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Real or Fake? Large-Scale Validation of Identity Leaks

Fabian Maschler, Fabio Niephaus and Julian Risch1

Abstract: On the Internet, criminal hackers frequently leak identity data on a massive scale.
Subsequent criminal activities, such as identity theft and misuse, put Internet users at risk. Leak
checker services enable users to check whether their personal data has been made public. However,
automatic crawling and identification of leak data is error-prone for different reasons. Based on a
dataset of more than 180 million leaked identity records, we propose a software system that identifies
and validates identity leaks to improve leak checker services. Furthermore, we present a proficient
assessment of leak data quality and typical characteristics that distinguish valid and invalid leaks.
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1 Identity Leaks

Large databases of Internet services are targets of hacking attacks. Often, such stolen data
is traded in the Dark Web or made public to achieve fame. Subsequent to data breaches,
criminals can use personal data, such as email addresses and credit card information, or
usernames and passwords for identity theft and other crimes. In response to identity leaks
and their threat to users, there are leak checker services, such as the HPI Identity Leak
Checker (ILC)2 or HIBP3. With the help of these services, users can easily find out whether
their identity data is contained in any published leaks. To provide such a service, leak
checkers search and import leak data from the Internet automatically and continuously.
Often, they go for quantity and collect leak data unrevised, to quickly enlarge their dataset.

This fully automatic approach comes at a cost: Leak checker databases often contain a lot
of false positives, which are invalid entries with no corresponding real identity. Moreover,
sometimes hackers pretend to have successfully hacked a service and then spread fake data
to harm the reputation of a certain service or to gain attention. If there are no validity
checks, also fake leaks end up in leak checker databases. However, leak checkers need clean
databases to provide reliable results to their users. To improve the quality of those leak
databases and reduce the number of false positives, it is necessary to validate all entries.
1 University of Potsdam, Hasso-Plattner-Institute, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany,
{fabian.maschler, fabio.niephaus, julian.risch}@student.hpi.uni-potsdam.de
2 https://sec.hpi.de/leak-checker/
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We present a software system that automatically validates entire leak files with millions of
entries, as well as single identity records. We cross-validate our approach on 900 manually
labeled leak files and achieve an F1-Measure of 85 %. Experiments on a database with more
than 180 million leaked identities detect 10 % of the identities as invalid.

2 Related Work

Jäger et al. propose a leak checker service and explain its functionality [Ja15]. They describe
a manual process of collecting leak data from hacker forums, the Dark Web, and file hosting
providers or BitTorrent. A basic analysis of password distributions is conducted, which has
been previously done by Wang et al. limited to Chinese passwords [Wa15]. Butler et al.
focus on tracing a leak and identifying its surface point [BWP16]. The authors address large
service providers, such as PayPal, and present concepts to automatically gather leaked data
to inform and protect customers. Involving attacked service providers, Nixon summarizes
several ideas on vetting leaks [Ni14]. According to that, password policies or measures for
uniqueness and existence of usernames and email addresses are useful for the validation of
leak data. Other ideas include checking the formatting of credit card numbers or analyzing
the distribution of real names. Unfortunately, Nixons summary is missing an evaluation of
the described ideas with real data. With our work, we fill this gap with experiments on a
real-world dataset and moreover extend the list of effective and efficient validity checks.
Recently, our results have been incorporated into the ILC and build the basis for ongoing
identity leak research of Jäger and Graupner et al. [Gr16, Ja16].

3 Leak Validation

Our software system decomposes identity leak validation into two subtasks: (i) Validation
of a leak file in its entirety based on features of the full dataset and (ii) Validation of a single
identity and its username, email address, etc. in detail. Table 1 lists all proposed validation
methods.
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Tab. 1: Validators for (i) leak files and (ii) single identities.

Validator Description

(i)
MLBasedValidator Validation based on supervised machine learning
LeakDistributionValidator Analysis of character n-gram distribution
(ii)
ExistenceValidator Filter records with empty fields
GenericValidator Filter special characters with regular expressions on usernames
EmailValidator Filter general email format (Apache)
EmailSpecificationValidator Filter provider-specific email regular expressions
MXRecordValidator Filter domains without MX Record
SMTPValidator Filter unknown email addresses at SMTP server

3.1 Validation of Entire Leak Files

To identify valid identity leak files, we propose a machine learning approach (MLBasedVal-
idator) based on several features of the entire leak file.

