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ABSTRACT
Duplicate detection is an integral part of data cleaning and
serves to identify multiple representations of same real-world
entities in (relational) datasets. Existing duplicate detection
approaches are effective, but they are also hard to parame-
terize or require a lot of pre-labeled training data. Both pa-
rameterization and pre-labeling are at least domain-specific
if not dataset-specific, which is a problem if a new dataset
needs to be cleaned.

For this reason, we propose a novel, rule-based and fully
automatic duplicate detection approach that is based on
matching dependencies (MDs). Our system uses automati-
cally discovered MDs, various dataset features, and known
gold standards to train a model that selects MDs as du-
plicate detection rules. Once trained, the model can select
useful MDs for duplicate detection on any new dataset. To
increase the generally low recall of MD-based data cleaning
approaches, we propose an additional boosting step. Our
experiments show that this approach reaches up to 94%
F-measure and 100% precision on our evaluation datasets,
which are good numbers considering that the system does
not require domain or target data-specific configuration.
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1. MD-BASED DUPLICATE DETECTION
Data cleaning is a multivariate process that identifies and

repairs various issues in given datasets. Duplicates, which
specify multiple representations of same real-world entities
in a database, are among the most addressed and harmful
data quality issues. Hence, their detection plays an impor-
tant role in data cleaning processes. The general problem
has been studied under different names, such as entity res-
olution, record linkage, and duplicate detection with slight
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variations in the application approach [1,2]. Because dupli-
cates are considered a very important problem with large
negative implications if not treated properly, a plethora of
approaches exist that effectively detect and merge duplicate
records [1, 2]. A large portion of these approaches is based
on machine learning (ML) techniques [2, 3]; several of them
employ deep learning methods [4, 5]. Most other duplicate
detection approaches are rule-based and follow systematic
detection strategies. Irrespective of whether ML is used or
not, all known solutions require either careful manual con-
figuration by domain experts and/or exhaustive pre-labeling
of training data, which are both difficult requirements that
we want to avoid. To this end, we use automatically dis-
covered matching dependencies (MDs) as rules and devise a
system called MDedup, which automatically selects the best
discovered MDs for the duplicate detection process, without
needing any special domain-specific configuration or train-
ing data for the dataset at hand. Other, non-MD-based rule
languages for duplicate detection, such as [6,7], allow to for-
mulate more expressive rules than MDs, but these rules are
not discoverable without domain knowledge.

Table 1 shows two example duplicates (pairs with ids 1
and 2) and two example non-duplicates (pairs with ids 3
and 4) from the real-world restaurants dataset (see Sec-
tion 6.1). Most duplicate classifiers effectively distinguish
true and false pairs, but many – especially ML-based ones –
cannot provide a human understandable reasoning for their
decision. Our approach, in contrast, does this by offering the
rules, i.e., MDs that marked the pairs as true duplicates.

Intuitively, a matching dependency is a functional de-
pendency X → A with a set of left-hand-side (LHS) at-
tributes X and a right-hand-side (RHS) attribute A where
attribute values do not need to be exactly equal but sim-
ilar w.r.t. some attribute-specific similarity measure and
some attribute- and dependency-specific similarity thresh-
old (more details in Section 3.1). The similarities in these
rules are expressed in the range of [0.0, 1.0] with 0.0 describ-
ing fully dissimilar values and 1.0 equal values.

For example, given the restaurants dataset, our MDedup
system detects (among others) the second pair of Table 1 as
duplicate providing the rule name0.7, address0.7 → phone0.75
as an explanation for this decision. This rule is interpreted
as follows: All record pairs in restaurants with a name simi-
larity of at least 0.7 and an address similarity of at least 0.7
have a phone similarity of at least 0.75. This if-this-then-
that rule is true for all record pairs, but the LHS matches
only a few records, which are those that are considered to be
duplicates. In our example, the LHS is true only for record
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Table 1: A sample of duplicate (<163,164> and <165,166>) and non-duplicate record pairs (<180,823> and
<676,811>) from the restaurants dataset. The floating point numbers indicate value pair similarities.

pair
id

record
id

name phone address city type

163 georgia grille 404 352 3517 2290 peachtree rd
peachtree square
shopping center

atlanta american

1 164 georgia grille 1.0 404 352 3517 1.0 2290 peachtree rd 0.36 atlanta 1.0 southwestern 0.17

165 hedgerose heights inn 404 233 7673 490 e paces ferry rd atlanta international
2 166 hedgerose heights inn

the
0.84 404 233 7673 1.0 490 e paces ferry rd ne 0.91 atlanta 1.0 continental 0.3

180 ritz carlton cafe
buckhead

404 237 2700 3434 peachtree rd ne atlanta american new

3 823 ritz carlton cafe at-
lanta

0.74 404 659 0400 0.58 181 peachtree st 0.6 atlanta 1.0 american new 1.0

676 johnny rockets la 213 651 3361 7507 melrose ave la american
4 811 johnny rockets at 0.89 770 955 6068 0.33 2970 cobb pkwy 0.18 atlanta 0.29 american 1.0

pair 2 so the MD classifies it as a duplicate; the pairs 1, 3,
and 4 also meet the MD, but they do not fulfill the LHS
condition. Note that matching dependencies can be used
also in other ways for data cleaning, e.g., to automatically
correct RHS attribute values [8, 9], but we focus on their
duplicate detection ability in this paper.

On the entire restaurants dataset, the matching depen-
dency name0.7, address0.7 → phone0.75 alone is able to achieve
an F-measure of 72% while maintaining a perfect precision
of 100%. To also capture record pair 1 as a duplicate, a
second MD-rule, namely name0.95, city0.82 → phone0.75, is
necessary. For this reason, our duplicate detection system
needs to identify good sets of MDs rather than a single MD.
Both MDs together achieve an F-measure of 78% with still
100% precision, which is the best possible result that can be
achieved with any combination of MD-rules on restaurants –
the remaining duplicates cannot be described by automati-
cally discoverable MDs. Because the set of discovered MDs
might also contain many MDs that match non-duplicates, it
is crucial to pick only those for duplicate detection that are
appropriate duplicate classifiers. In this paper, we propose
a machine learning approach that learns to distinguish good
from bad MD-rules based on several novel features.

More specifically, our MDedup duplicate detection system
works in two phases: training and application (see Figure 1).
The training phase first discovers all minimal MDs in pos-
sibly many pre-annotated datasets, i.e., ones with a gold
standard of duplicates. The discovery itself is fully auto-
matic and does not require the gold standard (Section 4.1).
The gold standard is then used after the discovery to find
the optimal subsets of discovered MDs, which are those
that achieve the highest F-measure scores. With the scored
MD combinations and certain characteristic features (Sec-
tion 4.4.1), MDedup trains a regression model to predict
effectiveness scores for arbitrary sets of MDs (Section 4.4).

The application phase then takes this general prediction
model to predict the scores of MD combinations from a dif-
ferent, dirty dataset (without own gold standard). After-
wards, the best MD combination is used as a classifier for a
first round of duplicate detection. Because the result usu-
ally has high precision but low recall, we propose a final
boosting step, in which the high precision duplicates are
used to train a binary classifier, which is a typically used
support vector machine (SVM) model, to find further dupli-

cates (Section 5). This final boosting step clearly improves
the system’s recall in our experiments (Section 6.3.3).

Intuitively, this paper addresses the transfer learning prob-
lem in duplicate detection (train on known datasets, ap-
ply on a new dataset) with a non-transfer learning solution
(learn how to judge MDCs regardless of the domains of their
datasets) by solving the problem on a different, domain-
agnostic level. Our contributions are summarized as follows:

MDedup system. A fully automatic end-to-end duplicate
detection system that is based on discovered matching de-
pendencies. The system is trained on a few datasets with a
gold standard, but can then be applied to arbitrary datasets.
It adapts several well known techniques and combines them
into a novel, domain-agnostic duplicate detection solution.

