from the id-columns, and Levenshtein similarity for each
attribute. All three approaches are able to consider more similarity functions and would produce
better results in that way, but this experiment aims to give a relative performance comparison under
same pre-conditions rather than an absolute performance evaluation – we leave the development
of a novel MD-based duplicate detection algorithm and its careful evaluation to future work.
For all three approaches, MD, RF, and SVM, we compare the detected duplicates to the gold

standard and calculate their precision, recall, and f-measure. Figure 9 shows the results. Although
the MD approach achieves perfect precision for restaurant, only about half of the duplicates are
discovered. Adding furtherMDs does not improve this recall, because themissing duplicates are hard
to describe via matching dependency rules. Consider, for example, the restaurant records depicted
in Table 9. The record pair (5,6) is a duplicate that our MDs were not able to detect, and (145,550) is
a non-duplicate that was also not detected. A duplicate detection rule needed to correctly classify
(5,6) as a duplicate and (145,550) as non-duplicate is address1.0, city1.0, name0.15, phone1.0, type1.0

3https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
4https://cran.r-project.org/web/packages/e1071/e1071.pdf
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Fig. 9. Performance of the MD-, SVM-, and RF-based duplicate detection approaches

(note that both name value pairs have the same Levenshtein distance of 11 and the id attribute is
ignored in general). This rule, however, cannot be found as a Lhs of an MD, because there is no
attribute left to be the Rhs of that MD. However, assume that address1.0, city1.0, name0.15, phone1.0
(without type) would be a correct classifier for most (say 99%) of the matches. Then, we would
need to find the actually true MD address1.0, city1.0, name0.15, phone1.0 → type0.08. Both (5,6)
and (145,550) would be classified as duplicates, which lowers precision a bit but clearly increases
recall. Our approach, however, does not report this MD due to its low Rhs similarity threshold of
0.08; MDs with low Rhs thresholds do not provide any evidence that their Lhs is a good duplicate
classifier. If we set the Rhs threshold small enough, any Lhs eventually forms a valid MD. So only
MDs with high Rhs thresholds indicate interesting duplicate classifiers – otherwise we could search
for the classifiers directly ignoring the matching dependency construct all together. For this reason,
some rules and, hence, some duplicates are not discovered.

id address city name phone type

5 701 stone canyon rd bel air hotel bel air 310 472 1211 californian
6 701 stone canyon rd bel air bel air hotel 310 472 1211 californian
145 2880 las vegas blvd s las vegas steak house 702 734 0410 steak houses
550 2880 las vegas blvd s las vegas circus circus 702 734 0410 buffets

Table 9. Four records from the restaurant dataset; (5,6) is a duplicate and (145,550) a non-duplicate.

Compared to the other two approaches, the MD-based duplicate detection approach still performs
surprisingly well considering that no pre-labeling of the data was needed: It stays about 20% f1-
measure behind RF, but competes well with SVM (about 10% f1-measure better on restaurant and
10% worse on CORA). With 82% f1-measure on CORA and 64% f1-measure on restaurant, the absolute
results are also fine, especially considering that MD rules tend to favor precision over recall. High
precision values indicate high confidence in the discovered duplicates and, hence, support our claim
that the selected MDs are in fact relevant and interesting. The experiment has therefore shown
that HyMD does discover relevant MDs and that, although the result sets can be large (see CORA),
a user can select relevant MDs easily with our interestingness features and result ranking. In [20],
we show that the selection process can be learned and, hence, automated.
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7 CONCLUSION
We presented HyMD a hybrid algorithm for the discovery of all minimal, non-trivial MDs within
given similarity boundaries. The algorithm uses two search strategies, namely lattice traversal and
inference from record pairs, to combine their strengths and minimize their weaknesses. Due to
the resulting synergy effects, HyMD is significantly faster than both individual approaches and
can, therefore, discover the MDs with exact decision boundaries. This makes HyMD the first MD
discovery algorithm that can detect all MDs in one or across two different datasets. Because the
result sets can grow accordingly large, we also proposed five pruning techniques to focus the
discovery on interesting MDs.
The main contributions of HyMD are its new search space model that systematically captures

all possible MD candidates, novel lattice traversal and candidate pruning techniques, and the new
candidate validation and inference algorithms for MDs. Our experiments have shown that HyMD
could easily process relations larger than 3GB, which makes the algorithm applicable to many
real-world datasets.
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