Quantitative Features. The feature set includes, but is not limited to:

• text length of the entire leak

• average line length

• the number of occurrences of special characters or words such as
– ‘@’ to estimate the number of email addresses

– ‘CREATE TABLE’ or ‘PRIMARY KEY’ to identify SQL statements

– ‘qwert’, ‘123456’ or ‘password’ to represent common passwords

Furthermore, we propose regular expressions to identify HTML tags, email addresses, and
common password hashes. Regarding common password hashes, we focus on sha1, sha256,
sha512 and md5. Although leaked password hashes can be a security risk, not every leaked
password hash can be cracked and misused. However, even salted password hashes can be
guessed if the corresponding password hints are known, as seen in the Adobe leak [Kr13].
Passwords that do not occur in any dictionary are also subject to this risk. In our work, we
use hashes as a feature for leak validation, rather than analyzing password strength and
security risk of leaked hashes.
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Qualitative Features. Typical leak files follow a tabular structure. To measure how similar
a leak file is to a CSV-file like tabular structure, we propose a similarity measure for
consecutive lines. Two lines are similar if both lines contain at least one common delimiter
symbol, such as ‘:’, ‘\t’, or ‘;’. Further, the frequency of at least one of these symbols must
be the same for consecutive lines.

In computational literature analysis, the task of authorship attribution is to attribute the
authorship of a text to the correct author, out of a set of candidates. We propose to transfer
features that represent the writing style of an author to features for the different characteristics
of valid and invalid leak data. A prevalent feature for authorship attribution are character
n-grams, which are tuples of n consecutive characters. Houvardas et al. extract character
n-grams and map their frequencies in a histogram for authorship attribution [HS06]. We
transfer this technique to leak analysis and define only two classes of leaks: each leak file is
either valid or invalid. We choose the Adobe leak as a reference/ground truth dataset for
valid leak files, since it is an international leak file with a huge number of identities and
thus suits best for general conclusions. Considering the local part of all email addresses, we
analyze single character, 2-gram, and 3-gram distributions. As a result, we extract three
histograms that represent the relative frequency of each n-gram in email address local parts
of the Adobe leak.

To validate a leak file, we count character n-grams in this leak and compare their relative
frequencies to our reference frequency distribution. If the difference of the relative frequency
is higher than a parameter epsilon, this n-gram deviates. A higher epsilon allows more
variation of n-grams. A second parameter coverage specifies, how many n-grams can deviate
at most for a leak to be considered valid. We count only those n-grams, which appear in the
expected and the observed distributions. For higher percentages of coverage, less leaks are
classified valid, since they have to be more similar to the reference leak.

If the n-gram distribution of a leak is classified invalid, it is too different from the reference
and we invalidate all identities of that leak. Because n-gram distributions are not reliable for
small leak files and they might differ from the reference distribution even for valid leak files,
we skip this check for small leak files.

With this LeakDistributionValidator, we can successfully detect randomly generated leak
files in which the distribution of n-grams differs from the expected distribution. However,
leaks of online services in a specific country differ from more general or international
leaks. Thus, the leaks which are classified as invalid by this check should be manually
inspected before all identities are invalidated. Furthermore, using multiple valid leaks to
extract reference distributions would make the analysis more robust.
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3.2 Validation of Single Leak Identities

A leak that is classified valid, can still contain a great amount of invalid identities. In this
section, we propose methods to filter out single fake identities.

Generic Validations. When checking the validity of an identity, there are some general
checks that can be performed. The easiest validation, implemented with the Existence-
Validator, invalidates identities missing required information, such as username or email
address. Furthermore, a username usually cannot contain special characters, such as con-
trol sequences or white space. The GenericValidator implements this specification with
configurable regular expressions. In a similar fashion, email addresses are subject to a
well-defined format, described in RFC5322 and extended by RFC6531 [Re08,YM12]. Our
EmailValidator performs these general checks with regular expressions and an email address
validator provided by Apache Commons4. Depending on the dataset available, other generic
checks, such as credit card validation, can be performed in a similar way.