Feature definition. A set of novel features and heuristics
that serve to train a model on how to distinguish accurate
from inaccurate MDs for duplicate classification tasks.

MD selection. An efficient algorithm to select the best
subset of MDs for duplicate detection either w.r.t. some gold
standard or a pre-trained quality prediction ML model.

Evaluation. Various experiments that demonstrate the ef-
fectiveness of MDedup on eight real-world datasets with dif-
ferent domains and sizes.

We provide our MD combinations, the trained ML mod-
els, and the source code of MDedup online1 to be reused
in other cleaning projects. The rest of the paper is orga-
nized as follows: Section 2 provides a summary of related
work. Section 3 then introduces the most relevant concepts
before Section 4 describes our MDedup system’s training
methodology. Afterwards, Section 5 presents the applica-
tion methodology, used to obtain duplicates in a new data-
set. In Section 6, we evaluate MDedup and finally conclude
in Section 7 with further remarks and future work.

2. RELATED WORK
In this section, we first discuss related work in the broad

area of duplicate detection. We then concentrate on exist-
ing approaches for automatic duplicate classification, which
is the focus of this research. In the end, we discuss match-
ing dependencies and their applications in data cleaning. In

1
https://hpi.de/naumann/projects/repeatability/

duplicate-detection/mdedup.html
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Figure 1: Overview of our MDedup duplicate detection system; see larger figures in Figures 2 and 3.

summary, we argue that our system is the first fully au-
tomatic, domain-agnostic system that is able to learn du-
plicate classification characteristics on datasets with a gold
standard and use that knowledge on any other dataset.

The duplicate detection process. Research on identi-
fying duplicates has been present for decades, as the prob-
lem appears in many applications. The commonly applied
steps are (1) data preparation, (2) candidate indexing and
retrieval, (3) candidate comparison and scoring, (4) candi-
date classification as either matches or non-matches, and
(5) process evaluation [1, 2]. In this paper, we focus mostly
on the fourth part, which is the classification of record pairs.
For all the other steps, we use standard techniques (Sections
6.1 and 6.2). For our evaluation, we use the common metrics
F-measure, precision, and recall (Section 6.3).

Several tools exist that implement the previously discussed
duplicate detection phases [10]. Febrl [11] and JedAI [12] are
two examples developed in Python and Java, respectively.
Rule-based approaches, such as AJAX [13], let domain ex-
pert users specify duplicate detection rules in a declarative
way. In cases where gold standard duplicates are available
for the target dataset, duplicate detection rules can be gen-
erated automatically [6, 7]. In this work, though, we do not
assume pre-labeled data for the target dataset and, hence,
solve a more difficult problem.

Automatic duplicate classification. To date, no algo-
rithm exists that automatically discovers duplicates without
domain-specific parameterization and pre-labeled data (on
the target dataset). In contrast, classification in duplicate
detection is, in general, a well-researched area. Swoosh [14]
and Metablocking [15] are two example threshold-based ap-
proaches, but they are hard to parameterize without domain
expertise. The same is true for unsupervised approaches,
such as [16] and [17]: In [16], the blocking strategy, the
duplicate probability parameters, the similarity measures,
and the configuration of the SVMs are all selected manu-
ally; similarly, [17] needs to configure its SVM and requires
thresholds to be set for the Threshold and Nearest-based
approaches. Similarly to our approach, however, both [16]
and [17] also use an SVM classifier in a final boosting step.

A variety of works focus on ML models using either cus-
tom features or having artificial neural networks learn their

features [4, 5, 17]; the resulting models are always tailored
to the data they were trained on, because they learn how
to classify domain-specific record pairs rather than general
data cleaning rules. Decision Trees [18], Support Vector Ma-
chines (SVM) [17], and Deep Learning [4,5], are examples of
such ML systems. They all require pre-labled training data
from the data that needs to be cleaned. All these approaches
can be used in our system for the final boosting step. In our
implementation, though, we have chosen an SVM approach,
as it was also successfully used for boosting by [16] and [17].

Matching dependency based approaches have also been
used in duplicate detection [8,9,19]. However, they all start
with some trusted, manually picked MDs and do not auto-
matically select them – which is a major part of our contribu-
tion. These approaches also primarily aim at data correction
rather than duplicate detection [8, 9].

The Snorkel system [20] is similar to our approach in that
it also starts without pre-labeled data, but it requires some
starting rules or functions whose definition, again, requires
domain knowledge in the target dataset. The record link-
age system of Negahban et al. [21] is able to match records
across datasets without needing example matches between
these two datasets, which is similar to our setup. The sys-
tem, however, assumes that the two datasets share the same
domain and that gold standard matches are available that
linked both datasets to same other datasets – two very re-
strictive assumptions that are hardly met in practice.

Matching dependencies. Functional dependencies (FDs)
are one of the most recognized types of data dependencies,
also due to their capabilities in data cleaning when used in
relaxed forms [22]. Matching dependencies (MDs) are one
such relaxed form that was first introduced by Fan [23]. MDs
extend FDs by also matching similar and not only strictly
equal record values (see Section 3.1).

Song and Chen [24, 25] proposed the first discovery algo-
rithm for MDs. The most recent algorithm for automatic
MD discovery is HyMD [26]. This algorithm is the to date
most efficient approach and we, therefore, use it in our du-
plicate detection system (see Section 4.1). However, any
MD profiling algorithm can be used to serve the MDs.

Matching dependencies have been used in various works
for data cleaning purposes. In [8,9], MDs are used in a query
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answering environment. Here Minimally Resolved Instances
(MRIs) define the final result set of records for a given ques-
tion and they are produced by iteratively enforcing right-
hand-sides of MDs in a repair step. Another approach by
Bahmani et al. uses MDs for candidate blocking and to
merge duplicate records [19]. For the actual duplicate clas-
sification, however, they use standard ML techniques, such
as SVMs and K-Nearest Neighbors (KNN). In summary, all
these approaches use MDs to identify duplicate candidates
and to repair right-hand-side values. In our work, we focus
on the detection of duplicates rather than their correction
or resolution. In contrast to all MD-based previous works,
we use MDs for the classification only and solve the problem
of selecting proper MDs in unsupervised scenarios where no
gold standard with labeled duplicate pairs is available.

3. BACKGROUND AND NOTATIONS
In this section, we first give a more detailed definition

of MDs and explain how we use them for duplicate dete-
ction (Section 3.1). We then introduce the concept of match-
ing dependency combinations (Section 3.2).

3.1 Matching dependencies
Let R be a relational schema and r an instance of R. We

identify the attributes of R by index, i.e., R = 〈A1, A2, ..., Ay〉.
A functional dependency (FD) on R is defined as X → Ai
with X ⊆ R and Ai ∈ R. An FD denotes that all pairs of
records with same X values also have same Ai values. X
and Ai are also known as LHS and RHS, respectively.

Matching dependencies are a relaxation of functional de-
pendencies as they introduce three extensions: First, they
relax the value comparisons, which is strictly equal (=) in
FDs, by incorporating similarity metrics; this makes MDs
useful for duplicate detection. Second, records can in the-
ory be matched on different attributes, although this is not
particularly useful for duplicate detection purposes. Third,
they can match records across different relations, which is
useful in the scenario of record linkage where the similarity
join is between two relations (R ./ S); for the sake of sim-
plicity and without loss of generality, we focus in this paper
on single relation joins, i.e., self-joins (R ./ R).

The fuzzy matching of MDs is accomplished using a set of
similarity measures (≈), such as Levenshtein [27] and Jac-
card [28]. These similarity measures calculate similarities
in the range of [0.0, 1.0]. To classify two values as match
or non-match, MDs also specify a decision boundary, which
is defined in [0.0, 1.0]. Similarities greater than or equal
to this boundary are considered matches and lower similar-
ities non-matches. The decision boundaries of the LHS are
denoted as λ = {λ1, λ2, ..., λm} whereas the RHS has only
one decision boundary ρ. Due to their strong connection,
we call the combination of a similarity measure (≈i) and a
decision boundary λi (or ρ) a similarity classifier ≈i,λi (or
≈i,ρ). This leads us to the following definition [26]:

Definition 1 (Matching dependency). Given a relational
schema R with attributes Ai, Aj ∈ R, its instance r, and
similarity classifiers ≈i,λi and ≈i,ρ, a matching dependency
(MD) ϕ is defined as follows:

∀rs, rt ∈ r :

(w−1∧
i=1

rs[Ai] ≈i,λi rt[Ai]

)
→ rs[Aw] ≈w,ρ rt[Aw]

In other words, a matching dependency states that if two
records rs and rt match in all their Ai values (attribute-
specific similarity calculated by ≈i greater than or equal to
λi) then their Aw values need to be at least ρ similar w.r.t.
≈w. Note that in the broader definition of MDs the two
Ai attributes and the two Aw attributes can be different
attributes and even attributes from different relations.

For practical reasons and because there is usually only one
reasonable similarity measure per attribute, we usually use
the following short notation to specify MDs:(w−1∧

i=1

Ai,λi

)
→ Aw,ρ

The MD address0.7, name0.7, type0.71 → phone1.0, which is
a true MD in the restaurants dataset (see example records
in Table 1), follows this short notation. If for two records
all LHS similarities match, they match the RHS similarity.

To use an MD for duplicate detection, we simply consider
its LHS as a classifier: All record pairs that match the MD’s
LHS are labeled as duplicate. Intuitively, the LHS is the
matching rule that we are looking for and the presence of
a valid RHS is an indicator (for rule discovery and scoring)
that the LHS is relevant. For the majority of MDs, this in-
ference leads to poor results. The MD name0.0 → phone0.0,
for instance, is true on any instance of the restaurants data-
set and it matches all record pairs. Hence, the challenge
is to identify such MDs that are useful duplicate classifiers.
The rule address0.7, name0.7, type0.71 → phone1.0, for exam-
ple, yields an F-measure of 72%, which is relatively good.
We discuss indicators that hint towards useful MDs for du-
plicate classification in Section 4.4.1.

3.2 Matching dependency combinations
As we illustrated in Section 1, one MD might not be able

to capture all duplicates. Our approach, therefore, considers
multiple MDs for the classification. We refer to these sets
of MDs as matching dependency combinations:

Definition 2 (Matching dependency combination). Given
the set of all MDs Φ, a matching dependency combination
(MDC) χ is any selection of MDs with χ ⊆ Φ.

An MDC χ can be used as a duplicate classifier by consid-
ering a record pair as duplicate, iff it matches the LHS of at
least one MD ϕ ∈ χ. Technically, an MDC-based duplicate
classifier combines a set of MD-based duplicate classifiers
via logical or -operations. In this way, different MDs can
be used to classify different kinds of duplicates. The goal
of MD-based duplicate detection in general is therefore to
predict the best MDC for the duplicate classification step.

To illustrate, consider again our running example of Ta-
ble 1, which offers 5 MDs. Our MDC selection strategy
(see Section 4.2) then selects 17 MDCs in total from the
25 − 1 = 31 possible combinations. One of these MDCs
consists of the two MDs name0.7, address0.7 → phone0.75 and
name0.95, city0.82 → phone0.75, which offer the best possible
F-measure of 78% (and a precision of 100%).

4. MDEDUP TRAINING
The MDedup process is comprised of two phases, namely

training and application. We explain the training phase now
and the application phase in Section 5. As already shown in
the MDedup overview of Figure 1, the training phase takes
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several datasets and their labelled duplicates as input and,
then, runs five basic steps: At first, the pipeline discovers all
minimal MDs (Section 4.1). Using our MDC selection algo-
rithm, it then selects MDCs that produce possibly high qual-
ity results when used as duplicate classifiers (Section 4.2).
In the third step, this set of high quality MDCs is enriched
with further MDCs of varying quality via systematic expan-
sion (Section 4.3). Afterwards, MDedup’s training pipeline
stores all scored MDCs in one training set that integrates
the results calculated on different annotated datasets. The
fifth and last step of the pipeline generates a set of features
for the scored MDCs to then use both the MDCs and their
features to train a machine learning (ML) model on how
to predict the F-measure of a given MDC without a gold
standard of duplicate pairs (Section 4.4).

4.1 MD discovery
The main asset of our system are the MDs that we use

for duplicate classification, because they prescribe the opti-
mal recall and precision that we can achieve. It is therefore
essential to discover many and good MDs – in our imple-
mentation of MDedup, we discover all minimal, non-trivial
MDs. Although any set of MDs can be used as input for
our duplicate detection system, the complete set of minimal
and non-trivial MDs is promising, because these MDs are
by definition very close to core data patterns; it is also what
most existing dependency profiling algorithms discover.

An MD ϕ is minimal if no other MD ϕ′ with same LHS
and RHS exists, such that only one LHS threshold is smaller
(i.e., more general) or the RHS threshold is larger (i.e., more
restrictive); given a valid MD, raising LHS thresholds or
decreasing the RHS threshold will always generate a valid
MD. Additionally, an MD ϕ is trivial if its RHS attribute
is contained in its LHS attributes with either the same or a
higher similarity threshold; if the LHS matches only those
records with at least similarity x in attribute Ai, then these
records are trivially also at least x (or less) similar in Ai.

MD profiling algorithms, such as those published by Song
and Chen [24, 25], can effectively serve our pipeline with
MDs. The implementation of MDedup that we developed
for this paper, however, uses our own algorithm HyMD [26]
— the most efficient MD algorithm to date. It discovers all
minimal, non-trivial MDs using several indexes to identify
similar records, along with a number of pruning rules that
effectively tame the exponentially large search space.

4.2 MDC selection
The goal of MDedup’s MDC selection component is to find

MDCs that produce possibly high F-measure scores when
used as duplicate classifiers. Identifying which combinations
of MDs are the best is a challenging task, because the com-
plexity of checking all possible combinations of a set ofm dis-
covered MDs is exponential, i.e, in O(2m). More specifically,
there are

∑m
k=1

(
m
k

)
candidates to be evaluated. The prob-

lem is particularly hard to solve, because our system often
deals with thousands of MDs. For this reason, we propose a
greedy selection algorithm that systematically searches the
combination space for MDCs with high F-measures. The
greediness of the algorithm decides which combinations are
worth being further investigated, pruning all those MDCs on
the way that offer sub-optimal F-measure scores. Because
optimizing for F-measure is a non-convex problem [29] and
we propose a linear, bottom-up greedy search, our approach

does not guarantee optimality. It however always found the
optimal combination in our experiments.

Before we discuss our lattice traversal-based search pro-
cess, we first define certain preliminaries. To keep the search
within reasonable time constraints, but at the same time
consider a variety of possible solutions, we define a param-
eter k, which controls the fan-out of the process. In each
level of the lattice, a maximum of top k MDCs produce
further candidate MDCs to be considered in the next higher
level of the lattice, with each candidate MDC being one MD
larger than its predecessor. To consider more variations as
we go up the lattice levels, we employ another trick. In-
stead of just combining the top k candidates of each level
with each other, which would produce a narrower fan-out,
we combine every candidate with every MD of the first level.
This grows the search space linearly, but at the same time
allows us to consider some variation in our candidates. Nev-
ertheless, the main focus is kept on the combinations that
produce good scores. The process could also be character-
ized as “hill climbing with top-k”. Although this approach
is heuristic, an exhaustive, i.e., complete candidate testing
approach produced the same results on smaller datasets in
our experiments. We label the greedily selected MDCs as
“selected MDCs” and define them as follows:

Definition 3 (Selected MDC). An MDC χ is defined as
“selected” if ∃ MD ϕ where χ− {ϕ} reduces its score and @
ϕ′ where χ ∪ {ϕ′} improves its score.