Provider-Specific Email Address Validation. Hackers often try to attack services that are
used by millions of users. The biggest data breaches usually contain many email addresses
from different email providers. However, the majority of email addresses is from popular
email providers, such as Gmail, Yahoo or Outlook. These providers allow only certain
characters to be in the local part of email addresses. For example, Gmail allows only letters
(a-z), numbers (0-9), and a period (.) to be in the local part. The length of such local parts is
limited between 6 and 30 characters and they must start and end with a letter or a number.
Gmail uses @gmail.com and @googlemail.com in some countries and allows users to
define address aliases, which contain a plus (+). All this information can be used to validate
a given Gmail address. For this purpose, we compiled specifications in the form of regular
expressions for 29 popular email providers. For example, the Gmail specification is the
following:

^[a-z0-9]([a-z0-9.+]){4,28}[a-z0-9]@g(oogle)?mail\.com$

The EmailSpecificationValidator checks, if the domain of an email address matches any of
the specified regular expressions. In this case, the address also has to match the specified
regular expression for the local part. Otherwise, the identity is declared invalid and needs
no further checking.

MX Record Validations. Checking email address specifications is already effective to
reveal invalid entries. A more advanced technique is to check an email’s domain for MX

4 https://commons.apache.org/proper/commons-validator/apidocs/org/apache/commons/validator/

routines/EmailValidator.html
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https://commons.apache.org/proper/commons-validator/apidocs/org/apache/commons/validator/routines/EmailValidator.html
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records. An MX record is a DNS entry and specifies the mail servers that handle incoming
emails for a given domain. If no MX record is present, there is no way an email can be sent
to this domain. Thus, the email address is invalid. This is the case, if a domain has been
deleted or if an email address has been generated randomly.

Fig. 1: MX Record Check Process

The MXRecordValidator verifies the existence of a valid MX record for a given email address
domain. Performing DNS requests is comparatively costly in terms of time. Analyzing large
datasets would result tremendous runtimes. To speed up validation, our implementation uses
caching and multi-threading. Figure 1 visualizes the process of checking a domain. First,
we check if a domain is present in a blacklist or whitelist. The blacklist contains domains of
popular providers for disposable email addresses, whereas the whitelist contains domains of
popular email providers such as Gmail or Yahoo. The MXRecordValidator then checks, if a
domain is in a cached list. The cache is split into a cached blacklist and a cached whitelist.
A DNS request is performed only if a domain is not contained in any of these lists. Thereby,
each domain is checked only once and added to the cached blacklist or whitelist afterwards.
This keeps the number of DNS requests as low as possible.

SMTP Validations. Although, the Simple Mail Transfer Protocol (SMTP) was first
defined in 1982, it is still used to deliver emails today [Cr82]. RFC5321 specifies all
commands that are required to send an email via SMTP [Kl08]. To find out, if an email
account exists on the server, we pretend to send an email to that address, but before sending
email data, we quit the process. As seen in Listing 1, the mail server replies with code 250
if a recipient is valid or with 554 if it is unknown. Therefore, this is used to check for the
existence of an email address.

RFC5321 compliant mail servers allow 100 recipients [Kl08]. Hence, we can validate 100
email addresses per connection to an SMTP server. Email providers usually use more than
one mail server for redundancy purposes. Thereby, more than one connection to each email
provider can be established to further speed up the validation process. We have implemented
this test and made it available through SMTPValidator. Unfortunately, performing this check
is even a lot more time-consuming than an MX record check.
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220 mail.domain.de ESMTP

HELO domain.de

250 mail.domain.de

MAIL FROM: <sender@domain.de>

250 2.1.0 Ok

RCPT TO: <valid@domain.de>

250 2.1.5 Ok

RCPT TO: <invalid@domain.de>

554 5.7.1 <invalid@domain.de>: Recipient address rejected: user unknown

QUIT

221 2.0.0 Bye

Connection closed by foreign host.

List. 1: SMTP communication example to validate the existence of an email address

4 Large-Scale Leak Validation

Hackers usually capture thousands of login and account details in data breaches. For this
reason, databases for identity leak checkers are likely to contain millions of entries. To deal
with this huge amount of data, we use the producer-consumer pattern and implement two
different threads that communicate via a blocking queue. A producer thread fetches one
entry after another from the database and adds it to the queue. A consumer thread does more
complex operations, such as validating multiple regular expressions or performing SMTP
checks. For this reason, our system uses a single producer thread and multiple consumer
threads, as shown in Figure 2. This separation parallelizes the validation of a huge amount
of identities and speeds up the process.

Producer 
Thread

Blocking
Queue

Database

Consumer 
Thread

Validator 1

Validator 2

Validator n

Fig. 2: Producer-consumer architecture for parallel validation of identities.