Based on this definition, Algorithm 1 solves MDedup’s
selection process. The parameters of this process are the
HyMD algorithm that discovers the MDs, the Oracle al-
gorithm that calculates the F-measure score given an MDC,
and the search scope k of the greedy approach. For the
training phase, the Oracle algorithm uses the given dupli-
cate gold standards; the calculations follow the principles
that we described in Section 3.2. In the application phase,
the Oracle algorithm uses the trained MDC scoring model.

The MDC selection algorithm starts by calling HyMD to
discover the MDs for this dataset (line 2). Then, it scores
the initial MDCs, where every MDC contains exactly one
MD (line 3). These MDCs are shown in Figure 2 at level 1.
Subsequently, it filters out MDs with a score of zero to re-
duce the search space (line 4). Next, two sets are initialized
(lines 5 and 6): the best MDCs for the currently examined
level (levelSelected) and the overall best MDCs (overallSe-
lected). None of the overall best MDCs may be dominated
by another MDC of the levelSelected set. The algorithm
then starts to iterate all search space levels from level one
upwards as long as there are more non-dominated MDCs
in the current level (line 7). For each level, the algorithm
creates the respective candidate MDCs, based on the MDCs
of the previous level (lines 8 to 11). For each generated
set, the algorithm iterates over all its candidates, calculates
their score, and if that score is higher than the scores of
the MDCs that created them, they are added to the levelSe-
lected set (lines 12 to 17). It proceeds by keeping only the k
best MDCs (line 18), while these k MDCs (levelSelected) are
added to the overallSelected set (line 19). Consequently, it
removes the creator MDCs of the selected k from the over-
allSelected set (lines 20 and 21). We do not remove MDCs
that create higher scored MDCs if these higher scored MDCs
are not selected in the top k of their level to maintain a
higher diversity in the final set. Finally, the overallSelected
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Algorithm 1: MDC selection

1 function MDC selection(HyMD,Oracle, k)
/* Discover, score, and filter MDs */

2 mds← HyMD.discoverMDs()
3 mds← Oracle.score(mds)
4 mds← mds.filter(lambda md : md.score > 0)

/* Initialize MD combinations sets */

5 levelSelected← topk(mds, k)
6 overallSelected← {levelSelected} /* Copy */

7 while |levelSelected| > 0 do
/* Combine with single MDs */

8 candidates← {∅}
9 for mdc ∈ levelSelected do

10 for md ∈ mds \ mdc do
// mdc ∪md : {1, 2} ∪ {3} = {1, 2, 3}

11 candidates.add(mdc ∪md)

/* Score MDCs and keep those with

improved score */

12 levelSelected← {∅}
13 for mdc ∈ candidates do
14 mdc.score = Oracle.score(mdc)
15 creatorsScore = max(mdc.creators.scores)
16 if mdc.score > creatorsScore then
17 levelSelected.add(mdc)

/* Filter and save topk, and remove

their creators */

18 levelSelected← topk(levelSelected, k)
19 overallSelected.addAll(levelSelected)
20 for mdc ∈ levelSelected do
21 overallSelected.removeAll(mdc.creators)

22 return overallSelected

set containing all the best, non-dominated MDCs across all
levels is returned (line 22).

To better understand the selection process, consider the
example in Figure 2 with k = 2. It shows a lattice of MDCs
with the top MDC describing the combination of all MDs
and the bottom holding all single-MD MDCs. The execution
begins at the bottom by considering the single-MD MDCs,
which are given by the MD discovery algorithm (see Sec-
tion 4.1). As explained previously, we consider only the
top k candidates with highest F-measure scores to reduce
the search space. After selecting the top k (levelSelected),
which are {ϕ1} and {ϕ3}, from the first level, the algorithm
combines them with every other possible MD to produce
the candidates for the next level. Moving to level 2, notice
that the combination {ϕ2, ϕ4} is not considered, as neither
{ϕ2} nor {ϕ4} were selected in the previous levelSelected.
By calculating the MDC scores, we find that all MDCs of
size 2 have a better score than their creators, i.e., {ϕ1} and
{ϕ3}, except one, which is MDC {ϕ3, ϕ4} with a worse score
than {ϕ3}; thus it is eliminated and not considered for the
levelSelected selection. Because {ϕ1} and {ϕ3} created de-
scendants with better scores, they are removed from the
final result set (overallSelected). The same process now re-
peats at level 2: We calculate the scores for each MDC and
keep the top k, which are {ϕ1, ϕ2} and {ϕ2, ϕ3}. Proceed-
ing to level 3, we find only one MDC, which is {ϕ1, ϕ2, ϕ4},
that is not dominated by its creators. In the end, we select

{φ1} {φ2} {φ3} {φ4}

{φ1,φ2} {φ1,φ3} {φ1,φ4} {φ2,φ3} {φ3,φ4}

overall selected

dominated by 

higher level

dominated by 

lower level

{φ1,φ2,φ3} {φ1,φ2,φ4} {φ2,φ3,φ4}

{φ1,φ2,φ3,φ4}

level 1

level 2

level 3

level 4

0.6 0.4 0.5 0.45

0.67 0.61 0.64 0.65 0.49

0.62 0.68 0.61

0.65

Figure 2: An example for the selection algorithm on
an MDC lattice with four input MDs and k = 2. The
finally selected MDCs are {ϕ1, ϕ2, ϕ4} and {ϕ2, ϕ3}.

{ϕ1, ϕ2, ϕ4} and {ϕ2, ϕ3} in overallSelected as final result.

4.3 MDC expansion
The goal of MDedup’s training phase is to create a model

that can predict F-measure scores for MDCs. Because most
discovered MDCs have a low F-measure score, the MD se-
lection step finds a set of k MDCs with high scores. This set
is, therefore, biased towards top performing MDCs and it is
rather small. Most ML models, however, behave better if
their training data is more diverse and they are given more
data [30]. So to ensure that enough training instances with
a large variety in their properties exist, we propose an MDC
expansion process that consists of two strategies: neighbor
expansion and random sampling.

Given the top k MDCs from the selection step, the neigh-
bor expansion strategy considers neighboring MDCs around
these selected MDCs. This is achieved by an iterative pro-
cess where we randomly select an input MDC and then add,
remove, or replace some MDs using a Gaussian distribution,
thus ensuring a focus on neighboring MDCs. Figure 3 visual-
izes this concept: Rectangular nodes represent the initially
selected MDCs and their shaded neighborhoods show the
Gaussian distribution from which the additional MDCs are
generated. By taking neighboring MDCs of top performing
MDCs into the training set, we enable a machine learning
algorithm to learn the precise characteristics of why certain
MDCs perform well. The result of this strategy therefore
produces a larger set of MDCs that describes the few top
performing MDCs well.

Because the neighbor expansion strategy is still biased
around top scored MDCs, the random sampling strategy
injects MDCs of larger variety: It randomly creates (and
scores) MDCs by considering the entire search space up to
the maximum level reached by the MDC selection, disre-
garding selected and neighboring MDCs. In Figure 3’s vi-
sualization, the random MDCs are scattered all over the
surface. We control the overall size of the expansion set
(relative to the number of selected MDCs), equally for both
strategies, with the parameter expansion factor.

4.4 Feature generation and MDC prediction
In this section, we describe the machine learning model

that we train to predict F-measure scores for MDCs. MDe-
dup needs this model to score the MDCs in the application
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selected MDCsneighboring MDCs

random MDCs

Figure 3: A visualization for two expansion strate-
gies: neighbor expansion and random sampling.
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threshold (×7)
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confidence

support
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uniqueness

completeness

Figure 4: Taxonomy of the features based on the
data required for their calculation.

phase where no gold standard is available to calculate the
exact F-measure values (see Section 5). To build the ML
model, we need to specify a set of features and the pre-
diction strategy. For the features, we collected thirty-five
metrics of MDC characteristics that are possibly relevant
for the duplicate classification performance of the MDC in-
stances (see Section 4.4.1). For the prediction strategy, we
propose a Gaussian regression process (see Section 4.4.2).