All identities are analyzed and validated in the consumer threads, each performing a list of
validations. The order of validations should filter identities early to minimize processing
time. For example a consumer thread could process generic validations, email specification
check, MX record checks, SMTP checks, and character n-gram distribution analysis.
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5 Evaluation

In this section, we evaluate our work on the analysis of leak data quality and identification
of fake identities. Therefore, we evaluate our proposed methods on a sample of the ILC
database. An overview of the dataset, for example the number of accounts, domains or
common passwords, is available online5.

The evaluation starts with evaluation leak files validation and continues with the analysis of
single leak identities. Here, we distinguish between generated data, a sample of the ILC
database and a full analysis with a subset of methods.

5.1 Leak File Validation

For the quantitative analysis described in Section 3.1, we use supervised machine learning
with decision tree classifiers. Decision trees allow very time-efficient classification, which
is important for our use case with many leak files to check. We evaluate our model with a
5-fold cross-validation on a balanced test set of 450 valid and 450 invalid identity leak files
from May 2014. These files stem from leak posting websites, such as www.leakedin.com
and have been manually labeled as valid or invalid. Valid identity leak files contain real
identities including email addresses, passwords and usernames. Invalid identity leak files
consist of fake identities or do not contain identities at all, such as log files, configuration
files, HTML files, or link lists.

In our experiments, a random forest classifier with 30 trees, each constructed while
considering 5 random features out of all 15 features, performs best. As a result, we achieve
an F1-Measure of 85 %, with identical results for precision and recall. While we found
no other features or classifier models to improve this further, we were able to reduce the
number of used features, still achieving a high F1-Measure. A subset of only 3 features
consisting of ‘@’ signs, md5 hashes, and the similarity of consecutive lines, achieves an
F1-Measure of 81 % using an alternating decision tree.

5.2 Identity Validation

For the evaluation of single identity validation, we consider a sample of the ILC database
comprising several leak files, containing almost 1.5 million identities with email addresses
and usernames. We discovered 725 909 identities with duplicate email address in the entire
dataset (inter-leak). Analyzing each leak separately, there are overall only 26 644 identities
with duplicate email addresses (intra-leak). We assume, the latter results from services that
use usernames instead of email addresses for authentication or do not check for duplicate
accounts. Comparing the large difference between intra- and inter-leak duplicates, we

5 https://sec.hpi.uni-potsdam.de/leak-checker/statistics

www.leakedin.com
https://sec.hpi.uni-potsdam.de/leak-checker/statistics
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assume that the database contains identical leaks, probably imported from different sources.
Since such a non-fuzzy de-duplication can be easily achieved with appropriate database
constraints, we do not further discuss this kind of invalid data.

Table 2 shows the results of our approach using all validators except the SMTPValidator for
time-efficiency reasons. The MXRecordValidator uses 329 whitelisted domains and 778
blacklisted temporary email providers.

Tab. 2: Results on a sample of the ILC database with a runtime of 90.92 s. In total, 1 455 230 entries
were checked, which represent 100 % in the table.

Description Absolute Value Relative Value %

LeakDistributionValidator 69 791 4.80
ExistenceValidator 828 363 56.92
GenericValidator 35 859 2.46
EmailValidator 23 719 1.63
EmailSpecificationValidator 54 303 3.73
MXRecordValidator 43 536 3.00
Blacklisted domain 9 945 0.68

Total fake data 237 153 16.30

Our software identifies 16.30 % of the dataset as invalid data. As it turns out, even the
Adobe leak contains a fair amount of invalid entries and so do many other valid leaks. In
fact, 56.92 % of all identities have been identified as incomplete by the ExistenceValidator,
though this does not qualify them as invalid. Apparently, even large online services do not
validate all user-related information and several leaks are incomplete.

Not all web services verify email addresses by sending an email, therefore a higher
number of email addresses do not meet their provider’s specifications. Quite a few email
addresses have domains with no or an invalid MX record for probably the same reason.
With the MXRecordValidator it takes only 91 s to process 1.5 million identities with all
domains cached but 15 min with an empty cache. The cache reveals that 18 143 domains
are blacklisted and 79 492 entries are whitelisted. This sums up to almost 98 000 distinct
DNS requests, which equals just 6.71 % compared to the total number of identities. The
user defined blacklisted domains from temporary email providers result in flagging 9 945
(0.68 %) identities as invalid.

Moreover, all identities from three leak files have been marked invalid, with the LeakDistri-
butionValidator. Indeed, these leaks look suspicious, because most of the email addresses
seem to be randomly generated while skimming over the leak. For example, we identify
suspicious patterns of common firstname-lastname combinations. This result should still
be handled carefully, since very specific leaks deviate from the expected distribution. For
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example, leaks of Chinese messaging services and e-mail providers6 use telephone numbers
for registration. For this reason, there is a higher frequency of numbers in such leak files.