4.4.1 Assembling features for MDCs
To predict the F-measure an MDC would achieve when

used as a duplicate classifier, we determine several features
describing the MDC itself and the data for which it holds.
These features need to be available on any relational input
dataset and do not need a gold standard.

In total, we define thirty-five features, which are out-
lined in the taxonomy presented in Figure 4. Based on this
taxonomy, we have the following main categories: instance
statistics, match statistics, and MDC statistics. First, the
instance statistics metrics describe basic statistics of the
relational input dataset, such as the median completeness
or uniqueness of attributes w.r.t. all attributes used in an
MDC. Second, the match statistics metrics describe how
well an MDC is supported by the data. Finally, the mdc
statistics metrics describe the structure of an MDC and its
MDs. In particular, these are metrics based on MDC char-
acteristics, such as their size, and the similarity measures,
attributes, and thresholds that are used in the MDs’ LHSs
and RHSs. Having explained the main feature categories,
we now describe the individual features.

Completeness. Completeness is the percentage of records

with no null values in the attributes of the MDC. Null val-
ues are not useful for record matching and, therefore, this
feature can help to disregard MDCs that match on sparse or
empty data. With ‘⊥’ representing null values and attr(χ)
the union of all attributes used by the MDC’s MDs, the
completeness feature is calculated as follows:

compl(χ) =
|{ri ∈ r | ∀Aj ∈ attr(χ) : ri[Aj ] 6= ⊥}|

|r|

Uniqueness. The uniqueness of an MDC is the fraction of
unique value combinations in the MDC’s attributes, relative
to the overall number of records. A high uniqueness is a good
indication that the given set of attributes is suitable as a key,
in that it can uniquely identify a record when comparing it
with others. If we represent the projection of the relational
instance r to all the attributes of the MDC χ as r[attr(χ)],
the uniqueness of χ is defined as follows:

uniq(χ) =
|{ri ∈ r[attr(χ)]}|

|r|

Support. The support of an MDC is the percentage of
record pairs that match at least one MD of the MDC on
the LHS (suppLHS(χ)), the RHS (suppRHS(χ)), or both
sides (supp(χ)). In this way, the support features encode
how strong the MDC is and what duplicate detection recall
we can expect. For exact MDs, which are all MDs that we
discover, suppLHS(χ) = supp(χ). For definition purposes,
let p = r× r be the set of all record pairs and match(pi, X)
a function that returns true if the record pair pi matches
the match conditions X, i.e., it matches

∧w−1
i=1 rs[Ai] ≈i,λi

rt[Ai] for LHSs and rs[Aw] ≈w,ρ rt[Aw] for RHSs. Then the
support features are defined by the following three formulas:

supp(χ) =
|{pi ∈ p | ∃ϕ ∈ χ : match(pi, ϕ.LHS ∪ ϕ.RHS)}|

|p|

suppLHS(χ) =
|{pi ∈ p | ∃ϕ ∈ χ : match(pi, ϕ.LHS)}|

|p|

suppRHS(χ) =
|{pi ∈ p | ∃ϕ ∈ χ : match(pi, ϕ.RHS)}|

|p|

The formulas are a translation of supp(X) = |{t∈T ;X⊆t|
|T |

[31]. Caching these scores after their calculation allows us
to re-use them for the calculation of the following metrics.

Confidence. The confidence feature describes the portion
of the data that satisfies at least one MD of the MDC. If
all MDs are correct, i.e., no approximation was used dur-
ing MD discovery, the confidence is always 100%; otherwise,
the feature allows the algorithm to trust correct MDCs more
than partially violated MDCs. Using our exact MD discov-
ery algorithm, the confidence measure is basically irrelevant.
However, it might be useful in alternative setups. Hence, the
feature definition is as follows:

conf(χ) =
supp(χ)

suppLHS(χ)

Lift. The lift feature is a measure for correlation and repre-
sents the ratio of record pairs where both LHS and RHS are
satisfied, divided by the product of independent percentages
for LHS and RHS. A number larger than 1 indicates that
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the two sides tend to co-occur, meaning that if one appears
the other will appear as well. On the other hand, a number
smaller than one means the opposite. The calculation uses
the following formula:

lift(χ) =
supp(χ)

suppLHS(χ) · suppRHS(χ)

Conviction. Conviction is a metric that can be interpreted
as the fraction of the expected frequency that a LHS co-
occurs with its RHS. Conviction values higher than 1 indi-
cate to what extent the associations of the MDs’ LHSs and
RHSs are random. This should help the model to prefer
meaningful dependencies over spurious ones. The feature is
defined as follows:

conv(χ) =
1− suppRHS(χ)

1− conf(χ)

MD statistics. The MD statistics are set of features that
describe significant characteristics of a given MDC by con-
sidering only its definition and not the data is was discovered
from. The features use the following elements of the MDs:
attributes, similarity measures, and thresholds, as well as their
column matches, which is the composition of the previous
three, i.e., Ai, ≈i, and λi. Each MD in an MDC offers a set
of these elements. We define a feature for each of these four
element sets by calculating the following set operations:
• Intersection size: The number of elements that exist

among all MDs (1).
• Union size: The number of elements that exist in at

least one MD (2).
• Jaccard distance: The distance between common at-

tributes and specific attributes, which is calculated by
dividing the intersection size with the union size; as
a result, we get a normalized value in the range of
[0.0, 1.0] (3).
• Descriptive statistic: Significant and extreme elements

over all sets, calculated with the basic metrics of min (4),
median (5), max (6), and stdev (7).

Cardinality. When increasing the size of an MDC by
adding more MDs, its recall increases monotonically and
its precision decreases monotonically. The cardinality of an
MDC, which is simply defined as card(χ) = |χ|, is therefore
an important feature for estimating the MDC’s F-measure.
Small MDCs would be preferable for human readability,
whereas large MDCs can cover more special cases.

4.4.2 Regression for MDC score prediction
Using the feature definitions discussed above, we can now

generate an instance set of scored MDCs with their MDC-
specific features. With this instance set, we can train a
machine learning model to predict the F-measure score for
arbitrary MDs and their datasets. Although different types
of models could be considered for this task, regression models
seem to be a natural fit. They learn to estimate the rela-
tionship between a feature set that for us is MDC-specific,
and a target variable, which in this case is the F-measure.
Although many different regression models exist, we pro-
pose a Gaussian Process [31] for two main reasons: First,
it is a capable of learning complex data patterns, which is
necessary considering the many factors that influence the
performance of an MD as a duplicate classifier. Second, it
has a relatively small set of parameters, which is important,

because our MDedup target system should be a largely au-
tomatic system and a small parameter space simplifies the
hyperparameter tuning phase. We describe the configura-
tion in further detail in Section 6.2.

5. MDEDUP APPLICATION
This section describes the application phase of the MDe-

dup duplicate detection system. This phase is shown as the
lower pipeline in Figure 1 and starts with a dirty dataset
for which no gold standard records exist. Instead of using
pre-labeled data for the scoring of MDCs, the application
phase takes the regression model that was constructed on
other datasets in the training phase and is able to predict F-
measure scores for MDCs w.r.t. their relational instance data
(see Section 4). Because most of the application pipeline
uses the same components as the training pipeline, we focus
on the differences in the following descriptions.

At first, the application pipeline discovers all minimal
MDs on the dirty input dataset with the same algorithm
as for the training phase (Section 4.1). In the next step, the
pipeline uses our MDC selection algorithm (Section 4.2) to
greedily select the top k MDCs with the highest F-measure
scores. Instead of scoring each MDC using the gold stan-
dard, the selection algorithm in the application phase uses
the regression model provided by the training phase (Sec-
tion 4.4). The results of the selection are then passed to
the MDC store were MDedup picks only the highest scored
MDC as the duplicate classifier. The next step of the appli-
cation pipeline then detects all record pairs that this MDC
classifier matches as duplicates. As a final step, MDedup
uses the discovered duplicate pairs to boost the overall F-
measure of the process: With the known duplicates, the
pipeline trains a state-of-the-art SVM model to then clas-
sify record pairs as duplicates or non-duplicates; this model
is applied to the input data to refine and complement the
duplicates.

MDC selection. A benefit of using a regression model for
the MDC scoring is that we can easily convert our MDC se-
lection approach for the application phase without any gold
standard. Looking back at Algorithm 1, the score of every
MDC is given by the Oracle algorithm. In the absence of a
gold standard, this Oracle now needs to use the regression
model for the F-measure calculation.

To predict the F-measure for an MDC, the Oracle first
generates a feature vector with the features discussed in Sec-
tion 4.4.1. This feature vector is then provided to the regres-
sion model, which returns an estimate for the F-measure.
The lattice traversal and top-k selection strategy in the ap-
plication phase is identical to the training phase. The result
of the MDC selection step is a list of MDC associated with
their predicted F-measure scores.

First-cut duplicate detection. Given the highest scored
MDC of the selection step, MDedup executes its first dupli-
cate detection pass. This pass involves the three commonly
applied steps of candidate indexing, candidate matching,
and candidate classification. In the following, we briefly
describe our implementations for these steps.

The candidate indexing method is responsible for the se-
lection of record pairs that should be tested. The duplicate
detection could, in theory, be applied to all pairs of records
in the input relation, but this large number of candidates is,
in practice, usually reduced by blocking methods [1, 2] that

719



divide the quadratic candidate space into smaller subsets
(i.e., blocks) according to a predefined partitioning key. To
make sure that similar records fall into at least one common
block and, hence, can get matched, MDedup takes every at-
tribute as a partitioning key once; records with same value in
that attribute are put into the same block. For large values,
i.e., ones that are comprised of more than four words, the
algorithm extracts word n-grams, with n = 4, from the value
where each word n-gram defines a bucket; records with long
values are, in this way, placed into multiple buckets. The
result of indexing are several, overlapping blocks of records.

For each block, the candidate matching step creates all
pairs of records within the block. Because the blocks share
large overlaps, MDedup places all pairs from all blocks into
a common set that removes redundant pairs, reducing the
matching effort significantly. All remaining candidate pairs
are then compared by calculating their attribute-wise simi-
larities, for all attributes and similarities specified in MDs.
We finally store the candidate set to use it not only for this
first-cut duplicate detection process, but also for the refined
duplicate detection step later on.

For the candidate classification, MDedup applies the high-
est scored MDC as a duplicate classifier to every record pair,
as described in Section 3.2. The result are two sets, a set of
duplicates and a set of non-duplicates.

Refined duplicate detection. The evaluation of the first-
cut duplicate detection results (in Section 6.3.2) shows that
the discovered duplicate sets have high precision but rather
low recall. For this reason, we propose a final boosting step
to expand the result set.

Boosting is typically used to sequentially connect learning
models in a way that each model can enhance the predic-
tion of the previous models and reduce the overall bias and
variance of the results. Because the first-cut duplicate dete-
ction pass provided us with a labeled set of record pairs and
their similarities, we can use them to train a typical binary
classification model. The overall rationale of this boosting
approach is that MDCs identify duplicates based on very
specific MD rules that cannot capture all kinds of similarity
patterns. SVMs, in contrast, learn schema-specific similar-
ity patterns and are, therefore, able to match records more
precisely. Combining both approaches results in an overall
schema independent but still flexible classification approach.

Although many complex boosting approaches, such as
AdaBoost [32], have been proposed that combine multiple
models on an instance level, we propose a simple Support
Vector Machine (SVM) approach, because SVMs have al-
ready proven to be effective as a boosting duplicate detection
step [16,17]. Since training a binary classification model re-
quires labels of both classes, the application pipeline takes
the entire set of duplicates and a subset of the non-duplicates,
which is ten times larger than the duplicates set. With the
record pairs, their similarities and duplicate labels, we fi-
nally train our SVM model. After training, we apply the
model as a duplicate classifier to our candidate set to re-
trieve the final duplicates. We provide more details on the
configuration of the boosting step in Section 6.2.

6. EVALUATION
In this section, we present our evaluation to understand

the advantages and drawbacks of using matching depen-
dencies for duplicate detection. We begin in Section 6.1

by describing our experimental setup and the data that we
used for training and testing. Section 6.2 then proposes ro-
bust configuration parameters for MDedup based on several
smaller experiments. In Section 6.3, we present the results
of three larger experiments that evaluate the effectiveness of
the MDC selection, MDC prediction, and boosting step.

6.1 Preliminaries
In this section, we first introduce our experimental setup.

Then, we discuss our datasets and how we complement their
gold standards of duplicates with challenging non-duplicates.

Experimental setup. All experiments were conducted on
a machine with 4x Intel Xeon E7-8837 (2.67GHz, Octa-Core)
and 256GB of RAM. All 16 hyperthreaded cores were used
for parallelization. The system uses Ubuntu 18.04 LTS and
Oracle Java 1.8. The source code, datasets, and evaluation
results are available on our website2.

Datasets. To train and test MDedup, we use eight datasets
of heterogeneous domains and their known gold standards:
Amazon-Walmart (products), CDDB (audio), Census (cen-
sus), Cora (bibliography), DBLP-Scholar (bibliography), Ho-
tels (lodging), NCVoters (voter registrations), and Restau-
rants (restaurants). Table 2 lists the datasets’ number of
records, duplicates (DPL) and non-duplicates (NDPL). For
all datasets, we select only those attributes for the MD dis-
covery that have a completeness >10%, i.e., at least 10%
of the values are non-null, because sparse columns make the
discovery more difficult and are not useful for duplicate clas-
sification. We also exclude IDs, because they often encode
the gold standard and, hence, make the task trivial. Only
for NCVoters, we applied a stricter attribute filtering due to
the schema size of that dataset. For more details and infor-
mation about which attributes were used exactly, we refer
to our website.

Gold standards. The gold standards of our evaluation
datasets contain lists of record pairs that uniquely identify
duplicates. In case these lists are not transitively closed
(CDDB, Census, and Hotels), we add all transitive pairs as
duplicates to the gold standard in a pre-processing step.

To train and test a classifier, we also require a number
of negative examples, i.e., non-duplicate pairs. When cre-
ating these pairs, we made sure that records are not paired
up randomly, because most random pairs have a very low
similarity and are, therefore, trivial to classify. More useful
for training and more realistic for testing are non-duplicate
pairs that are similar and, hence, harder to classify. To this
end, we apply blocking as described in Section 5 on the in-
put relation and pick non-duplicate record pairs from within
the blocks; in this way, the non-duplicates are guaranteed to
be similar in at least the blocking key. When selecting non-
duplicates, we also enforce a ratio of 1:10 (DPLs to NDPLs)
to not over-represent the class of non-duplicates. For Cora
and Hotels, we took all non-duplicates form the blocking,
which resulted in about the ratio 1:4 for both datasets.

6.2 MDedup configuration
In this section, we summarize MDedup’s configuration per

pipeline step and propose robust default values so that the
system can be deployed without parameter tuning.

2
https://hpi.de/naumann/projects/repeatability/

duplicate-detection/mdedup.html
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Table 2: Dataset statistics: number of records, attributes, duplicates (DPL), non-duplicates (NDPL), match-
ing dependencies (MDs), matching dependency combinations (MDCs), and execution times across phases.