To evaluate the robustness of this method, we introduce a fake leak created with Generate-
Data7. Although, all usernames and email addresses are well-defined and do not appear
suspicious at first sight, this leak is detected invalid. We tested different parameter configu-
rations of the LeakDistributionValidator and find that for longer n-grams the parameters
have to be much smaller to detect invalid leaks. Although the analysis takes more time with
longer n-grams, the results are more robust and can be fine-tuned this way. We recommend
to either manually double-check detected leaks or to use these results to downgrade the
leak’s relevance and then indicate to users that this leak might not be valid.

Finally, we run parts of our software on the full dataset of the ILC database. To allow a
reasonable runtime on this huge dataset, we enable only a subset of validators. Table 3
shows the corresponding results.

Tab. 3: Number of flagged (invalid) entries per validator on the full ILC database with a runtime of
46 min. In total, 186 952 311 entries were checked, which represent 100 % in the table.

Description Absolute Value Relative Value %

GenericValidator 4 349 267 2.33
EmailValidator 3 242 407 1.73
EmailSpecificationValidator 3 852 816 2.06

Total fake data 11 444 490 6.12

Compared to results of the smaller sample, the relative frequencies are quite similar. However,
the total number of invalid identities is proportionately larger, because the full dataset
contains almost 187 million identities. The subset of validators identifies more than 11
million fake identities in about 46 min runtime. Extrapolating the results from the smaller
sample to the entire ILC database, all proposed validators would identify approximately
10 % of the entries as invalid.

To conclude, we give some examples of detected invalid identities. Table 4 exemplarily
shows a few usernames and email addresses that were flagged as invalid. We allow letters of
any language, numbers, dash, period, underscore, and ‘@’ in usernames, so these examples
are evident. Some invalid email addresses look like mismatches, typing errors or even
hacking attempts. In Table 5, there are email addresses with invalid email specifications. We
have double-checked them manually and they indeed cannot be valid addresses according
to the corresponding email providers. Furthermore, Table 5 lists a few examples for email
addresses with invalid domains. In fact, these domains are either missing an MX record or
do not exist at all.
6 http://www.qq.com/ and http://www.163.com/

7 http://generatedata.com/

http://www.qq.com/
http://www.163.com/
http://generatedata.com/
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Tab. 4: Examples for invalid usernames and malformed email addresses.

Invalid usernames Malformed email addresses (non RFC5322 compliant)

??Frank?? aqwa242@comcast,net

Ø¨Ø³Ø§Ù... Ù...Ù^Ø³Ù%� anonymous3000

.::009::. <body onload="document.write(’hacked...

winner 12378 non g 1982

(vitimin-z) taqwa65@yahoo.comr

Tab. 5: Examples for email addresses that violate providers’ specifications or that have domains with
no or only an invalid MX record.

Addresses violating provider’s specification Addresses domains with no or invalid MX records

mon.ino.(...)r.beto.ia@gmail.com big@foo.bar

asdf@gmail.com kashif@alrahmahsoft.com

lad@yahoo.com tra1@ac.com

c@msn.com asjklddfasjkl@dfassfddfas.com

star.zhang@163.com sd@ut.yu

6 Conclusions and Future Work

In this work, we study the problem of identity leak validation and propose a general approach
to validate entire leak files, as well as single leak identities. Based on supervised machine
learning, we classify leak files as valid or invalid and on a more detailed level, we analyze
how usernames and email addresses differ in real and fake leaks. We present a time-efficient
implementation for validating email addresses based on MX records and analyze character
n-gram distributions to identify generated leaks. Experiment results demonstrate that our
approach is suited for real-world leak checker databases with more than 180 million leaked
identities. We reveal approximately 10 % of the data in the examined ILC database as fake
identities or mismatched information.

Interesting future work includes the analysis of other attributes of leaked identities, such
as password hashes. Checking individual passwords for password policy compliance or
the frequency distribution of simple and hard passwords could be next steps. However,
password policies might change over time and the frequency distribution of passwords can
be service-dependent. In the Adobe leak, for example, many passwords include the word
‘adobe’. The analysis of frequency distributions is also interesting for other information
that is not devised by users, such as real names, email addresses containing real names, or
birthdates. For example, the frequency distribution of births is far from uniform, with the
highest peak nine months after Christmas.
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