Dataset Records Attr. DPL NDPL MDs
MDCs Execution time (hh:mm:ss)

Selection Prediction HyMD Selection Prediction

Census 841 5 376 3,760 15 31 31 00:00:07 00:00:01 00:00:19
Restaurants 864 5 112 1,120 5 17 9 00:00:07 00:00:10 00:00:39
DBLP-Scholar 66,879 5 5,347 53,470 5 1 10 04:54:15 00:00:03 00:00:21
CDDB 9,763 6 300 3,000 11 37 11 04:21:44 00:00:01 00:00:15
Hotels 364,965 10 94,677 368,002 159 144 48 03:10:43 00:00:42 03:29:30
Cora 1,879 13 64,578 268,082 74 288 80 00:01:18 00:00:19 00:11:42
Amazon-Walmart 24,583 13 1,154 11,540 132,732 96 17 14:03:42 00:00:06 01:10:11
NCVoters 14,183 25 9,819 98,142 149,950 400 60 58:21:14 00:04:46 07:21:19

MD Discovery For the MD discovery, we use the HyMD
algorithm and its default parameterization in both the train-
ing and application phase [26]. Regarding the similarity
measures, we consider all attributes as alphanumeric and
use the following principles: In general, all attributes are
compared with the Levenshtein similarity measure [27]; at-
tributes with a mean value length of more than 100 charac-
ters, however, use the Jaccard similarity measure [28] that
compares tokens instead of characters. Jaccard is beneficial
for attributes with long values, because comparing long val-
ues on character basis is slow and, in general, in-effective:
They often contain descriptions, comments, and other free-
text fields that are less structured and words can be on dif-
ferent positions across two duplicate records.

For both measures, we set the minimum similarity thresh-
old for discovered MDs to 0.7 – lower thresholds have not
shown better results in our experiments, but the discovery
time increases significantly with decreasing thresholds.

Table 2 contains additional information about the exe-
cution of HyMD on our evaluation datasets. The datasets
Amazon-Walmart and NCVoters produce a large number of
MDs and, hence, also require the longest execution times.

MDC Selection. The MDC selection steps in both the
training and application phase require the parameter k. This
parameter specifies the number of MDCs with the highest
score that are selected in each level of the lattice and passed
to the following; it is also the number of MDCs that are re-
turned in the end. To investigate the impact of k on MDe-
dup’s performance, we trained the system with different k
values and measured the following average F-measure scores
across all datasets: 1 → 34.1%, 2 → 39.5%, 4 → 32.5%,
8 → 47.3%, 16 → 55.2%, 32 → 55.4%, 64 → 55.4%. From
this, we conclude that a certain set size is needed to learn
how useful MDs look like, but at some point the set captures
all relevant information and larger training sets do not im-
prove the performance. Hence, MDedup is robust against
large k value, i.e., overly large values impact its runtime
performance but not its effectiveness. In our experiments,
we set the parameter to 16.

Because the MDC selection step has exponential complex-
ity in the number of MDs, its execution time can be very
high. For this reason, we introduced a maximum execution
time that, when exceeded, triggers MDedup to gracefully
stop the lattice traversal: the current level is finished but
the next level is not started. In our experiments, we set
a maximum execution time of ten hours. Hence, this time
limit is essentially irrelevant for the training phase, but the
feature generation and predictions in the application phase

are so expensive that our two largest datasets exceed a selec-
tion time of 10 hours. Table 2 lists the numbers of selected
MDCs together with the actual selection times.

To evaluate the effectiveness of the thirty-five MDC score
prediction features, we executed two experiments: The first
experiment is a leave-one-out experiment, where we trained
the system leaving out each feature once to see how this
feature impacts the F-measure. In a second experiment, we
trained the system once with every feature exclusively, i.e.,
with only that one feature to measure its performance. With
the results of these two experiments, we could not identify
a particularly important or harmful feature, because every
feature increases the performance on at least one dataset
and/or performs well on its own. For this reason, we use all
proposed features in our system.

MDC Expansion. The parameter expansion factor en-
sures that enough MDCs exist to capture the datasets’ prop-
erties, especially for datasets with an inherently small num-
ber of MDCs. It also serves to represent some non-optimal
MDCs, i.e., negative examples in the training set. Both the
neighbor expansion and the random sampling are configured
to enlarge the set of selected MDCs by a factor of 10 each.
To evaluate the impact of the expansion, we trained MDe-
dup once with an expansion factor of 0.0, which is expansion
switched off, and once with a factor of 10. Without expan-
sion, the F-measure for DLBP-Scholar increased from 0% to
83% (the one effective MD was selected now), but this effect
appears to be incidental, because the F-measure decreases
for all other datasets without expansion – on average by 2%.
For this reason, we propose to use the expansion step. A de-
fault factor of 10 worked well in our experiments, because
the F-measure did not improve for larger values.

MDC Prediction. The Gaussian Process, which is our
regression model for predicting F-measures, requires a kernel
and a regularization λ as parameters. For the kernel, we
select a Gaussian kernel [31] that in turn needs σ to control
the width of Gaussian distributions. For σ, we set the value
range [2−3, 2−1, . . . , 27] (6 values) and for λ the value range
[2−5, 2−3, . . . , 25] (6 values). For the implementation of the
Gaussian Process, we use the Smile library [33].

The experimental process for the prediction step as de-
scribed in Section 6.3 follows a leave-one-out cross-validation
approach on dataset level: For every individual dataset, we
use all other datasets as the annotated training datasets
(running the training pipeline on them) and the target data-
set as the test dataset (running the application pipeline on
this dataset). The best parameters, i.e., λ and σ, are cho-
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sen automatically by the models through an 80:20 train-
validation split approach on the annotated datasets. The
selected parameters are then applied to the tested dataset.
Finally, results for both MDCs and execution time are given
in Table 2. Recall that datasets with execution times longer
than ten hours are a result of expensive MDC score pre-
diction; at ten hours, we terminate the selection process,
returning the results obtained until that point.

Boosting classifier. Support Vector Machines (SVMs) are
a widely accepted binary classifier and have already been
used for boosting in duplicate detection [16, 17]. We pair
SVMs with a Gaussian kernel, which is a standard radial
basis function (RBF) kernel, and configure two parameters:
Gaussian kernel width σ and soft margin penalty Cs. Fol-
lowing the loose grid search recommendation [34], we set
the values [2−3, 2−1, . . . , 27] (6 values) for σ and the val-
ues [2−5, 2−3, . . . , 215] (11 values) for C. The results are
reported upon an 80:20 split of train-test on the duplicates
reported by the first-cut duplicate detection step on the new
dataset with a 10-fold cross-validation on the train part to
select the best parameters. The experiments on all datasets
lasted from a few minutes to less than an hour at most.

6.3 MDedup performance evaluation
In this section, through a set of experiments, we show the

potential of using MDCs as a duplicate detection classifier.
Figure 5 serves as our evaluation summary and guideline
for the three experiments discussed afterwards. The fig-
ure shows for each dataset four different effectiveness results
that correspond to different steps in the MDedup algorithm.
Each result is evaluated with the classification metrics recall,
precision, and F-measure.

MDC Selection and MDC Selection with boosting are two
variations of the training pipeline. Hence, they both utilize
the gold standard to obtain their results. Because MDe-
dup’s training pipeline identifies the highest scored MDC
for duplicate detection, the idea is the following: If we con-
sider the selected MDC as a duplicate detection classifier,
this classifier should provide us with the optimal F-measure
any matching dependency combination (from the set of dis-
covered MDs) can achieve; it, hence, represents an upper
bound for our experiments and describes the capabilities of
discoverable MDs in the domain of duplicate detection – we
cannot predict any better results using MDs alone. To im-
prove the recall of the best MDC, we can also apply the
boosting step to its results. The version with boosting fol-
lows the principles we discussed for the application pipeline,
i.e., the first-cut duplicate detection produces a set of du-
plicate pairs, which are then fed into an SVM classifier for
training and a refined duplicate detection pass.

Analogous to the results of training pipeline, MDC Predic-
tion and MDC Prediction with boosting present the results
of the application pipeline. They describe MDedup’s effec-
tiveness when predicting good MDC classifiers rather than
testing them on a gold standard. Training and testing of
the regression model to predict the MDC scores is done in
a leave-one-out cross-validation manner: Given one dataset,
we train on all other datasets (and their gold standards)
and test the prediction effectiveness on the given dataset
(for which we omit the annotations).

As an attempt to create a baseline, we first considered
possible methods that can also exploit the knowledge gath-
ered on annotated datasets to classify record pairs in another

target dataset that lacks an annotation. Transfer learning,
however, for typical binary classification is not trivial, as dif-
ferent datasets have different attribute domains. Thus, al-
though some literature exists on transductive transfer learn-
ing using SVMs [35], it is not clear how to perform such
a schema matching across datasets in an automatic way.
Thus, we experimentally enforced a schema mapping by
splitting the same dataset into multiple parts and, then, ran
both MDedup and [21] on these perfectly matching parts.
We did this for all our datasets and measured on average
51% F-measure for us and 68% for [21]. So for same do-
main datasets with a transitive gold standard and a schema
mapping, more effective approaches exist.

We then applied a traditional classification technique that
directly uses the gold standards to train and apply SVM
models. The results of training directly on high-quality
and large sets of similarity pairs yielded, as expected, much
higher precision and recall numbers. But such training ap-
proaches are incomparable to our approach and, in particu-
lar, inapplicable to our no-gold-standard scenario.

Subsequently, we discuss three experiments in more de-
tail: First, in Section 6.3.1, we test the general effectiveness
of (discovered) MDCs when being used for duplicate de-
tection. Second, Section 6.3.2 compares the classification
effectiveness of the predicted MDCs against best selected
MDCs. Third and finally, Section 6.3.3 shows the F-measure
scores that MDCs can achieve with boosting.

6.3.1 MDC Selection
First, we evaluate the limits of MDs for classifying du-

plicates in the presence of a gold standard, using a top-k
approximation. This corresponds to the training phase of
our pipeline in Figure 1, which approaches the best-case
scenario for a given dataset. More specifically, we discuss
the results shown in Figure 5 with the label MDC Selection.

Overall, the F-measure for most datasets is low. This is
primarily due to poor recall – precision is near perfect on
all datasets except Census and Hotels. The poor recall is
mainly due to some error patterns that are not described
by the discovered, minimal matching dependencies. How-
ever, the fact that the selection favors precision over recall
has interesting implications: First, it shows that properties
of good MDCs are learnable and transferable, because the
majority of MDCs in general has a very poor precision. Sec-
ond, a high precision is important for automatic approaches,
because although they might not find all duplicates, their ac-
tual findings are reliable. The results are, finally, also good
for boosting, because training subsequent models requires
reliable test records (and not all records).

6.3.2 MDC Prediction
Our second experiment evaluates how well MDedup can

predict the MDC classifiers for duplicate detection, which
is its ability to detect duplicates in new datasets. For this
purpose, we discuss the measurements labeled as MDC Pre-
diction in Figure 5 and compare them to the target values
of MDC Selection, which are the best F-measure values the
system can possibly achieve.

The measurements in Figure 5 show that the predicted
MDCs do not achieve the F-measure scores of the selected
MDCs; in particular, MDedup never predicted the best se-
lected MDC. Considering the large search space and the fact
that most MDCs perform poorly as duplicate classifiers, the

722



MDC Selection MDC Prediction MDC Selection with boosting MDC Prediction with boosting

0.0 0.2 0.4 0.6 0.8 1.0

NCVoters

Cora

Amazon-Walmart

Hotels

CDDB

DBLP-Scholar

Restaurants

Census

0.89

0.56

0.02

0.07

0.31

0.00

0.76

0.63

0.95

0.58

0.12

0.09

0.55

0.72

0.92

0.79

0.89

0.35

0.01

0.00

0.14

0.00

0.60

0.12

0.96

0.58

0.01

0.01

0.19

0.00

0.64

0.14

0.0 0.2 0.4 0.6 0.8 1.0
1.00

1.00

0.17

0.57

0.98

0.00

0.98

0.76

0.98

0.98

0.57

0.64

0.88

0.98

0.90

0.81

1.00

0.99

1.00

0.40

1.00

0.00

1.00

0.47

0.99

0.98

1.00

0.45

1.00

1.00

1.00

0.50

(a) Precision

0.0 0.2 0.4 0.6 0.8 1.0
0.94

0.72

0.03

0.12

0.47

0.00

0.85

0.69

0.96

0.73

0.19

0.15

0.68

0.83

0.91

0.80

0.94

0.52

0.02

0.01

0.25

0.00

0.75

0.20

0.98

0.73

0.02

0.01

0.32

0.00

0.78

0.22

(b) F-measure

Figure 5: Effectiveness of MD-based duplicate classifiers using the best MDC according to a gold standard
(Selection) or a Gaussian process (Prediction); in both cases, no-boosting and boosting is considered.

results are still very good. The predicted MDCs have, in
particular, high precision and are, therefore, like their se-
lected counterparts well suited for automatic cleaning pro-
cesses and boosting. Overall, we primarily lose recall when
using the MDC scoring model instead of a gold standard.

Unfortunately, MDedup failed to predict a useful MDC for
the DBLP-Scholar dataset, because the dataset offers only
one useful MD. When selected and boosted, it achieves 83%
F-measure. The MD does not look promising on its own
and all interesting insights are derived from the correctly
identified duplicates in the boosting. Hence, it is no surprise
that our system cannot identify the MD reliably.

6.3.3 Boosting
In the last experiment, we evaluate the boosting step of

MDedup. The boosting step aims to improve the overall
F-measure with an additional SVM model. This model is
trained on the high-precision duplicates that the system gen-
erated with the selected/predicted MDCs and should be
able to learn additional, domain-specific duplicate proper-
ties. To evaluate the boosting effect, we apply this step
on top of both MDC Selection and MDC Prediction. The
results, which are presented in Figure 5 with the with boost-
ing suffix, show considerable improvements in F-measure for
both selected and predicted MDCs; only Cora’s and NCVot-
ers’ selected results lost one percent F-measure, which is due
to slightly worse recall values. For this reason, boosting is
a generally viable technique when using discovered MDs for
duplicate detection.

Remarkably, datasets that performed poorly in the pre-
vious phases, have the largest improvements. More specifi-
cally, Amazon-Walmart, DBLP-Scholar, and Hotels were able
to match only a few duplicate pairs beforehand. However,

the combination of these duplicates, along with a few non-
duplicates (as discussed in Section 5) was enough for an
SVM-based approach to identify differences in the set of
evaluated pairs. As expected MDC Selection provided SVMs
with a noticeably better set of duplicates, which resulted in
higher improvements and higher values of F-measure overall.

7. CONCLUSION
We proposed a system called MDedup that uses discovered

matching dependencies for the fully automatic detection of
duplicates, which means that no domain knowledge about
or training data for a given target dataset is needed to de-
tect duplicates in it. Because the duplicates discovered with
only MDs usually have high precision but comparatively low
recall, we proposed an SVM-based boosting ensemble step
that in many cases greatly improves recall and, hence, the
overall F-measure. Our experiments highlight the capabili-
ties of discovered MDs when being used for duplicate dete-
ction, thus closing a gap in research. They also show that
an algorithm can, to a certain extent, domain-independently
learn how to score MDs for being good duplicate classifiers.

The achieved F-measure scores are certainly not compet-
itive with those produced by algorithms that can learn on
pre-labeled data or gold standards, but they are very use-
ful for scenarios where no training data is available. The
domain-independent properties of MDCs allow us to recom-
mend their application, independent of a gold standard. No
other duplicate detection approach is able to process arbi-
trary datasets without a human providing domain-specific
input, such as initial classifier rules, data labels, or similar-
ity thresholds. The usage of MDs in our approach, finally,
also allows the user to interpret the detected duplicates.
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